captions / app.py
royyy74's picture
Update app.py
0139f78 verified
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from pathlib import Path
import torch
import torch.amp.autocast_mode
from PIL import Image
import os
import torchvision.transforms.functional as TVF
import io
import json # For parsing extra_options_json
from tempfile import TemporaryDirectory # For offload_folder
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from pydantic import BaseModel
from typing import List, Tuple # Tuple for stream_chat return type hint
# FastAPI App Initialization
app = FastAPI()
# Pydantic model for API response
class CaptionResponse(BaseModel):
prompt_that_was_used: str
caption: str
CLIP_PATH = "google/siglip-so400m-patch14-384"
CHECKPOINT_PATH = Path("cgrkzexw-599808")
# TITLE is not used for API
CAPTION_TYPE_MAP = {
"Descriptive": [
"Write a descriptive caption for this image in a formal tone.",
"Write a descriptive caption for this image in a formal tone within {word_count} words.",
"Write a {length} descriptive caption for this image in a formal tone.",
],
"Descriptive (Informal)": [
"Write a descriptive caption for this image in a casual tone.",
"Write a descriptive caption for this image in a casual tone within {word_count} words.",
"Write a {length} descriptive caption for this image in a casual tone.",
],
"Training Prompt": [
"Write a stable diffusion prompt for this image.",
"Write a stable diffusion prompt for this image within {word_count} words.",
"Write a {length} stable diffusion prompt for this image.",
],
"MidJourney": [
"Write a MidJourney prompt for this image.",
"Write a MidJourney prompt for this image within {word_count} words.",
"Write a {length} MidJourney prompt for this image.",
],
"Booru tag list": [
"Write a list of Booru tags for this image.",
"Write a list of Booru tags for this image within {word_count} words.",
"Write a {length} list of Booru tags for this image.",
],
"Booru-like tag list": [
"Write a list of Booru-like tags for this image.",
"Write a list of Booru-like tags for this image within {word_count} words.",
"Write a {length} list of Booru-like tags for this image.",
],
"Art Critic": [
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc.",
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it within {word_count} words.",
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it {length}.",
],
"Product Listing": [
"Write a caption for this image as though it were a product listing.",
"Write a caption for this image as though it were a product listing. Keep it under {word_count} words.",
"Write a {length} caption for this image as though it were a product listing.",
],
"Social Media Post": [
"Write a caption for this image as if it were being used for a social media post.",
"Write a caption for this image as if it were being used for a social media post. Limit the caption to {word_count} words.",
"Write a {length} caption for this image as if it were being used for a social media post.",
],
}
# HF_TOKEN is not used in the API version
# HF_TOKEN = os.environ.get("HF_TOKEN", None)
class ImageAdapter(nn.Module):
def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
super().__init__()
self.deep_extract = deep_extract
if self.deep_extract:
input_features = input_features * 5
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))
# Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
self.other_tokens = nn.Embedding(3, output_features)
self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3
def forward(self, vision_outputs: torch.Tensor):
if self.deep_extract:
x = torch.concat((
vision_outputs[-2],
vision_outputs[3],
vision_outputs[7],
vision_outputs[13],
vision_outputs[20],
), dim=-1)
assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features
assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
else:
x = vision_outputs[-2]
x = self.ln1(x)
if self.pos_emb is not None:
assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
x = x + self.pos_emb
x = self.linear1(x)
x = self.activation(x)
x = self.linear2(x)
# <|image_start|>, IMAGE, <|image_end|>
other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
return x
def get_eot_embedding(self):
return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)
# Determine device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load CLIP
print("Loading CLIP")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH)
clip_model = clip_model.vision_model
assert (CHECKPOINT_PATH / "clip_model.pt").exists()
print("Loading VLM's custom vision model")
checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu')
checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
clip_model.load_state_dict(checkpoint)
del checkpoint
clip_model.eval()
clip_model.requires_grad_(False)
clip_model.to(device) # Move to device first
if device.type == 'cuda':
clip_model = clip_model.to(dtype=torch.bfloat16)
elif device.type == 'cpu':
clip_model = clip_model.to(dtype=torch.float32)
# Tokenizer
print("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH / "text_model", use_fast=True)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
# LLM
print("Loading LLM")
print("Loading VLM's custom text model")
if device.type == 'cuda':
# Attempt to load with bfloat16 on CUDA, with fallback for offloading if necessary
try:
print("Attempting to load LLM on CUDA with bfloat16...")
text_model = AutoModelForCausalLM.from_pretrained(
CHECKPOINT_PATH / "text_model",
device_map="auto", # Should prioritize GPU
torch_dtype=torch.bfloat16
)
except ValueError as ve:
if "offload_dir" in str(ve):
print(f"CUDA bfloat16 loading failed, needing offload_dir: {ve}")
print("Attempting to load LLM on CUDA with disk offloading...")
model_offload_dir = TemporaryDirectory().name
text_model = AutoModelForCausalLM.from_pretrained(
CHECKPOINT_PATH / "text_model",
device_map="auto",
torch_dtype=torch.bfloat16,
offload_folder=model_offload_dir,
offload_state_dict=True
)
print(f"LLM loaded on CUDA with offloading to {model_offload_dir}. WARNING: This may be slow.")
else:
raise # Re-raise other ValueErrors
except Exception as e:
print(f"Failed to load LLM on CUDA: {e}")
raise
else:
# CPU-only loading: Directly attempt to load with disk offloading.
print("Attempting to load LLM on CPU directly with disk offloading (float32)...")
try:
model_offload_dir_cpu = TemporaryDirectory().name
text_model = AutoModelForCausalLM.from_pretrained(
CHECKPOINT_PATH / "text_model",
device_map="auto", # Allow accelerate to use CPU and disk
torch_dtype=torch.float32,
offload_folder=model_offload_dir_cpu,
offload_state_dict=True
)
print(f"LLM loaded on CPU with offloading to {model_offload_dir_cpu}. WARNING: This will be very slow.")
except Exception as e_cpu_offload:
print(f"CPU loading with disk offloading failed: {e_cpu_offload}")
raise # Re-raise the exception if CPU loading with offloading fails
text_model.eval()
# Image Adapter
print("Loading image adapter")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False)
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu")) # Load to CPU first
image_adapter.eval()
image_adapter.to(device) # Move to device first
if device.type == 'cuda':
image_adapter = image_adapter.to(dtype=torch.bfloat16)
elif device.type == 'cpu':
image_adapter = image_adapter.to(dtype=torch.float32)
# torch.no_grad() will be applied by FastAPI for endpoint or can be kept if function is called elsewhere
@torch.no_grad()
def stream_chat(input_image: Image.Image, caption_type: str, caption_length: str, extra_options: list[str], name_input: str, custom_prompt: str) -> tuple[str, str]:
if device.type == "cuda":
torch.cuda.empty_cache()
# 'any' means no length specified
length = None if caption_length == "any" else caption_length
if isinstance(length, str):
try:
length = int(length)
except ValueError:
pass
# Build prompt
if length is None:
map_idx = 0
elif isinstance(length, int):
map_idx = 1
elif isinstance(length, str):
map_idx = 2
else:
raise ValueError(f"Invalid caption length: {length}")
prompt_str = CAPTION_TYPE_MAP[caption_type][map_idx]
# Add extra options
if len(extra_options) > 0:
prompt_str += " " + " ".join(extra_options)
# Add name, length, word_count
prompt_str = prompt_str.format(name=name_input, length=caption_length, word_count=caption_length)
if custom_prompt.strip() != "":
prompt_str = custom_prompt.strip()
# For debugging
print(f"Prompt: {prompt_str}")
# Preprocess image
# NOTE: I found the default processor for so400M to have worse results than just using PIL directly
#image = clip_processor(images=input_image, return_tensors='pt').pixel_values
image = input_image.resize((384, 384), Image.LANCZOS)
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5]) # Output is float32
if device.type == 'cuda':
pixel_values = pixel_values.to(device, dtype=torch.bfloat16)
else: # CPU
pixel_values = pixel_values.to(device, dtype=torch.float32) # Explicitly float32 for CPU
# Embed image
# This results in Batch x Image Tokens x Features
# For CPU, autocast can use bfloat16 if available and beneficial, or can be disabled.
# For simplicity here, we'll enable it for CPU with bfloat16 if PyTorch supports it, else float32.
# Note: True CPU mixed precision benefits depend on CPU architecture and PyTorch version.
autocast_enabled_on_cpu = False # Disable autocast on CPU since we are explicitly using float32
autocast_device_type = device.type
autocast_kwargs = {'enabled': True}
if autocast_device_type == 'cpu':
autocast_kwargs['enabled'] = autocast_enabled_on_cpu
if autocast_enabled_on_cpu: # Only set dtype if enabled, though it's false here
autocast_kwargs['dtype'] = torch.float32
with torch.amp.autocast_mode.autocast(autocast_device_type, **autocast_kwargs):
vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
embedded_images = image_adapter(vision_outputs.hidden_states)
# embedded_images are already on the correct device due to image_adapter.to(device)
# and operations within adapter should respect input tensor's device.
# Explicitly moving again to be safe, though may be redundant.
embedded_images = embedded_images.to(device)
# Build the conversation
convo = [
{
"role": "system",
"content": "You are a helpful image captioner.",
},
{
"role": "user",
"content": prompt_str,
},
]
# Format the conversation
convo_string = tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True)
assert isinstance(convo_string, str)
# Tokenize the conversation
# prompt_str is tokenized separately so we can do the calculations below
convo_tokens = tokenizer.encode(convo_string, return_tensors="pt", add_special_tokens=False, truncation=False).to(device)
prompt_tokens = tokenizer.encode(prompt_str, return_tensors="pt", add_special_tokens=False, truncation=False).to(device)
assert isinstance(convo_tokens, torch.Tensor) and isinstance(prompt_tokens, torch.Tensor)
convo_tokens = convo_tokens.squeeze(0) # Squeeze just to make the following easier
prompt_tokens = prompt_tokens.squeeze(0)
# Calculate where to inject the image
# Ensure convo_tokens is on the CPU for this kind of operation if it involves list conversion or complex indexing not ideal for GPU
eot_id_indices = (convo_tokens.cpu() == tokenizer.convert_tokens_to_ids("<|eot_id|>")).nonzero(as_tuple=True)[0].tolist()
assert len(eot_id_indices) == 2, f"Expected 2 <|eot_id|> tokens, got {len(eot_id_indices)}"
preamble_len = eot_id_indices[1] - prompt_tokens.shape[0] # Number of tokens before the prompt
# Embed the tokens
convo_embeds = text_model.model.embed_tokens(convo_tokens.unsqueeze(0).to(text_model.device)) # Ensure tokens are on same device as text_model
# Construct the input
# Ensure all parts are on the same device before concatenation
input_embeds = torch.cat([
convo_embeds[:, :preamble_len], # Part before the prompt
embedded_images.to(dtype=convo_embeds.dtype, device=convo_embeds.device), # Image, ensure same dtype and device
convo_embeds[:, preamble_len:], # The prompt and anything after it
], dim=1)
# input_embeds will be on the device of convo_embeds (i.e. text_model.device)
input_ids = torch.cat([
convo_tokens[:preamble_len].unsqueeze(0),
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long, device=convo_tokens.device), # Dummy tokens for the image
convo_tokens[preamble_len:].unsqueeze(0),
], dim=1)
# input_ids will be on the device of convo_tokens
attention_mask = torch.ones_like(input_ids) # Will be on the same device as input_ids
# Debugging
print(f"Input to model: {repr(tokenizer.decode(input_ids[0]))}")
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)
generate_ids = text_model.generate(input_ids, inputs_embeds=input_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, suppress_tokens=None) # Uses the default which is temp=0.6, top_p=0.9
# Trim off the prompt
generate_ids = generate_ids[:, input_ids.shape[1]:]
if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"):
generate_ids = generate_ids[:, :-1]
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
return prompt_str, caption.strip()
@app.post("/caption_image/", response_model=CaptionResponse)
async def caption_image_endpoint(
image_file: UploadFile = File(...),
caption_type: str = Form(...),
caption_length: str = Form(...),
extra_options_json: str = Form("[]"), # Expect a JSON string for list of options
name_input: str = Form(""),
custom_prompt: str = Form("")
):
try:
# Read image file
image_bytes = await image_file.read()
input_image = Image.open(io.BytesIO(image_bytes))
except Exception as e:
raise HTTPException(status_code=400, detail=f"Invalid image file: {e}")
try:
# Parse extra_options from JSON string
extra_options = json.loads(extra_options_json)
if not isinstance(extra_options, list):
raise ValueError("extra_options_json must be a JSON list")
except ValueError as e:
raise HTTPException(status_code=400, detail=f"Invalid extra_options_json: {e}")
# Call the existing stream_chat function
# Ensure stream_chat is compatible with these inputs
try:
prompt_used, generated_caption = stream_chat(
input_image=input_image,
caption_type=caption_type,
caption_length=caption_length,
extra_options=extra_options,
name_input=name_input,
custom_prompt=custom_prompt
)
return CaptionResponse(prompt_that_was_used=prompt_used, caption=generated_caption)
except ValueError as e: # Catch specific errors from stream_chat like invalid caption_length
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
# General error catch for unexpected issues during model processing
print(f"Error during caption generation: {e}") # Log for server visibility
raise HTTPException(status_code=500, detail="Internal server error during caption generation.")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)