surokpro2's picture
Upload 31 files
837d48c verified
import gradio as gr
import os
import torch
from PIL import Image
from SDLens import HookedStableDiffusionXLPipeline
from SAE import SparseAutoencoder
from utils import TimedHook, add_feature_on_area_base, replace_with_feature_base, add_feature_on_area_turbo, replace_with_feature_turbo
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import threading
import spaces
code_to_block = {
"down.2.1": "unet.down_blocks.2.attentions.1",
"mid.0": "unet.mid_block.attentions.0",
"up.0.1": "unet.up_blocks.0.attentions.1",
"up.0.0": "unet.up_blocks.0.attentions.0"
}
lock = threading.Lock()
base_guidance_scale_default = 8.0
turbo_guidance_scale_default = 0.0
def process_cache(cache, saes_dict, timestep=None):
top_features_dict = {}
sparse_maps_dict = {}
for code in code_to_block.keys():
block = code_to_block[code]
sae = saes_dict[code]
diff = cache["output"][block] - cache["input"][block]
if diff.shape[0] == 2: # guidance is on and we need to select the second output
diff = diff[1].unsqueeze(0)
# If a specific timestep is provided, select that timestep from the cached activations
if timestep is not None and timestep < diff.shape[1]:
diff = diff[:, timestep:timestep+1]
diff = diff.permute(0, 1, 3, 4, 2).squeeze(0).squeeze(0)
with torch.no_grad():
sparse_maps = sae.encode(diff)
averages = torch.mean(sparse_maps, dim=(0, 1))
top_features = torch.topk(averages, 10).indices
top_features_dict[code] = top_features.cpu().tolist()
sparse_maps_dict[code] = sparse_maps.cpu().numpy()
return top_features_dict, sparse_maps_dict
def plot_image_heatmap(cache, block_select, radio):
code = block_select.split()[0]
feature = int(radio)
block = code_to_block[code]
heatmap = cache["heatmaps"][code][:, :, feature]
heatmap = np.kron(heatmap, np.ones((32, 32)))
image = cache["image"].convert("RGBA")
jet = plt.cm.jet
cmap = jet(np.arange(jet.N))
cmap[:1, -1] = 0
cmap[1:, -1] = 0.6
cmap = ListedColormap(cmap)
heatmap = (heatmap - np.min(heatmap)) / (np.max(heatmap) - np.min(heatmap))
heatmap_rgba = cmap(heatmap)
heatmap_image = Image.fromarray((heatmap_rgba * 255).astype(np.uint8))
heatmap_with_transparency = Image.alpha_composite(image, heatmap_image)
return heatmap_with_transparency
def create_prompt_part(pipe, saes_dict, demo):
@spaces.GPU
def image_gen(prompt, timestep=None, num_steps=None, guidance_scale=None):
lock.acquire()
try:
# Default values
is_base_model = pipe.pipe.name_or_path == "stabilityai/stable-diffusion-xl-base-1.0"
default_n_steps = 25 if is_base_model else 1
default_guidance = base_guidance_scale_default if is_base_model else turbo_guidance_scale_default
# Use provided values if available, otherwise use defaults
n_steps = default_n_steps if num_steps is None else int(num_steps)
guidance = default_guidance if guidance_scale is None else float(guidance_scale)
# Convert timestep to integer if it's not None
timestep_int = None if timestep is None else int(timestep)
images, cache = pipe.run_with_cache(
prompt,
positions_to_cache=list(code_to_block.values()),
num_inference_steps=n_steps,
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=guidance,
save_input=True,
save_output=True
)
finally:
lock.release()
top_features_dict, top_sparse_maps_dict = process_cache(cache, saes_dict, timestep_int)
return images.images[0], {
"image": images.images[0],
"heatmaps": top_sparse_maps_dict,
"features": top_features_dict
}
def update_radio(cache, block_select):
code = block_select.split()[0]
return gr.update(choices=cache["features"][code])
def update_img(cache, block_select, radio):
new_img = plot_image_heatmap(cache, block_select, radio)
return new_img
def update_visibility():
is_base_model = pipe.pipe.name_or_path == "stabilityai/stable-diffusion-xl-base-1.0"
return gr.update(visible=is_base_model), gr.update(visible=is_base_model)
with gr.Tab("Explore", elem_classes="tabs") as explore_tab:
cache = gr.State(value={
"image": None,
"heatmaps": None,
"features": []
})
with gr.Row():
with gr.Column(scale=7):
with gr.Row(equal_height=True):
prompt_field = gr.Textbox(lines=1, label="Enter prompt here", value="A cinematic shot of a professor sloth wearing a tuxedo at a BBQ party and eathing a dish with peas.")
button = gr.Button("Generate", elem_classes="generate_button1")
with gr.Row():
image = gr.Image(width=512, height=512, image_mode="RGB", label="Generated image")
with gr.Column(scale=4):
block_select = gr.Dropdown(
choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"],
value="down.2.1 (composition)",
label="Select block",
elem_id="block_select",
interactive=True
)
# Add SDXL base specific controls
is_base_model = pipe.pipe.name_or_path == "stabilityai/stable-diffusion-xl-base-1.0"
with gr.Group() as sdxl_base_controls:
steps_slider = gr.Slider(
minimum=1,
maximum=50,
value=25 if is_base_model else 1,
step=1,
label="Number of steps",
elem_id="steps_slider",
interactive=True,
visible=is_base_model
)
guidance_slider = gr.Slider(
minimum=0.0,
maximum=15.0,
value=base_guidance_scale_default if is_base_model else turbo_guidance_scale_default,
step=0.1,
label="Guidance scale",
elem_id="guidance_slider",
interactive=True,
visible=is_base_model
)
# Add timestep selector
n_steps = 25 if is_base_model else 1
timestep_selector = gr.Slider(
minimum=0,
maximum=n_steps-1,
value=None,
step=1,
label="Timestep (leave empty for average across all steps)",
elem_id="timestep_selector",
interactive=True,
visible=is_base_model
)
recompute_button = gr.Button("Recompute", elem_id="recompute_button",
visible=is_base_model)
# Update max timestep when steps change
steps_slider.change(lambda s: gr.update(maximum=s-1), [steps_slider], [timestep_selector])
radio = gr.Radio(choices=[], label="Select a feature", interactive=True)
button.click(image_gen, [prompt_field, timestep_selector, steps_slider, guidance_slider], outputs=[image, cache])
cache.change(update_radio, [cache, block_select], outputs=[radio])
block_select.select(update_radio, [cache, block_select], outputs=[radio])
radio.select(update_img, [cache, block_select, radio], outputs=[image])
recompute_button.click(image_gen, [prompt_field, timestep_selector, steps_slider, guidance_slider], outputs=[image, cache])
demo.load(image_gen, [prompt_field, timestep_selector, steps_slider, guidance_slider], outputs=[image, cache])
return explore_tab
def downsample_mask(image, factor):
downsampled = image.reshape(
(image.shape[0] // factor, factor,
image.shape[1] // factor, factor)
)
downsampled = downsampled.mean(axis=(1, 3))
return downsampled
def create_intervene_part(pipe: HookedStableDiffusionXLPipeline, saes_dict, means_dict, demo):
@spaces.GPU
def image_gen(prompt, num_steps, guidance_scale=None):
lock.acquire()
is_base_model = pipe.pipe.name_or_path == "stabilityai/stable-diffusion-xl-base-1.0"
default_guidance = base_guidance_scale_default if is_base_model else turbo_guidance_scale_default
guidance = default_guidance if guidance_scale is None else float(guidance_scale)
try:
images = pipe.run_with_hooks(
prompt,
position_hook_dict={},
num_inference_steps=int(num_steps),
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=guidance,
)
finally:
lock.release()
if images.images[0].size == (1024, 1024):
return images.images[0].resize((512, 512)), images.images[0].resize((512, 512))
else:
return images.images[0], images.images[0]
@spaces.GPU
def image_mod(prompt, block_str, brush_index, strength, num_steps, input_image, guidance_scale=None, start_index=None, end_index=None):
block = block_str.split(" ")[0]
is_base_model = pipe.pipe.name_or_path == "stabilityai/stable-diffusion-xl-base-1.0"
mask = (input_image["layers"][0] > 0)[:, :, -1].astype(float)
if is_base_model:
mask = downsample_mask(mask, 16)
else:
mask = downsample_mask(mask, 32)
mask = torch.tensor(mask, dtype=torch.float32, device="cuda")
if mask.sum() == 0:
gr.Info("No mask selected, please draw on the input image")
if is_base_model:
# Set default values for start_index and end_index if not provided
if start_index is None:
start_index = 0
if end_index is None:
end_index = int(num_steps)
# Ensure start_index and end_index are within valid ranges
start_index = max(0, min(int(start_index), int(num_steps)))
end_index = max(0, min(int(end_index), int(num_steps)))
# Ensure start_index is less than end_index
if start_index >= end_index:
start_index = max(0, end_index - 1)
def myhook(module, input, output):
return add_feature_on_area_base(
saes_dict[block],
brush_index,
mask * means_dict[block][brush_index] * strength,
module,
input,
output)
hook = TimedHook(myhook, int(num_steps), np.arange(start_index, end_index))
else:
def hook(module, input, output):
return add_feature_on_area_turbo(
saes_dict[block],
brush_index,
mask * means_dict[block][brush_index] * strength,
module,
input,
output)
lock.acquire()
is_base_model = pipe.pipe.name_or_path == "stabilityai/stable-diffusion-xl-base-1.0"
default_guidance = base_guidance_scale_default if is_base_model else turbo_guidance_scale_default
guidance = default_guidance if guidance_scale is None else float(guidance_scale)
try:
image = pipe.run_with_hooks(
prompt,
position_hook_dict={code_to_block[block]: hook},
num_inference_steps=int(num_steps),
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=guidance
).images[0]
finally:
lock.release()
return image
@spaces.GPU
def feature_icon(block_str, brush_index, guidance_scale=None):
block = block_str.split(" ")[0]
if block in ["mid.0", "up.0.0"]:
gr.Info("Note that Feature Icon works best with down.2.1 and up.0.1 blocks but feel free to explore", duration=3)
def hook(module, input, output):
if is_base_model:
return replace_with_feature_base(
saes_dict[block],
brush_index,
means_dict[block][brush_index] * saes_dict[block].k,
module,
input,
output
)
else:
return replace_with_feature_turbo(
saes_dict[block],
brush_index,
means_dict[block][brush_index] * saes_dict[block].k,
module,
input,
output)
lock.acquire()
is_base_model = pipe.pipe.name_or_path == "stabilityai/stable-diffusion-xl-base-1.0"
n_steps = 25 if is_base_model else 1
default_guidance = base_guidance_scale_default if is_base_model else turbo_guidance_scale_default
guidance = default_guidance if guidance_scale is None else float(guidance_scale)
try:
image = pipe.run_with_hooks(
"",
position_hook_dict={code_to_block[block]: hook},
num_inference_steps=n_steps,
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=guidance,
).images[0]
finally:
lock.release()
return image
with gr.Tab("Paint!", elem_classes="tabs") as intervene_tab:
image_state = gr.State(value=None)
with gr.Row():
with gr.Column(scale=3):
# Generation column
with gr.Row():
# prompt and num_steps
is_base_model = pipe.pipe.name_or_path == "stabilityai/stable-diffusion-xl-base-1.0"
n_steps = 25 if is_base_model else 1
prompt_field = gr.Textbox(lines=1, label="Enter prompt here", value="A dog plays with a ball, closeup", elem_id="prompt_input")
with gr.Row():
num_steps = gr.Number(value=n_steps, label="Number of steps", minimum=1, maximum=50, elem_id="num_steps", precision=0)
guidance_slider = gr.Slider(
minimum=0.0,
maximum=15.0,
value=base_guidance_scale_default if is_base_model else turbo_guidance_scale_default,
step=0.1,
label="Guidance scale",
elem_id="paint_guidance_slider",
interactive=True,
visible=is_base_model
)
with gr.Row():
# Generate button
button_generate = gr.Button("Generate", elem_id="generate_button")
with gr.Column(scale=3):
# Intervention column
with gr.Row():
# dropdowns and number inputs
with gr.Column(scale=7):
with gr.Row():
block_select = gr.Dropdown(
choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"],
value="down.2.1 (composition)",
label="Select block",
elem_id="block_select"
)
brush_index = gr.Number(value=4998, label="Brush index", minimum=0, maximum=5119, elem_id="brush_index", precision=0)
with gr.Row():
button_icon = gr.Button('Feature Icon', elem_id="feature_icon_button")
with gr.Row():
gr.Markdown("**TimedHook Range** (which steps to apply the feature)", visible=is_base_model)
with gr.Row():
start_index = gr.Number(value=5 if is_base_model else 0, label="Start index", minimum=0, maximum=n_steps, elem_id="start_index", precision=0, visible=is_base_model)
end_index = gr.Number(value=20 if is_base_model else 1, label="End index", minimum=0, maximum=n_steps, elem_id="end_index", precision=0, visible=is_base_model)
with gr.Column(scale=3):
with gr.Row():
strength = gr.Number(value=10, label="Strength", minimum=-40, maximum=40, elem_id="strength", precision=2)
with gr.Row():
button = gr.Button('Apply', elem_id="apply_button")
with gr.Row():
with gr.Column():
# Input image
i_image = gr.Sketchpad(
height=600,
layers=False, transforms=None, placeholder="Generate and paint!",
container=False,
brush=gr.Brush(default_size=40, color_mode="fixed", colors=['black']),
canvas_size=(512, 512),
label="Input Image")
clear_button = gr.Button("Clear")
clear_button.click(lambda x: x, [image_state], [i_image])
# Output image
o_image = gr.Image(width=512, height=512, label="Output Image")
# Set up the click events
button_generate.click(image_gen, inputs=[prompt_field, num_steps, guidance_slider], outputs=[image_state, o_image])
image_state.change(lambda x: x, [image_state], [i_image])
if is_base_model:
# Update max values for start_index and end_index when num_steps changes
def update_index_maxes(steps):
return gr.update(maximum=steps), gr.update(maximum=steps)
num_steps.change(update_index_maxes, [num_steps], [start_index, end_index])
button.click(image_mod,
inputs=[prompt_field, block_select, brush_index, strength, num_steps, i_image, guidance_slider, start_index, end_index],
outputs=o_image)
button_icon.click(feature_icon, inputs=[block_select, brush_index, guidance_slider], outputs=o_image)
demo.load(image_gen, [prompt_field, num_steps, guidance_slider], outputs=[image_state, o_image])
return intervene_tab
def create_top_images_part(demo):
def update_top_images(block_select, brush_index):
block = block_select.split(" ")[0]
url = f"https://huggingface.co/datasets/surokpro2/sdxl_sae_images/resolve/main/{block}/{brush_index}.jpg"
return url
with gr.Tab("Top Images", elem_classes="tabs") as top_images_tab:
with gr.Row():
block_select = gr.Dropdown(
choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"],
value="down.2.1 (composition)",
label="Select blk"
)
brush_index = gr.Number(value=0, label="Brush index", minimum=0, maximum=5119, precision=0)
with gr.Row():
image = gr.Image(width=600, height=600, label="Top Images")
block_select.select(update_top_images, [block_select, brush_index], outputs=[image])
brush_index.change(update_top_images, [block_select, brush_index], outputs=[image])
demo.load(update_top_images, [block_select, brush_index], outputs=[image])
return top_images_tab
def create_intro_part():
with gr.Tab("Instructions", elem_classes="tabs") as intro_tab:
gr.Markdown(
'''# One-Step is Enough: Sparse Autoencoders for Text-to-Image Diffusion Models
## Stable Diffustion XL multistep version
## Note
If you encounter GPU time limit errors, don't worry, the app still works and you can use it freely.
## Demo Overview
This demo showcases the use of Sparse Autoencoders (SAEs) to understand the features learned by the Stable Diffusion XL (Turbo) model.
## How to Use
### Explore
* Enter a prompt in the text box and click on the "Generate" button to generate an image.
* You can observe the active features in different blocks plot on top of the generated image.
### Top Images
* For each feature, you can view the top images that activate the feature the most.
### Paint!
* Generate an image using the prompt.
* Paint on the generated image to apply interventions.
* Use the "Feature Icon" button to understand how the selected brush functions.
### Remarks
* Not all brushes mix well with all images. Experiment with different brushes and strengths.
* Feature Icon works best with `down.2.1 (composition)` and `up.0.1 (style)` blocks.
* This demo is provided for research purposes only. We do not take responsibility for the content generated by the demo.
### Interesting features to try
To get started, try the following features:
- down.2.1 (composition): 2301 (evil) 3747 (image frame) 4998 (cartoon)
- up.0.1 (style): 4977 (tiger stripes) 90 (fur) 2615 (twilight blur)
'''
)
return intro_tab
def create_demo(pipe, saes_dict, means_dict):
custom_css = """
.tabs button {
font-size: 20px !important; /* Adjust font size for tab text */
padding: 10px !important; /* Adjust padding to make the tabs bigger */
font-weight: bold !important; /* Adjust font weight to make the text bold */
}
.generate_button1 {
max-width: 160px !important;
margin-top: 20px !important;
margin-bottom: 20px !important;
}
"""
with gr.Blocks(css=custom_css) as demo:
with create_intro_part():
pass
with create_prompt_part(pipe, saes_dict, demo):
pass
with create_top_images_part(demo):
pass
with create_intervene_part(pipe, saes_dict, means_dict, demo):
pass
return demo
if __name__ == "__main__":
import os
import gradio as gr
import torch
from SDLens import HookedStableDiffusionXLPipeline
from SAE import SparseAutoencoder
dtype=torch.float32
pipe = HookedStableDiffusionXLPipeline.from_pretrained(
'stabilityai/stable-diffusion-xl-base-1.0',
torch_dtype=dtype,
variant=("fp16" if dtype==torch.float16 else None)
)
pipe.set_progress_bar_config(disable=True)
pipe.to('cuda')
path_to_checkpoints = './checkpoints/'
code_to_block = {
"down.2.1": "unet.down_blocks.2.attentions.1",
"mid.0": "unet.mid_block.attentions.0",
"up.0.1": "unet.up_blocks.0.attentions.1",
"up.0.0": "unet.up_blocks.0.attentions.0"
}
saes_dict = {}
means_dict = {}
for code, block in code_to_block.items():
sae = SparseAutoencoder.load_from_disk(
os.path.join(path_to_checkpoints, f"{block}_k10_hidden5120_auxk256_bs4096_lr0.0001", "final"),
)
means = torch.load(
os.path.join(path_to_checkpoints, f"{block}_k10_hidden5120_auxk256_bs4096_lr0.0001", "final", "mean.pt"),
weights_only=True
)
saes_dict[code] = sae.to('cuda', dtype=dtype)
means_dict[code] = means.to('cuda', dtype=dtype)
demo = create_demo(pipe, saes_dict, means_dict)
demo.launch()