Merge pull request #49 from JGalego/feat/bedrock-support
Browse files- .gitignore +4 -0
- examples/lightrag_bedrock_demo.py +41 -0
- lightrag/llm.py +158 -0
- requirements.txt +1 -0
.gitignore
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
| 2 |
+
*.egg-info
|
| 3 |
+
dickens/
|
| 4 |
+
book.txt
|
examples/lightrag_bedrock_demo.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
LightRAG meets Amazon Bedrock ⛰️
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import logging
|
| 7 |
+
|
| 8 |
+
from lightrag import LightRAG, QueryParam
|
| 9 |
+
from lightrag.llm import bedrock_complete, bedrock_embedding
|
| 10 |
+
from lightrag.utils import EmbeddingFunc
|
| 11 |
+
|
| 12 |
+
logging.getLogger("aiobotocore").setLevel(logging.WARNING)
|
| 13 |
+
|
| 14 |
+
WORKING_DIR = "./dickens"
|
| 15 |
+
if not os.path.exists(WORKING_DIR):
|
| 16 |
+
os.mkdir(WORKING_DIR)
|
| 17 |
+
|
| 18 |
+
rag = LightRAG(
|
| 19 |
+
working_dir=WORKING_DIR,
|
| 20 |
+
llm_model_func=bedrock_complete,
|
| 21 |
+
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock",
|
| 22 |
+
embedding_func=EmbeddingFunc(
|
| 23 |
+
embedding_dim=1024,
|
| 24 |
+
max_token_size=8192,
|
| 25 |
+
func=bedrock_embedding
|
| 26 |
+
)
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
with open("./book.txt", 'r', encoding='utf-8') as f:
|
| 30 |
+
rag.insert(f.read())
|
| 31 |
+
|
| 32 |
+
for mode in ["naive", "local", "global", "hybrid"]:
|
| 33 |
+
print("\n+-" + "-" * len(mode) + "-+")
|
| 34 |
+
print(f"| {mode.capitalize()} |")
|
| 35 |
+
print("+-" + "-" * len(mode) + "-+\n")
|
| 36 |
+
print(
|
| 37 |
+
rag.query(
|
| 38 |
+
"What are the top themes in this story?",
|
| 39 |
+
param=QueryParam(mode=mode)
|
| 40 |
+
)
|
| 41 |
+
)
|
lightrag/llm.py
CHANGED
|
@@ -1,4 +1,9 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import ollama
|
| 4 |
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
|
@@ -48,6 +53,81 @@ async def openai_complete_if_cache(
|
|
| 48 |
)
|
| 49 |
return response.choices[0].message.content
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
async def hf_model_if_cache(
|
| 52 |
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
| 53 |
) -> str:
|
|
@@ -145,6 +225,19 @@ async def gpt_4o_mini_complete(
|
|
| 145 |
**kwargs,
|
| 146 |
)
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
async def hf_model_complete(
|
| 149 |
prompt, system_prompt=None, history_messages=[], **kwargs
|
| 150 |
) -> str:
|
|
@@ -186,6 +279,71 @@ async def openai_embedding(texts: list[str], model: str = "text-embedding-3-smal
|
|
| 186 |
return np.array([dp.embedding for dp in response.data])
|
| 187 |
|
| 188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
| 190 |
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
|
| 191 |
with torch.no_grad():
|
|
|
|
| 1 |
import os
|
| 2 |
+
import copy
|
| 3 |
+
import json
|
| 4 |
+
import botocore
|
| 5 |
+
import aioboto3
|
| 6 |
+
import botocore.errorfactory
|
| 7 |
import numpy as np
|
| 8 |
import ollama
|
| 9 |
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
|
|
|
| 53 |
)
|
| 54 |
return response.choices[0].message.content
|
| 55 |
|
| 56 |
+
|
| 57 |
+
class BedrockError(Exception):
|
| 58 |
+
"""Generic error for issues related to Amazon Bedrock"""
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
@retry(
|
| 62 |
+
stop=stop_after_attempt(5),
|
| 63 |
+
wait=wait_exponential(multiplier=1, max=60),
|
| 64 |
+
retry=retry_if_exception_type((BedrockError)),
|
| 65 |
+
)
|
| 66 |
+
async def bedrock_complete_if_cache(
|
| 67 |
+
model, prompt, system_prompt=None, history_messages=[],
|
| 68 |
+
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, **kwargs
|
| 69 |
+
) -> str:
|
| 70 |
+
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
|
| 71 |
+
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
|
| 72 |
+
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
|
| 73 |
+
|
| 74 |
+
# Fix message history format
|
| 75 |
+
messages = []
|
| 76 |
+
for history_message in history_messages:
|
| 77 |
+
message = copy.copy(history_message)
|
| 78 |
+
message['content'] = [{'text': message['content']}]
|
| 79 |
+
messages.append(message)
|
| 80 |
+
|
| 81 |
+
# Add user prompt
|
| 82 |
+
messages.append({'role': "user", 'content': [{'text': prompt}]})
|
| 83 |
+
|
| 84 |
+
# Initialize Converse API arguments
|
| 85 |
+
args = {
|
| 86 |
+
'modelId': model,
|
| 87 |
+
'messages': messages
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
# Define system prompt
|
| 91 |
+
if system_prompt:
|
| 92 |
+
args['system'] = [{'text': system_prompt}]
|
| 93 |
+
|
| 94 |
+
# Map and set up inference parameters
|
| 95 |
+
inference_params_map = {
|
| 96 |
+
'max_tokens': "maxTokens",
|
| 97 |
+
'top_p': "topP",
|
| 98 |
+
'stop_sequences': "stopSequences"
|
| 99 |
+
}
|
| 100 |
+
if (inference_params := list(set(kwargs) & set(['max_tokens', 'temperature', 'top_p', 'stop_sequences']))):
|
| 101 |
+
args['inferenceConfig'] = {}
|
| 102 |
+
for param in inference_params:
|
| 103 |
+
args['inferenceConfig'][inference_params_map.get(param, param)] = kwargs.pop(param)
|
| 104 |
+
|
| 105 |
+
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
| 106 |
+
if hashing_kv is not None:
|
| 107 |
+
args_hash = compute_args_hash(model, messages)
|
| 108 |
+
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
| 109 |
+
if if_cache_return is not None:
|
| 110 |
+
return if_cache_return["return"]
|
| 111 |
+
|
| 112 |
+
# Call model via Converse API
|
| 113 |
+
session = aioboto3.Session()
|
| 114 |
+
async with session.client("bedrock-runtime") as bedrock_async_client:
|
| 115 |
+
|
| 116 |
+
try:
|
| 117 |
+
response = await bedrock_async_client.converse(**args, **kwargs)
|
| 118 |
+
except Exception as e:
|
| 119 |
+
raise BedrockError(e)
|
| 120 |
+
|
| 121 |
+
if hashing_kv is not None:
|
| 122 |
+
await hashing_kv.upsert({
|
| 123 |
+
args_hash: {
|
| 124 |
+
'return': response['output']['message']['content'][0]['text'],
|
| 125 |
+
'model': model
|
| 126 |
+
}
|
| 127 |
+
})
|
| 128 |
+
|
| 129 |
+
return response['output']['message']['content'][0]['text']
|
| 130 |
+
|
| 131 |
async def hf_model_if_cache(
|
| 132 |
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
| 133 |
) -> str:
|
|
|
|
| 225 |
**kwargs,
|
| 226 |
)
|
| 227 |
|
| 228 |
+
|
| 229 |
+
async def bedrock_complete(
|
| 230 |
+
prompt, system_prompt=None, history_messages=[], **kwargs
|
| 231 |
+
) -> str:
|
| 232 |
+
return await bedrock_complete_if_cache(
|
| 233 |
+
"anthropic.claude-3-haiku-20240307-v1:0",
|
| 234 |
+
prompt,
|
| 235 |
+
system_prompt=system_prompt,
|
| 236 |
+
history_messages=history_messages,
|
| 237 |
+
**kwargs,
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
|
| 241 |
async def hf_model_complete(
|
| 242 |
prompt, system_prompt=None, history_messages=[], **kwargs
|
| 243 |
) -> str:
|
|
|
|
| 279 |
return np.array([dp.embedding for dp in response.data])
|
| 280 |
|
| 281 |
|
| 282 |
+
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
| 283 |
+
# @retry(
|
| 284 |
+
# stop=stop_after_attempt(3),
|
| 285 |
+
# wait=wait_exponential(multiplier=1, min=4, max=10),
|
| 286 |
+
# retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions
|
| 287 |
+
# )
|
| 288 |
+
async def bedrock_embedding(
|
| 289 |
+
texts: list[str], model: str = "amazon.titan-embed-text-v2:0",
|
| 290 |
+
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None) -> np.ndarray:
|
| 291 |
+
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
|
| 292 |
+
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
|
| 293 |
+
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
|
| 294 |
+
|
| 295 |
+
session = aioboto3.Session()
|
| 296 |
+
async with session.client("bedrock-runtime") as bedrock_async_client:
|
| 297 |
+
|
| 298 |
+
if (model_provider := model.split(".")[0]) == "amazon":
|
| 299 |
+
embed_texts = []
|
| 300 |
+
for text in texts:
|
| 301 |
+
if "v2" in model:
|
| 302 |
+
body = json.dumps({
|
| 303 |
+
'inputText': text,
|
| 304 |
+
# 'dimensions': embedding_dim,
|
| 305 |
+
'embeddingTypes': ["float"]
|
| 306 |
+
})
|
| 307 |
+
elif "v1" in model:
|
| 308 |
+
body = json.dumps({
|
| 309 |
+
'inputText': text
|
| 310 |
+
})
|
| 311 |
+
else:
|
| 312 |
+
raise ValueError(f"Model {model} is not supported!")
|
| 313 |
+
|
| 314 |
+
response = await bedrock_async_client.invoke_model(
|
| 315 |
+
modelId=model,
|
| 316 |
+
body=body,
|
| 317 |
+
accept="application/json",
|
| 318 |
+
contentType="application/json"
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
response_body = await response.get('body').json()
|
| 322 |
+
|
| 323 |
+
embed_texts.append(response_body['embedding'])
|
| 324 |
+
elif model_provider == "cohere":
|
| 325 |
+
body = json.dumps({
|
| 326 |
+
'texts': texts,
|
| 327 |
+
'input_type': "search_document",
|
| 328 |
+
'truncate': "NONE"
|
| 329 |
+
})
|
| 330 |
+
|
| 331 |
+
response = await bedrock_async_client.invoke_model(
|
| 332 |
+
model=model,
|
| 333 |
+
body=body,
|
| 334 |
+
accept="application/json",
|
| 335 |
+
contentType="application/json"
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
response_body = json.loads(response.get('body').read())
|
| 339 |
+
|
| 340 |
+
embed_texts = response_body['embeddings']
|
| 341 |
+
else:
|
| 342 |
+
raise ValueError(f"Model provider '{model_provider}' is not supported!")
|
| 343 |
+
|
| 344 |
+
return np.array(embed_texts)
|
| 345 |
+
|
| 346 |
+
|
| 347 |
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
| 348 |
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
|
| 349 |
with torch.no_grad():
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
openai
|
| 2 |
tiktoken
|
| 3 |
networkx
|
|
|
|
| 1 |
+
aioboto3
|
| 2 |
openai
|
| 3 |
tiktoken
|
| 4 |
networkx
|