|
import os |
|
import asyncio |
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.llm.openai import gpt_4o_mini_complete |
|
from lightrag.kg.shared_storage import initialize_pipeline_status |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
WORKING_DIR = "./local_neo4jWorkDir" |
|
|
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
|
|
|
|
async def initialize_rag(): |
|
rag = LightRAG( |
|
working_dir=WORKING_DIR, |
|
llm_model_func=gpt_4o_mini_complete, |
|
graph_storage="Neo4JStorage", |
|
log_level="INFO", |
|
|
|
) |
|
|
|
await rag.initialize_storages() |
|
await initialize_pipeline_status() |
|
|
|
return rag |
|
|
|
|
|
def main(): |
|
|
|
rag = asyncio.run(initialize_rag()) |
|
|
|
with open("./book.txt", "r", encoding="utf-8") as f: |
|
rag.insert(f.read()) |
|
|
|
|
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="naive") |
|
) |
|
) |
|
|
|
|
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="local") |
|
) |
|
) |
|
|
|
|
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="global") |
|
) |
|
) |
|
|
|
|
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="hybrid") |
|
) |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|