|
import asyncio |
|
import nest_asyncio |
|
|
|
nest_asyncio.apply() |
|
|
|
import inspect |
|
import logging |
|
import os |
|
|
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.llm.ollama import ollama_embed, ollama_model_complete |
|
from lightrag.utils import EmbeddingFunc |
|
from lightrag.kg.shared_storage import initialize_pipeline_status |
|
|
|
WORKING_DIR = "./dickens_age" |
|
|
|
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO) |
|
|
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
|
|
|
|
os.environ["AGE_POSTGRES_DB"] = "postgresDB" |
|
os.environ["AGE_POSTGRES_USER"] = "postgresUser" |
|
os.environ["AGE_POSTGRES_PASSWORD"] = "postgresPW" |
|
os.environ["AGE_POSTGRES_HOST"] = "localhost" |
|
os.environ["AGE_POSTGRES_PORT"] = "5455" |
|
os.environ["AGE_GRAPH_NAME"] = "dickens" |
|
|
|
|
|
async def initialize_rag(): |
|
rag = LightRAG( |
|
working_dir=WORKING_DIR, |
|
llm_model_func=ollama_model_complete, |
|
llm_model_name="llama3.1:8b", |
|
llm_model_max_async=4, |
|
llm_model_max_token_size=32768, |
|
llm_model_kwargs={ |
|
"host": "http://localhost:11434", |
|
"options": {"num_ctx": 32768}, |
|
}, |
|
embedding_func=EmbeddingFunc( |
|
embedding_dim=768, |
|
max_token_size=8192, |
|
func=lambda texts: ollama_embed( |
|
texts, embed_model="nomic-embed-text", host="http://localhost:11434" |
|
), |
|
), |
|
graph_storage="AGEStorage", |
|
) |
|
|
|
await rag.initialize_storages() |
|
await initialize_pipeline_status() |
|
|
|
return rag |
|
|
|
|
|
async def print_stream(stream): |
|
async for chunk in stream: |
|
print(chunk, end="", flush=True) |
|
|
|
|
|
def main(): |
|
|
|
rag = asyncio.run(initialize_rag()) |
|
|
|
|
|
with open("./book.txt", "r", encoding="utf-8") as f: |
|
rag.insert(f.read()) |
|
|
|
|
|
print("\nNaive Search:") |
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="naive") |
|
) |
|
) |
|
|
|
print("\nLocal Search:") |
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="local") |
|
) |
|
) |
|
|
|
print("\nGlobal Search:") |
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="global") |
|
) |
|
) |
|
|
|
print("\nHybrid Search:") |
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="hybrid") |
|
) |
|
) |
|
|
|
|
|
resp = rag.query( |
|
"What are the top themes in this story?", |
|
param=QueryParam(mode="hybrid", stream=True), |
|
) |
|
|
|
if inspect.isasyncgen(resp): |
|
asyncio.run(print_stream(resp)) |
|
else: |
|
print(resp) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|