LarFii commited on
Commit
d76f618
·
1 Parent(s): 4460ba5

update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -6
README.md CHANGED
@@ -20,6 +20,9 @@ This repository hosts the code of LightRAG. The structure of this code is based
20
  ![请添加图片描述](https://i-blog.csdnimg.cn/direct/b2aaf634151b4706892693ffb43d9093.png)
21
  </div>
22
 
 
 
 
23
  ## Install
24
 
25
  * Install from source
@@ -35,17 +38,27 @@ pip install lightrag-hku
35
 
36
  ## Quick Start
37
 
38
- * Set OpenAI API key in environment: `export OPENAI_API_KEY="sk-...".`
39
- * Download the demo text "A Christmas Carol by Charles Dickens"
40
  ```bash
41
  curl https://raw.githubusercontent.com/gusye1234/nano-graphrag/main/tests/mock_data.txt > ./book.txt
42
  ```
43
- Use the below python snippet:
44
 
45
  ```python
46
  from lightrag import LightRAG, QueryParam
 
47
 
48
- rag = LightRAG(working_dir="./dickens")
 
 
 
 
 
 
 
 
 
49
 
50
  with open("./book.txt") as f:
51
  rag.insert(f.read())
@@ -62,13 +75,31 @@ print(rag.query("What are the top themes in this story?", param=QueryParam(mode=
62
  # Perform hybrid search
63
  print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
64
  ```
65
- Batch Insert
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  ```python
 
67
  rag.insert(["TEXT1", "TEXT2",...])
68
  ```
69
- Incremental Insert
70
 
71
  ```python
 
72
  rag = LightRAG(working_dir="./dickens")
73
 
74
  with open("./newText.txt") as f:
 
20
  ![请添加图片描述](https://i-blog.csdnimg.cn/direct/b2aaf634151b4706892693ffb43d9093.png)
21
  </div>
22
 
23
+ ## 🎉 News
24
+ - [x] [2024.10.15]🎯🎯📢📢LightRAG now supports Hugging Face models!
25
+
26
  ## Install
27
 
28
  * Install from source
 
38
 
39
  ## Quick Start
40
 
41
+ * Set OpenAI API key in environment if using OpenAI models: `export OPENAI_API_KEY="sk-...".`
42
+ * Download the demo text "A Christmas Carol by Charles Dickens":
43
  ```bash
44
  curl https://raw.githubusercontent.com/gusye1234/nano-graphrag/main/tests/mock_data.txt > ./book.txt
45
  ```
46
+ Use the below Python snippet to initialize LightRAG and perform queries:
47
 
48
  ```python
49
  from lightrag import LightRAG, QueryParam
50
+ from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
51
 
52
+ WORKING_DIR = "./dickens"
53
+
54
+ if not os.path.exists(WORKING_DIR):
55
+ os.mkdir(WORKING_DIR)
56
+
57
+ rag = LightRAG(
58
+ working_dir=WORKING_DIR,
59
+ llm_model_func=gpt_4o_mini_complete # Use gpt_4o_mini_complete LLM model
60
+ # llm_model_func=gpt_4o_complete # Optionally, use a stronger model
61
+ )
62
 
63
  with open("./book.txt") as f:
64
  rag.insert(f.read())
 
75
  # Perform hybrid search
76
  print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
77
  ```
78
+ ### Using Hugging Face Models
79
+ If you want to use Hugging Face models, you only need to set LightRAG as follows:
80
+ ```python
81
+ from lightrag.llm import hf_model_complete, hf_embedding
82
+ from transformers import AutoModel, AutoTokenizer
83
+
84
+ # Initialize LightRAG with Hugging Face model
85
+ rag = LightRAG(
86
+ working_dir=WORKING_DIR,
87
+ llm_model_func=hf_model_complete, # Use Hugging Face complete model for text generation
88
+ llm_model_name='meta-llama/Llama-3.1-8B-Instruct', # Model name from Hugging Face
89
+ embedding_func=hf_embedding, # Use Hugging Face embedding function
90
+ tokenizer=AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
91
+ embed_model=AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
92
+ )
93
+ ```
94
+ ### Batch Insert
95
  ```python
96
+ # Batch Insert: Insert multiple texts at once
97
  rag.insert(["TEXT1", "TEXT2",...])
98
  ```
99
+ ### Incremental Insert
100
 
101
  ```python
102
+ # Incremental Insert: Insert new documents into an existing LightRAG instance
103
  rag = LightRAG(working_dir="./dickens")
104
 
105
  with open("./newText.txt") as f: