embed_api / app.py
sam2ai's picture
Synced repo using 'sync_with_huggingface' Github Action
20a070f
raw
history blame
5.38 kB
import argparse
import asyncio
import functools
import json
import os
from io import BytesIO
import uvicorn
from fastapi import FastAPI, BackgroundTasks, File, Body, UploadFile, Request
from fastapi.responses import StreamingResponse
# from faster_whisper import WhisperModel
from starlette.staticfiles import StaticFiles
from starlette.templating import Jinja2Templates
from sentence_transformers import SentenceTransformer
# from zhconv import convert
# from utils.data_utils import remove_punctuation
# from utils.utils import add_arguments, print_arguments
import hashlib
import os
import tarfile
import urllib.request
# from tqdm import tqdm
def print_arguments(args):
print("----------- Configuration Arguments -----------")
for arg, value in vars(args).items():
print("%s: %s" % (arg, value))
print("------------------------------------------------")
def strtobool(val):
val = val.lower()
if val in ('y', 'yes', 't', 'true', 'on', '1'):
return True
elif val in ('n', 'no', 'f', 'false', 'off', '0'):
return False
else:
raise ValueError("invalid truth value %r" % (val,))
def str_none(val):
if val == 'None':
return None
else:
return val
def add_arguments(argname, type, default, help, argparser, **kwargs):
type = strtobool if type == bool else type
type = str_none if type == str else type
argparser.add_argument("--" + argname,
default=default,
type=type,
help=help + ' Default: %(default)s.',
**kwargs)
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg("host", type=str, default="0.0.0.0", help="")
add_arg("port", type=int, default=5000, help="")
add_arg("model_path", type=str, default="BAAI/bge-small-en-v1.5", help="")
add_arg("use_gpu", type=bool, default=False, help="")
# add_arg("use_int8", type=bool, default=True, help="")
add_arg("beam_size", type=int, default=10, help="")
add_arg("num_workers", type=int, default=2, help="")
add_arg("vad_filter", type=bool, default=True, help="")
add_arg("local_files_only", type=bool, default=True, help="")
args = parser.parse_args()
print_arguments(args)
#
# assert os.path.exists(args.model_path), f"{args.model_path}"
#
if args.use_gpu:
model = SentenceTransformer(args.model_path, device="cuda", compute_type="float16")
else:
model = SentenceTransformer(args.model_path, device='cpu')
#
# _, _ = model.transcribe("dataset/test.wav", beam_size=5)
app = FastAPI(title="embedding Inference")
# app.mount('/static', StaticFiles(directory='static'), name='static')
# templates = Jinja2Templates(directory="templates")
# model_semaphore = None
# def release_model_semaphore():
# model_semaphore.release()
# def recognition(file: File, to_simple: int,
# remove_pun: int, language: str = "bn",
# task: str = "transcribe"
# ):
# segments, info = model.transcribe(file, beam_size=10, task=task, language=language, vad_filter=args.vad_filter)
# for segment in segments:
# text = segment.text
# if to_simple == 1:
# # text = convert(text, '')
# pass
# if remove_pun == 1:
# # text = remove_punctuation(text)
# pass
# ret = {"result": text, "start": round(segment.start, 2), "end": round(segment.end, 2)}
# #
# yield json.dumps(ret).encode() + b"\0"
# @app.post("/recognition_stream")
# async def api_recognition_stream(
# to_simple: int = Body(1, description="", embed=True),
# remove_pun: int = Body(0, description="", embed=True),
# language: str = Body("bn", description="", embed=True),
# task: str = Body("transcribe", description="", embed=True),
# audio: UploadFile = File(..., description="")
# ):
# global model_semaphore
# if language == "None": language = None
# if model_semaphore is None:
# model_semaphore = asyncio.Semaphore(5)
# await model_semaphore.acquire()
# contents = await audio.read()
# data = BytesIO(contents)
# generator = recognition(
# file=data, to_simple=to_simple,
# remove_pun=remove_pun, language=language,
# task=task
# )
# background_tasks = BackgroundTasks()
# background_tasks.add_task(release_model_semaphore)
# return StreamingResponse(generator, background=background_tasks)
@app.post("/embed")
async def api_embed(
textA: str = Body("text1", description="", embed=True),
textB: str = Body("text2", description="", embed=True),
):
q_embeddings = model.encode(textA, normalize_embeddings=True)
p_embeddings = model.encode(textB, normalize_embeddings=True)
scores = q_embeddings @ p_embeddings.T
print(scores)
scores = scores.tolist()
ret = {"similarity score": scores, "status_code": 200}
return ret
# @app.get("/")
# async def index(request: Request):
# return templates.TemplateResponse(
# "index.html", {"request": request, "id": id}
# )
if __name__ == '__main__':
uvicorn.run(app, host=args.host, port=args.port)