|
import asyncio |
|
import os |
|
import inspect |
|
import logging |
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.llm.ollama import ollama_model_complete, ollama_embed |
|
from lightrag.utils import EmbeddingFunc |
|
|
|
WORKING_DIR = "./dickens" |
|
|
|
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO) |
|
|
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
|
|
rag = LightRAG( |
|
working_dir=WORKING_DIR, |
|
llm_model_func=ollama_model_complete, |
|
llm_model_name="gemma2:2b", |
|
llm_model_max_async=4, |
|
llm_model_max_token_size=32768, |
|
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}}, |
|
embedding_func=EmbeddingFunc( |
|
embedding_dim=768, |
|
max_token_size=8192, |
|
func=lambda texts: ollama_embed( |
|
texts, embed_model="nomic-embed-text", host="http://localhost:11434" |
|
), |
|
), |
|
) |
|
|
|
with open("./book.txt", "r", encoding="utf-8") as f: |
|
rag.insert(f.read()) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")) |
|
) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="local")) |
|
) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="global")) |
|
) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")) |
|
) |
|
|
|
|
|
resp = rag.query( |
|
"What are the top themes in this story?", |
|
param=QueryParam(mode="hybrid", stream=True), |
|
) |
|
|
|
|
|
async def print_stream(stream): |
|
async for chunk in stream: |
|
print(chunk, end="", flush=True) |
|
|
|
|
|
if inspect.isasyncgen(resp): |
|
asyncio.run(print_stream(resp)) |
|
else: |
|
print(resp) |
|
|