Merge pull request #49 from JGalego/feat/bedrock-support
Browse files- .gitignore +4 -0
- examples/lightrag_bedrock_demo.py +41 -0
- lightrag/llm.py +158 -0
- requirements.txt +1 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
*.egg-info
|
3 |
+
dickens/
|
4 |
+
book.txt
|
examples/lightrag_bedrock_demo.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
LightRAG meets Amazon Bedrock ⛰️
|
3 |
+
"""
|
4 |
+
|
5 |
+
import os
|
6 |
+
import logging
|
7 |
+
|
8 |
+
from lightrag import LightRAG, QueryParam
|
9 |
+
from lightrag.llm import bedrock_complete, bedrock_embedding
|
10 |
+
from lightrag.utils import EmbeddingFunc
|
11 |
+
|
12 |
+
logging.getLogger("aiobotocore").setLevel(logging.WARNING)
|
13 |
+
|
14 |
+
WORKING_DIR = "./dickens"
|
15 |
+
if not os.path.exists(WORKING_DIR):
|
16 |
+
os.mkdir(WORKING_DIR)
|
17 |
+
|
18 |
+
rag = LightRAG(
|
19 |
+
working_dir=WORKING_DIR,
|
20 |
+
llm_model_func=bedrock_complete,
|
21 |
+
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock",
|
22 |
+
embedding_func=EmbeddingFunc(
|
23 |
+
embedding_dim=1024,
|
24 |
+
max_token_size=8192,
|
25 |
+
func=bedrock_embedding
|
26 |
+
)
|
27 |
+
)
|
28 |
+
|
29 |
+
with open("./book.txt", 'r', encoding='utf-8') as f:
|
30 |
+
rag.insert(f.read())
|
31 |
+
|
32 |
+
for mode in ["naive", "local", "global", "hybrid"]:
|
33 |
+
print("\n+-" + "-" * len(mode) + "-+")
|
34 |
+
print(f"| {mode.capitalize()} |")
|
35 |
+
print("+-" + "-" * len(mode) + "-+\n")
|
36 |
+
print(
|
37 |
+
rag.query(
|
38 |
+
"What are the top themes in this story?",
|
39 |
+
param=QueryParam(mode=mode)
|
40 |
+
)
|
41 |
+
)
|
lightrag/llm.py
CHANGED
@@ -1,4 +1,9 @@
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
2 |
import numpy as np
|
3 |
import ollama
|
4 |
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
@@ -48,6 +53,81 @@ async def openai_complete_if_cache(
|
|
48 |
)
|
49 |
return response.choices[0].message.content
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
async def hf_model_if_cache(
|
52 |
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
53 |
) -> str:
|
@@ -145,6 +225,19 @@ async def gpt_4o_mini_complete(
|
|
145 |
**kwargs,
|
146 |
)
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
async def hf_model_complete(
|
149 |
prompt, system_prompt=None, history_messages=[], **kwargs
|
150 |
) -> str:
|
@@ -186,6 +279,71 @@ async def openai_embedding(texts: list[str], model: str = "text-embedding-3-smal
|
|
186 |
return np.array([dp.embedding for dp in response.data])
|
187 |
|
188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
190 |
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
|
191 |
with torch.no_grad():
|
|
|
1 |
import os
|
2 |
+
import copy
|
3 |
+
import json
|
4 |
+
import botocore
|
5 |
+
import aioboto3
|
6 |
+
import botocore.errorfactory
|
7 |
import numpy as np
|
8 |
import ollama
|
9 |
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
|
|
53 |
)
|
54 |
return response.choices[0].message.content
|
55 |
|
56 |
+
|
57 |
+
class BedrockError(Exception):
|
58 |
+
"""Generic error for issues related to Amazon Bedrock"""
|
59 |
+
|
60 |
+
|
61 |
+
@retry(
|
62 |
+
stop=stop_after_attempt(5),
|
63 |
+
wait=wait_exponential(multiplier=1, max=60),
|
64 |
+
retry=retry_if_exception_type((BedrockError)),
|
65 |
+
)
|
66 |
+
async def bedrock_complete_if_cache(
|
67 |
+
model, prompt, system_prompt=None, history_messages=[],
|
68 |
+
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, **kwargs
|
69 |
+
) -> str:
|
70 |
+
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
|
71 |
+
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
|
72 |
+
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
|
73 |
+
|
74 |
+
# Fix message history format
|
75 |
+
messages = []
|
76 |
+
for history_message in history_messages:
|
77 |
+
message = copy.copy(history_message)
|
78 |
+
message['content'] = [{'text': message['content']}]
|
79 |
+
messages.append(message)
|
80 |
+
|
81 |
+
# Add user prompt
|
82 |
+
messages.append({'role': "user", 'content': [{'text': prompt}]})
|
83 |
+
|
84 |
+
# Initialize Converse API arguments
|
85 |
+
args = {
|
86 |
+
'modelId': model,
|
87 |
+
'messages': messages
|
88 |
+
}
|
89 |
+
|
90 |
+
# Define system prompt
|
91 |
+
if system_prompt:
|
92 |
+
args['system'] = [{'text': system_prompt}]
|
93 |
+
|
94 |
+
# Map and set up inference parameters
|
95 |
+
inference_params_map = {
|
96 |
+
'max_tokens': "maxTokens",
|
97 |
+
'top_p': "topP",
|
98 |
+
'stop_sequences': "stopSequences"
|
99 |
+
}
|
100 |
+
if (inference_params := list(set(kwargs) & set(['max_tokens', 'temperature', 'top_p', 'stop_sequences']))):
|
101 |
+
args['inferenceConfig'] = {}
|
102 |
+
for param in inference_params:
|
103 |
+
args['inferenceConfig'][inference_params_map.get(param, param)] = kwargs.pop(param)
|
104 |
+
|
105 |
+
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
106 |
+
if hashing_kv is not None:
|
107 |
+
args_hash = compute_args_hash(model, messages)
|
108 |
+
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
109 |
+
if if_cache_return is not None:
|
110 |
+
return if_cache_return["return"]
|
111 |
+
|
112 |
+
# Call model via Converse API
|
113 |
+
session = aioboto3.Session()
|
114 |
+
async with session.client("bedrock-runtime") as bedrock_async_client:
|
115 |
+
|
116 |
+
try:
|
117 |
+
response = await bedrock_async_client.converse(**args, **kwargs)
|
118 |
+
except Exception as e:
|
119 |
+
raise BedrockError(e)
|
120 |
+
|
121 |
+
if hashing_kv is not None:
|
122 |
+
await hashing_kv.upsert({
|
123 |
+
args_hash: {
|
124 |
+
'return': response['output']['message']['content'][0]['text'],
|
125 |
+
'model': model
|
126 |
+
}
|
127 |
+
})
|
128 |
+
|
129 |
+
return response['output']['message']['content'][0]['text']
|
130 |
+
|
131 |
async def hf_model_if_cache(
|
132 |
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
133 |
) -> str:
|
|
|
225 |
**kwargs,
|
226 |
)
|
227 |
|
228 |
+
|
229 |
+
async def bedrock_complete(
|
230 |
+
prompt, system_prompt=None, history_messages=[], **kwargs
|
231 |
+
) -> str:
|
232 |
+
return await bedrock_complete_if_cache(
|
233 |
+
"anthropic.claude-3-haiku-20240307-v1:0",
|
234 |
+
prompt,
|
235 |
+
system_prompt=system_prompt,
|
236 |
+
history_messages=history_messages,
|
237 |
+
**kwargs,
|
238 |
+
)
|
239 |
+
|
240 |
+
|
241 |
async def hf_model_complete(
|
242 |
prompt, system_prompt=None, history_messages=[], **kwargs
|
243 |
) -> str:
|
|
|
279 |
return np.array([dp.embedding for dp in response.data])
|
280 |
|
281 |
|
282 |
+
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
283 |
+
# @retry(
|
284 |
+
# stop=stop_after_attempt(3),
|
285 |
+
# wait=wait_exponential(multiplier=1, min=4, max=10),
|
286 |
+
# retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions
|
287 |
+
# )
|
288 |
+
async def bedrock_embedding(
|
289 |
+
texts: list[str], model: str = "amazon.titan-embed-text-v2:0",
|
290 |
+
aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None) -> np.ndarray:
|
291 |
+
os.environ['AWS_ACCESS_KEY_ID'] = os.environ.get('AWS_ACCESS_KEY_ID', aws_access_key_id)
|
292 |
+
os.environ['AWS_SECRET_ACCESS_KEY'] = os.environ.get('AWS_SECRET_ACCESS_KEY', aws_secret_access_key)
|
293 |
+
os.environ['AWS_SESSION_TOKEN'] = os.environ.get('AWS_SESSION_TOKEN', aws_session_token)
|
294 |
+
|
295 |
+
session = aioboto3.Session()
|
296 |
+
async with session.client("bedrock-runtime") as bedrock_async_client:
|
297 |
+
|
298 |
+
if (model_provider := model.split(".")[0]) == "amazon":
|
299 |
+
embed_texts = []
|
300 |
+
for text in texts:
|
301 |
+
if "v2" in model:
|
302 |
+
body = json.dumps({
|
303 |
+
'inputText': text,
|
304 |
+
# 'dimensions': embedding_dim,
|
305 |
+
'embeddingTypes': ["float"]
|
306 |
+
})
|
307 |
+
elif "v1" in model:
|
308 |
+
body = json.dumps({
|
309 |
+
'inputText': text
|
310 |
+
})
|
311 |
+
else:
|
312 |
+
raise ValueError(f"Model {model} is not supported!")
|
313 |
+
|
314 |
+
response = await bedrock_async_client.invoke_model(
|
315 |
+
modelId=model,
|
316 |
+
body=body,
|
317 |
+
accept="application/json",
|
318 |
+
contentType="application/json"
|
319 |
+
)
|
320 |
+
|
321 |
+
response_body = await response.get('body').json()
|
322 |
+
|
323 |
+
embed_texts.append(response_body['embedding'])
|
324 |
+
elif model_provider == "cohere":
|
325 |
+
body = json.dumps({
|
326 |
+
'texts': texts,
|
327 |
+
'input_type': "search_document",
|
328 |
+
'truncate': "NONE"
|
329 |
+
})
|
330 |
+
|
331 |
+
response = await bedrock_async_client.invoke_model(
|
332 |
+
model=model,
|
333 |
+
body=body,
|
334 |
+
accept="application/json",
|
335 |
+
contentType="application/json"
|
336 |
+
)
|
337 |
+
|
338 |
+
response_body = json.loads(response.get('body').read())
|
339 |
+
|
340 |
+
embed_texts = response_body['embeddings']
|
341 |
+
else:
|
342 |
+
raise ValueError(f"Model provider '{model_provider}' is not supported!")
|
343 |
+
|
344 |
+
return np.array(embed_texts)
|
345 |
+
|
346 |
+
|
347 |
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
348 |
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
|
349 |
with torch.no_grad():
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
openai
|
2 |
tiktoken
|
3 |
networkx
|
|
|
1 |
+
aioboto3
|
2 |
openai
|
3 |
tiktoken
|
4 |
networkx
|