lightrag / examples /query_keyword_separation_example.py
Gurjot Singh
Fix linting errors
3f44683
raw
history blame
3.4 kB
import os
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.utils import EmbeddingFunc
import numpy as np
from dotenv import load_dotenv
import logging
from openai import AzureOpenAI
logging.basicConfig(level=logging.INFO)
load_dotenv()
AZURE_OPENAI_API_VERSION = os.getenv("AZURE_OPENAI_API_VERSION")
AZURE_OPENAI_DEPLOYMENT = os.getenv("AZURE_OPENAI_DEPLOYMENT")
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
AZURE_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
AZURE_EMBEDDING_API_VERSION = os.getenv("AZURE_EMBEDDING_API_VERSION")
WORKING_DIR = "./dickens"
if os.path.exists(WORKING_DIR):
import shutil
shutil.rmtree(WORKING_DIR)
os.mkdir(WORKING_DIR)
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
client = AzureOpenAI(
api_key=AZURE_OPENAI_API_KEY,
api_version=AZURE_OPENAI_API_VERSION,
azure_endpoint=AZURE_OPENAI_ENDPOINT,
)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
if history_messages:
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
chat_completion = client.chat.completions.create(
model=AZURE_OPENAI_DEPLOYMENT, # model = "deployment_name".
messages=messages,
temperature=kwargs.get("temperature", 0),
top_p=kwargs.get("top_p", 1),
n=kwargs.get("n", 1),
)
return chat_completion.choices[0].message.content
async def embedding_func(texts: list[str]) -> np.ndarray:
client = AzureOpenAI(
api_key=AZURE_OPENAI_API_KEY,
api_version=AZURE_EMBEDDING_API_VERSION,
azure_endpoint=AZURE_OPENAI_ENDPOINT,
)
embedding = client.embeddings.create(model=AZURE_EMBEDDING_DEPLOYMENT, input=texts)
embeddings = [item.embedding for item in embedding.data]
return np.array(embeddings)
async def test_funcs():
result = await llm_model_func("How are you?")
print("Resposta do llm_model_func: ", result)
result = await embedding_func(["How are you?"])
print("Resultado do embedding_func: ", result.shape)
print("Dimensão da embedding: ", result.shape[1])
asyncio.run(test_funcs())
embedding_dimension = 3072
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=8192,
func=embedding_func,
),
)
book1 = open("./book_1.txt", encoding="utf-8")
book2 = open("./book_2.txt", encoding="utf-8")
rag.insert([book1.read(), book2.read()])
# Example function demonstrating the new query_with_separate_keyword_extraction usage
async def run_example():
query = "What are the top themes in this story?"
prompt = "Please simplify the response for a young audience."
# Using the new method to ensure the keyword extraction is only applied to the query
response = rag.query_with_separate_keyword_extraction(
query=query,
prompt=prompt,
param=QueryParam(mode="hybrid"), # Adjust QueryParam mode as necessary
)
print("Extracted Response:", response)
# Run the example asynchronously
if __name__ == "__main__":
asyncio.run(run_example())