LarFii
commited on
Commit
·
4460ba5
1
Parent(s):
76a313b
Add huggingface model support
Browse files- README.md +4 -4
- examples/insert.py +0 -18
- examples/lightrag_hf_demo.py +36 -0
- examples/lightrag_openai_demo.py +33 -0
- examples/query.py +0 -16
- lightrag/__init__.py +1 -1
- lightrag/base.py +1 -1
- lightrag/lightrag.py +21 -8
- lightrag/llm.py +2 -6
- lightrag/operate.py +1 -1
- reproduce/Step_3.py +1 -1
README.md
CHANGED
@@ -59,8 +59,8 @@ print(rag.query("What are the top themes in this story?", param=QueryParam(mode=
|
|
59 |
# Perform global search
|
60 |
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
61 |
|
62 |
-
# Perform
|
63 |
-
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="
|
64 |
```
|
65 |
Batch Insert
|
66 |
```python
|
@@ -287,8 +287,8 @@ def extract_queries(file_path):
|
|
287 |
├── examples
|
288 |
│ ├── batch_eval.py
|
289 |
│ ├── generate_query.py
|
290 |
-
│ ├──
|
291 |
-
│ └──
|
292 |
├── lightrag
|
293 |
│ ├── __init__.py
|
294 |
│ ├── base.py
|
|
|
59 |
# Perform global search
|
60 |
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
61 |
|
62 |
+
# Perform hybrid search
|
63 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
64 |
```
|
65 |
Batch Insert
|
66 |
```python
|
|
|
287 |
├── examples
|
288 |
│ ├── batch_eval.py
|
289 |
│ ├── generate_query.py
|
290 |
+
│ ├── lightrag_openai_demo.py
|
291 |
+
│ └── lightrag_hf_demo.py
|
292 |
├── lightrag
|
293 |
│ ├── __init__.py
|
294 |
│ ├── base.py
|
examples/insert.py
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
|
4 |
-
from lightrag import LightRAG
|
5 |
-
|
6 |
-
# os.environ["OPENAI_API_KEY"] = ""
|
7 |
-
|
8 |
-
WORKING_DIR = ""
|
9 |
-
|
10 |
-
if not os.path.exists(WORKING_DIR):
|
11 |
-
os.mkdir(WORKING_DIR)
|
12 |
-
|
13 |
-
rag = LightRAG(working_dir=WORKING_DIR)
|
14 |
-
|
15 |
-
with open('./text.txt', 'r') as f:
|
16 |
-
text = f.read()
|
17 |
-
|
18 |
-
rag.insert(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/lightrag_hf_demo.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
from lightrag import LightRAG, QueryParam
|
5 |
+
from lightrag.llm import hf_model_complete, hf_embedding
|
6 |
+
from transformers import AutoModel,AutoTokenizer
|
7 |
+
|
8 |
+
WORKING_DIR = "./dickens"
|
9 |
+
|
10 |
+
if not os.path.exists(WORKING_DIR):
|
11 |
+
os.mkdir(WORKING_DIR)
|
12 |
+
|
13 |
+
rag = LightRAG(
|
14 |
+
working_dir=WORKING_DIR,
|
15 |
+
llm_model_func=hf_model_complete,
|
16 |
+
llm_model_name='meta-llama/Llama-3.1-8B-Instruct',
|
17 |
+
embedding_func=hf_embedding,
|
18 |
+
tokenizer=AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
|
19 |
+
embed_model=AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
with open("./book.txt") as f:
|
24 |
+
rag.insert(f.read())
|
25 |
+
|
26 |
+
# Perform naive search
|
27 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
28 |
+
|
29 |
+
# Perform local search
|
30 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
31 |
+
|
32 |
+
# Perform global search
|
33 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
34 |
+
|
35 |
+
# Perform hybrid search
|
36 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
examples/lightrag_openai_demo.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
from lightrag import LightRAG, QueryParam
|
5 |
+
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
6 |
+
from transformers import AutoModel,AutoTokenizer
|
7 |
+
|
8 |
+
WORKING_DIR = "./dickens"
|
9 |
+
|
10 |
+
if not os.path.exists(WORKING_DIR):
|
11 |
+
os.mkdir(WORKING_DIR)
|
12 |
+
|
13 |
+
rag = LightRAG(
|
14 |
+
working_dir=WORKING_DIR,
|
15 |
+
llm_model_func=gpt_4o_complete
|
16 |
+
# llm_model_func=gpt_4o_mini_complete
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
with open("./book.txt") as f:
|
21 |
+
rag.insert(f.read())
|
22 |
+
|
23 |
+
# Perform naive search
|
24 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
25 |
+
|
26 |
+
# Perform local search
|
27 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
28 |
+
|
29 |
+
# Perform global search
|
30 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
31 |
+
|
32 |
+
# Perform hybrid search
|
33 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
examples/query.py
DELETED
@@ -1,16 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
|
4 |
-
from lightrag import LightRAG, QueryParam
|
5 |
-
|
6 |
-
# os.environ["OPENAI_API_KEY"] = ""
|
7 |
-
|
8 |
-
WORKING_DIR = ""
|
9 |
-
|
10 |
-
rag = LightRAG(working_dir=WORKING_DIR)
|
11 |
-
|
12 |
-
mode = 'global'
|
13 |
-
query_param = QueryParam(mode=mode)
|
14 |
-
|
15 |
-
result = rag.query("", param=query_param)
|
16 |
-
print(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lightrag/__init__.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from .lightrag import LightRAG, QueryParam
|
2 |
|
3 |
-
__version__ = "0.0.
|
4 |
__author__ = "Zirui Guo"
|
5 |
__url__ = "https://github.com/HKUDS/LightRAG"
|
|
|
1 |
from .lightrag import LightRAG, QueryParam
|
2 |
|
3 |
+
__version__ = "0.0.4"
|
4 |
__author__ = "Zirui Guo"
|
5 |
__url__ = "https://github.com/HKUDS/LightRAG"
|
lightrag/base.py
CHANGED
@@ -14,7 +14,7 @@ T = TypeVar("T")
|
|
14 |
|
15 |
@dataclass
|
16 |
class QueryParam:
|
17 |
-
mode: Literal["local", "global", "
|
18 |
only_need_context: bool = False
|
19 |
response_type: str = "Multiple Paragraphs"
|
20 |
top_k: int = 60
|
|
|
14 |
|
15 |
@dataclass
|
16 |
class QueryParam:
|
17 |
+
mode: Literal["local", "global", "hybrid", "naive"] = "global"
|
18 |
only_need_context: bool = False
|
19 |
response_type: str = "Multiple Paragraphs"
|
20 |
top_k: int = 60
|
lightrag/lightrag.py
CHANGED
@@ -3,7 +3,8 @@ import os
|
|
3 |
from dataclasses import asdict, dataclass, field
|
4 |
from datetime import datetime
|
5 |
from functools import partial
|
6 |
-
from typing import Type, cast
|
|
|
7 |
|
8 |
from .llm import gpt_4o_complete, gpt_4o_mini_complete, openai_embedding,hf_model_complete,hf_embedding
|
9 |
from .operate import (
|
@@ -11,7 +12,7 @@ from .operate import (
|
|
11 |
extract_entities,
|
12 |
local_query,
|
13 |
global_query,
|
14 |
-
|
15 |
naive_query,
|
16 |
)
|
17 |
|
@@ -38,15 +39,14 @@ from .base import (
|
|
38 |
|
39 |
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
40 |
try:
|
41 |
-
|
42 |
-
loop = asyncio.get_event_loop()
|
43 |
except RuntimeError:
|
44 |
-
# If in a sub-thread, create a new event loop.
|
45 |
logger.info("Creating a new event loop in a sub-thread.")
|
46 |
loop = asyncio.new_event_loop()
|
47 |
asyncio.set_event_loop(loop)
|
48 |
return loop
|
49 |
|
|
|
50 |
@dataclass
|
51 |
class LightRAG:
|
52 |
working_dir: str = field(
|
@@ -77,6 +77,9 @@ class LightRAG:
|
|
77 |
)
|
78 |
|
79 |
# text embedding
|
|
|
|
|
|
|
80 |
# embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
|
81 |
embedding_func: EmbeddingFunc = field(default_factory=lambda:openai_embedding)#
|
82 |
embedding_batch_num: int = 32
|
@@ -100,6 +103,13 @@ class LightRAG:
|
|
100 |
convert_response_to_json_func: callable = convert_response_to_json
|
101 |
|
102 |
def __post_init__(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
log_file = os.path.join(self.working_dir, "lightrag.log")
|
104 |
set_logger(log_file)
|
105 |
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
@@ -130,8 +140,11 @@ class LightRAG:
|
|
130 |
namespace="chunk_entity_relation", global_config=asdict(self)
|
131 |
)
|
132 |
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
|
133 |
-
self.embedding_func
|
|
|
|
|
134 |
)
|
|
|
135 |
self.entities_vdb = (
|
136 |
self.vector_db_storage_cls(
|
137 |
namespace="entities",
|
@@ -267,8 +280,8 @@ class LightRAG:
|
|
267 |
param,
|
268 |
asdict(self),
|
269 |
)
|
270 |
-
elif param.mode == "
|
271 |
-
response = await
|
272 |
query,
|
273 |
self.chunk_entity_relation_graph,
|
274 |
self.entities_vdb,
|
|
|
3 |
from dataclasses import asdict, dataclass, field
|
4 |
from datetime import datetime
|
5 |
from functools import partial
|
6 |
+
from typing import Type, cast, Any
|
7 |
+
from transformers import AutoModel,AutoTokenizer, AutoModelForCausalLM
|
8 |
|
9 |
from .llm import gpt_4o_complete, gpt_4o_mini_complete, openai_embedding,hf_model_complete,hf_embedding
|
10 |
from .operate import (
|
|
|
12 |
extract_entities,
|
13 |
local_query,
|
14 |
global_query,
|
15 |
+
hybrid_query,
|
16 |
naive_query,
|
17 |
)
|
18 |
|
|
|
39 |
|
40 |
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
41 |
try:
|
42 |
+
loop = asyncio.get_running_loop()
|
|
|
43 |
except RuntimeError:
|
|
|
44 |
logger.info("Creating a new event loop in a sub-thread.")
|
45 |
loop = asyncio.new_event_loop()
|
46 |
asyncio.set_event_loop(loop)
|
47 |
return loop
|
48 |
|
49 |
+
|
50 |
@dataclass
|
51 |
class LightRAG:
|
52 |
working_dir: str = field(
|
|
|
77 |
)
|
78 |
|
79 |
# text embedding
|
80 |
+
tokenizer: Any = None
|
81 |
+
embed_model: Any = None
|
82 |
+
|
83 |
# embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
|
84 |
embedding_func: EmbeddingFunc = field(default_factory=lambda:openai_embedding)#
|
85 |
embedding_batch_num: int = 32
|
|
|
103 |
convert_response_to_json_func: callable = convert_response_to_json
|
104 |
|
105 |
def __post_init__(self):
|
106 |
+
if callable(self.embedding_func) and self.embedding_func.__name__ == 'hf_embedding':
|
107 |
+
if self.tokenizer is None:
|
108 |
+
self.tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
109 |
+
if self.embed_model is None:
|
110 |
+
self.embed_model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
111 |
+
|
112 |
+
|
113 |
log_file = os.path.join(self.working_dir, "lightrag.log")
|
114 |
set_logger(log_file)
|
115 |
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
|
|
140 |
namespace="chunk_entity_relation", global_config=asdict(self)
|
141 |
)
|
142 |
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
|
143 |
+
lambda texts: self.embedding_func(texts, self.tokenizer, self.embed_model)
|
144 |
+
if callable(self.embedding_func) and self.embedding_func.__name__ == 'hf_embedding'
|
145 |
+
else self.embedding_func(texts)
|
146 |
)
|
147 |
+
|
148 |
self.entities_vdb = (
|
149 |
self.vector_db_storage_cls(
|
150 |
namespace="entities",
|
|
|
280 |
param,
|
281 |
asdict(self),
|
282 |
)
|
283 |
+
elif param.mode == "hybrid":
|
284 |
+
response = await hybrid_query(
|
285 |
query,
|
286 |
self.chunk_entity_relation_graph,
|
287 |
self.entities_vdb,
|
lightrag/llm.py
CHANGED
@@ -142,18 +142,14 @@ async def openai_embedding(texts: list[str]) -> np.ndarray:
|
|
142 |
|
143 |
|
144 |
|
145 |
-
global EMBED_MODEL
|
146 |
-
global tokenizer
|
147 |
-
EMBED_MODEL = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
148 |
-
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
149 |
@wrap_embedding_func_with_attrs(
|
150 |
embedding_dim=384,
|
151 |
max_token_size=5000,
|
152 |
)
|
153 |
-
async def hf_embedding(texts: list[str]) -> np.ndarray:
|
154 |
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
|
155 |
with torch.no_grad():
|
156 |
-
outputs =
|
157 |
embeddings = outputs.last_hidden_state.mean(dim=1)
|
158 |
return embeddings.detach().numpy()
|
159 |
|
|
|
142 |
|
143 |
|
144 |
|
|
|
|
|
|
|
|
|
145 |
@wrap_embedding_func_with_attrs(
|
146 |
embedding_dim=384,
|
147 |
max_token_size=5000,
|
148 |
)
|
149 |
+
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
150 |
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
|
151 |
with torch.no_grad():
|
152 |
+
outputs = embed_model(input_ids)
|
153 |
embeddings = outputs.last_hidden_state.mean(dim=1)
|
154 |
return embeddings.detach().numpy()
|
155 |
|
lightrag/operate.py
CHANGED
@@ -827,7 +827,7 @@ async def _find_related_text_unit_from_relationships(
|
|
827 |
|
828 |
return all_text_units
|
829 |
|
830 |
-
async def
|
831 |
query,
|
832 |
knowledge_graph_inst: BaseGraphStorage,
|
833 |
entities_vdb: BaseVectorStorage,
|
|
|
827 |
|
828 |
return all_text_units
|
829 |
|
830 |
+
async def hybrid_query(
|
831 |
query,
|
832 |
knowledge_graph_inst: BaseGraphStorage,
|
833 |
entities_vdb: BaseVectorStorage,
|
reproduce/Step_3.py
CHANGED
@@ -52,7 +52,7 @@ def run_queries_and_save_to_json(queries, rag_instance, query_param, output_file
|
|
52 |
|
53 |
if __name__ == "__main__":
|
54 |
cls = "agriculture"
|
55 |
-
mode = "
|
56 |
WORKING_DIR = "../{cls}"
|
57 |
|
58 |
rag = LightRAG(working_dir=WORKING_DIR)
|
|
|
52 |
|
53 |
if __name__ == "__main__":
|
54 |
cls = "agriculture"
|
55 |
+
mode = "hybrid"
|
56 |
WORKING_DIR = "../{cls}"
|
57 |
|
58 |
rag = LightRAG(working_dir=WORKING_DIR)
|