Test
#1
by
jwilles
- opened
- .gitignore +0 -1
- README.md +1 -1
- app.py +79 -97
- create_log_file_map.py +36 -0
- data/results.json +0 -948
- data/tasks.json +0 -142
- inspect_log_file_names.json +150 -0
- refactor_eval_results.py +127 -0
- src/about.py +106 -70
- src/assets/logo-icon-black.png +0 -0
- src/assets/logo-icon-white.png +0 -0
- src/display/css_html_js.py +222 -178
- src/display/formatting.py +0 -2
- src/display/utils.py +98 -0
- src/envs.py +25 -0
- src/leaderboard/read_evals.py +188 -0
- src/populate.py +91 -0
- src/submission/check_validity.py +99 -0
- src/submission/submit.py +119 -0
.gitignore
CHANGED
@@ -5,7 +5,6 @@ __pycache__/
|
|
5 |
.ipynb_checkpoints
|
6 |
*ipynb
|
7 |
.vscode/
|
8 |
-
.idea/
|
9 |
|
10 |
eval-queue/
|
11 |
eval-results/
|
|
|
5 |
.ipynb_checkpoints
|
6 |
*ipynb
|
7 |
.vscode/
|
|
|
8 |
|
9 |
eval-queue/
|
10 |
eval-results/
|
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🥇
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
|
|
1 |
---
|
2 |
+
title: Leaderboard Test
|
3 |
emoji: 🥇
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
app.py
CHANGED
@@ -1,121 +1,103 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
-
import
|
|
|
4 |
|
5 |
from src.about import (
|
6 |
-
|
|
|
|
|
7 |
INTRODUCTION_TEXT,
|
8 |
-
|
9 |
TITLE,
|
10 |
)
|
11 |
-
from src.display.css_html_js import custom_css
|
12 |
-
from src.display.
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
display_name = filtered_tasks[dataset]['display_name']
|
48 |
-
# Round non-null values to 2 decimal places and make clickable if log_url exists
|
49 |
-
if value is not None:
|
50 |
-
value = round(value*100, 2)
|
51 |
-
if log_url:
|
52 |
-
value = make_clickable_field(value, log_url)
|
53 |
-
row[display_name] = value
|
54 |
-
data.append(row)
|
55 |
-
|
56 |
-
results_df = pd.DataFrame(data)
|
57 |
-
|
58 |
-
# Round all numeric columns to 2 decimal places
|
59 |
-
numeric_cols = results_df.select_dtypes(include=['float64', 'float32']).columns
|
60 |
-
results_df[numeric_cols] = results_df[numeric_cols].round(2)
|
61 |
|
62 |
-
# Fill null values with "-"
|
63 |
-
results_df = results_df.fillna("--")
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
|
|
|
|
69 |
return gr.components.Dataframe(
|
70 |
-
value=
|
71 |
-
datatype=[
|
72 |
-
column_widths=["
|
73 |
wrap=False,
|
74 |
)
|
75 |
|
76 |
|
77 |
-
|
78 |
-
white_logo_path = "src/assets/logo-icon-white.png"
|
79 |
-
|
80 |
-
demo = gr.Blocks(
|
81 |
-
css=custom_css,
|
82 |
-
js=custom_js,
|
83 |
-
theme=gr.themes.Default(primary_hue=gr.themes.colors.pink),
|
84 |
-
fill_height=True,
|
85 |
-
fill_width=True,
|
86 |
-
)
|
87 |
with demo:
|
88 |
gr.HTML(f"""
|
89 |
-
<div
|
90 |
-
<
|
91 |
-
|
92 |
-
<img id="black-logo" src="/gradio_api/file={black_logo_path}">
|
93 |
-
<img id="white-logo" src="/gradio_api/file={white_logo_path}">
|
94 |
-
</div>
|
95 |
-
<div id="centre-container">
|
96 |
-
<h1 style="margin-bottom: 0.25rem;">{TITLE}</h1>
|
97 |
-
<p style="color:#eb088a; margin:0; font-size:1.2rem;">Explore Interactive Results & Traces</p>
|
98 |
-
</div>
|
99 |
-
<div id="right-container">
|
100 |
-
</div>
|
101 |
-
</div>
|
102 |
</div>
|
103 |
""")
|
104 |
-
gr.
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
build_leaderboard("base")
|
109 |
|
110 |
-
|
111 |
-
|
|
|
112 |
|
113 |
-
with gr.TabItem("
|
114 |
-
|
115 |
|
116 |
-
|
117 |
-
|
118 |
|
119 |
-
assets = [black_logo_path, white_logo_path]
|
120 |
-
demo.launch(allowed_paths=assets)
|
121 |
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
import pandas as pd
|
4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
|
7 |
from src.about import (
|
8 |
+
CITATION_BUTTON_LABEL,
|
9 |
+
CITATION_BUTTON_TEXT,
|
10 |
+
EVALUATION_QUEUE_TEXT,
|
11 |
INTRODUCTION_TEXT,
|
12 |
+
LLM_BENCHMARKS_TEXT,
|
13 |
TITLE,
|
14 |
)
|
15 |
+
from src.display.css_html_js import custom_css
|
16 |
+
from src.display.utils import (
|
17 |
+
COLS,
|
18 |
+
ST_BENCHMARK_COLS,
|
19 |
+
AGENTIC_BENCHMARK_COLS,
|
20 |
+
EVAL_COLS,
|
21 |
+
EVAL_TYPES,
|
22 |
+
AutoEvalColumn,
|
23 |
+
ModelType,
|
24 |
+
fields,
|
25 |
+
WeightType,
|
26 |
+
Precision
|
27 |
+
)
|
28 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
29 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df, TASK_NAME_INVERSE_MAP
|
30 |
+
from src.submission.submit import add_new_eval
|
31 |
+
|
32 |
+
|
33 |
+
def restart_space():
|
34 |
+
API.restart_space(repo_id=REPO_ID)
|
35 |
+
|
36 |
+
### Space initialisation
|
37 |
+
try:
|
38 |
+
print(EVAL_REQUESTS_PATH)
|
39 |
+
snapshot_download(
|
40 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
41 |
+
)
|
42 |
+
except Exception:
|
43 |
+
restart_space()
|
44 |
+
try:
|
45 |
+
print(EVAL_RESULTS_PATH)
|
46 |
+
snapshot_download(
|
47 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
48 |
+
)
|
49 |
+
except Exception:
|
50 |
+
restart_space()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
|
|
|
|
52 |
|
53 |
+
ST_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, ST_BENCHMARK_COLS)
|
54 |
+
AGENTIC_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, AGENTIC_BENCHMARK_COLS)
|
55 |
+
|
56 |
+
(
|
57 |
+
finished_eval_queue_df,
|
58 |
+
running_eval_queue_df,
|
59 |
+
pending_eval_queue_df,
|
60 |
+
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
61 |
+
|
62 |
+
def init_leaderboard(dataframe, benchmark_type):
|
63 |
+
if dataframe is None or dataframe.empty:
|
64 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
65 |
|
66 |
+
AutoEvalColumnSubset = [c for c in fields(AutoEvalColumn) if ((c.name=="Model") or (TASK_NAME_INVERSE_MAP.get(c.name, dict()).get("type", "")==benchmark_type))]
|
67 |
+
|
68 |
return gr.components.Dataframe(
|
69 |
+
value=dataframe,
|
70 |
+
datatype=[c.type for c in AutoEvalColumnSubset],
|
71 |
+
column_widths=["150px" if c.name != "Model" else "250px" for c in AutoEvalColumnSubset],
|
72 |
wrap=False,
|
73 |
)
|
74 |
|
75 |
|
76 |
+
demo = gr.Blocks(css=custom_css)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
with demo:
|
78 |
gr.HTML(f"""
|
79 |
+
<div style="text-align:center; margin-bottom:1rem;">
|
80 |
+
<h1 style="margin-bottom: 0.25rem;">{TITLE}</h1>
|
81 |
+
<p style="color:#eb088a; margin:0; font-size:1.2rem;">Performance Insights & Comparison</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
</div>
|
83 |
""")
|
84 |
+
# gr.HTML(TITLE)
|
85 |
+
with gr.Group(elem_classes="intro-block"):
|
86 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
87 |
+
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
|
|
88 |
|
89 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
90 |
+
with gr.TabItem("Base Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
91 |
+
leaderboard = init_leaderboard(ST_LEADERBOARD_DF, "base")
|
92 |
|
93 |
+
with gr.TabItem("Agentic Benchmark", elem_id="llm-benchmark-tab-table", id=1):
|
94 |
+
leaderboard = init_leaderboard(AGENTIC_LEADERBOARD_DF, "agentic")
|
95 |
|
96 |
+
with gr.TabItem("About", elem_id="llm-benchmark-tab-table", id=2):
|
97 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
98 |
|
|
|
|
|
99 |
|
100 |
+
scheduler = BackgroundScheduler()
|
101 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
102 |
+
scheduler.start()
|
103 |
+
demo.queue(default_concurrency_limit=40).launch()
|
create_log_file_map.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
from collections import defaultdict
|
5 |
+
|
6 |
+
|
7 |
+
def main():
|
8 |
+
|
9 |
+
base_bm_input_path = "./base_benchmarking_logs"
|
10 |
+
agentic_bm_input_path = "./agentic_benchmarking_logs"
|
11 |
+
|
12 |
+
log_file_map = defaultdict()
|
13 |
+
|
14 |
+
for model_name in os.listdir(base_bm_input_path):
|
15 |
+
log_file_map[model_name] = defaultdict(str)
|
16 |
+
if os.path.isdir(os.path.join(base_bm_input_path, model_name)):
|
17 |
+
for task_log_file in os.listdir(os.path.join(base_bm_input_path, model_name)):
|
18 |
+
with open(os.path.join(base_bm_input_path, model_name, task_log_file), "r") as f:
|
19 |
+
result = json.load(f)
|
20 |
+
task_name = result["eval"]["task"].split("/")[-1]
|
21 |
+
log_file_map[model_name][task_name] = task_log_file
|
22 |
+
|
23 |
+
for model_name in os.listdir(agentic_bm_input_path):
|
24 |
+
if os.path.isdir(os.path.join(agentic_bm_input_path, model_name)):
|
25 |
+
for task_log_file in os.listdir(os.path.join(agentic_bm_input_path, model_name)):
|
26 |
+
with open(os.path.join(agentic_bm_input_path, model_name, task_log_file), "r") as f:
|
27 |
+
result = json.load(f)
|
28 |
+
task_name = result["eval"]["task"].split("/")[-1]
|
29 |
+
log_file_map[model_name][task_name] = task_log_file
|
30 |
+
|
31 |
+
with open("./inspect_log_file_names.json", "w") as f:
|
32 |
+
json.dump(log_file_map, f, indent=4)
|
33 |
+
|
34 |
+
|
35 |
+
if __name__ == "__main__":
|
36 |
+
main()
|
data/results.json
DELETED
@@ -1,948 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"DeepSeek-R1": {
|
3 |
-
"config": {
|
4 |
-
"model_name": "DeepSeek-R1",
|
5 |
-
"model_sha": "https://api-docs.deepseek.com/news/news250120",
|
6 |
-
"model_dtype": "torch.float16"
|
7 |
-
},
|
8 |
-
"results": {
|
9 |
-
"mmlu_pro": {
|
10 |
-
"accuracy": 0.8382646276595744,
|
11 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/DeepSeek-R1/index.html?log_file=logs/logs/2025-02-12T11-02-35-05-00_mmlu-pro_BhD89DYN9KM3k4weSDfaQK.eval"
|
12 |
-
},
|
13 |
-
"humaneval": {
|
14 |
-
"mean": 0.9567901234567902,
|
15 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/DeepSeek-R1/index.html?log_file=logs/logs/2025-02-03T11-45-22-05-00_humaneval_hnkHWYqrb5HxiBt2CWzCnq.eval"
|
16 |
-
},
|
17 |
-
"math": {
|
18 |
-
"accuracy": 0.9272,
|
19 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/DeepSeek-R1/index.html?log_file=logs/logs/2025-02-11T11-38-10-05-00_math_ZYFSqsWsmP5kLRLHEMWULU.eval"
|
20 |
-
},
|
21 |
-
"gsm8k": {
|
22 |
-
"accuracy": 0.954510993176649,
|
23 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/DeepSeek-R1/index.html?log_file=logs/logs/2025-02-02T16-28-05-05-00_gsm8k_YMw6WiZkgTBQ54z5UHtDDX.eval"
|
24 |
-
},
|
25 |
-
"arc_challenge": {
|
26 |
-
"accuracy": 0.9667235494880546,
|
27 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/DeepSeek-R1/index.html?log_file=logs/logs/2025-01-30T15-42-39-05-00_arc-challenge_CviW9ro6rKBbctkwJzQstp.eval"
|
28 |
-
},
|
29 |
-
"winogrande": {
|
30 |
-
"accuracy": 0.9179163378058406,
|
31 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/DeepSeek-R1/index.html?log_file=logs/logs/2025-02-04T00-25-12-05-00_winogrande_NPgTbtqom2QSPKxeThWrdZ.eval"
|
32 |
-
},
|
33 |
-
"arc_easy": {
|
34 |
-
"accuracy": 0.9873737373737373,
|
35 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/DeepSeek-R1/index.html?log_file=logs/logs/2024-10-29T17-10-40-04-00_arc-easy_UvprihBMLXPF8JENVLRkdx.eval"
|
36 |
-
},
|
37 |
-
"gpqa_diamond": {
|
38 |
-
"accuracy": 0.7045454545454546,
|
39 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/DeepSeek-R1/index.html?log_file=logs/logs/2025-02-11T11-37-45-05-00_gpqa-diamond_MwnVeLwyuiEAALr3M5q3dn.eval"
|
40 |
-
},
|
41 |
-
"drop": {
|
42 |
-
"mean": null,
|
43 |
-
"log_url": null
|
44 |
-
},
|
45 |
-
"hellaswag": {
|
46 |
-
"accuracy": null,
|
47 |
-
"log_url": null
|
48 |
-
},
|
49 |
-
"ifeval": {
|
50 |
-
"final_acc": null,
|
51 |
-
"log_url": null
|
52 |
-
},
|
53 |
-
"mmlu": {
|
54 |
-
"accuracy": null,
|
55 |
-
"log_url": null
|
56 |
-
},
|
57 |
-
"mmmu_multiple_choice": {
|
58 |
-
"accuracy": null,
|
59 |
-
"log_url": null
|
60 |
-
},
|
61 |
-
"mmmu_open": {
|
62 |
-
"accuracy": null,
|
63 |
-
"log_url": null
|
64 |
-
},
|
65 |
-
"gaia": {
|
66 |
-
"accuracy": null,
|
67 |
-
"log_url": null
|
68 |
-
},
|
69 |
-
"gdm_intercode_ctf": {
|
70 |
-
"accuracy": null,
|
71 |
-
"log_url": null
|
72 |
-
},
|
73 |
-
"gdm_in_house_ctf": {
|
74 |
-
"accuracy": null,
|
75 |
-
"log_url": null
|
76 |
-
},
|
77 |
-
"agentharm": {
|
78 |
-
"avg_score": null,
|
79 |
-
"log_url": null
|
80 |
-
},
|
81 |
-
"agentharm_benign": {
|
82 |
-
"avg_score": null,
|
83 |
-
"log_url": null
|
84 |
-
},
|
85 |
-
"swe_bench": {
|
86 |
-
"mean": null,
|
87 |
-
"log_url": null
|
88 |
-
}
|
89 |
-
}
|
90 |
-
},
|
91 |
-
"Meta-Llama-3.1-70B-Instruct": {
|
92 |
-
"config": {
|
93 |
-
"model_name": "Meta-Llama-3.1-70B-Instruct",
|
94 |
-
"model_sha": "https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct",
|
95 |
-
"model_dtype": "torch.float16"
|
96 |
-
},
|
97 |
-
"results": {
|
98 |
-
"hellaswag": {
|
99 |
-
"accuracy": 0.869946225851424,
|
100 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/eval/Meta-Llama-3.1-70B-Instruct/index.html?log_file=logs/logs/2024-10-30T00-45-54-04-00_hellaswag_BKfQG9yGAr383MGnooMLBH.eval"
|
101 |
-
},
|
102 |
-
"drop": {
|
103 |
-
"mean": 0.8811263765076035,
|
104 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/eval/Meta-Llama-3.1-70B-Instruct/index.html?log_file=logs/logs/2024-10-29T21-01-02-04-00_drop_LzAWvLWkNrNKu5qf56wXRo.eval"
|
105 |
-
},
|
106 |
-
"gpqa_diamond": {
|
107 |
-
"accuracy": 0.4318181818181818,
|
108 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Meta-Llama-3.1-70B-Instruct/index.html?log_file=logs/logs/2024-10-29T23-41-39-04-00_gpqa-diamond_TdLdYmVM6GCVMAECcXkuhj.eval"
|
109 |
-
},
|
110 |
-
"winogrande": {
|
111 |
-
"accuracy": 0.8666140489344909,
|
112 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Meta-Llama-3.1-70B-Instruct/index.html?log_file=logs/logs/2024-10-30T09-20-56-04-00_winogrande_WnUgkSRhSMvh3zUjnuJWQZ.eval"
|
113 |
-
},
|
114 |
-
"gsm8k": {
|
115 |
-
"accuracy": 0.9469294920394238,
|
116 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Meta-Llama-3.1-70B-Instruct/index.html?log_file=logs/logs/2024-10-30T00-03-31-04-00_gsm8k_bKsUfCAfcmBCeryboNaLoX.eval"
|
117 |
-
},
|
118 |
-
"math": {
|
119 |
-
"accuracy": 0.6004,
|
120 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Meta-Llama-3.1-70B-Instruct/index.html?log_file=logs/logs/2024-10-30T02-34-50-04-00_math_2xiNcrGih26uzJdG4q88bM.eval"
|
121 |
-
},
|
122 |
-
"ifeval": {
|
123 |
-
"final_acc": 0.8604907201780166,
|
124 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Meta-Llama-3.1-70B-Instruct/index.html?log_file=logs/logs/2024-10-30T02-29-32-04-00_ifeval_Dwh3CF2ZYFrvw7UcTwrsvK.eval"
|
125 |
-
},
|
126 |
-
"arc_challenge": {
|
127 |
-
"accuracy": 0.9445392491467577,
|
128 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Meta-Llama-3.1-70B-Instruct/index.html?log_file=logs/logs/2024-10-29T20-58-56-04-00_arc-challenge_oFL5wFjT7KwNFhMFfe72JN.eval"
|
129 |
-
},
|
130 |
-
"arc_easy": {
|
131 |
-
"accuracy": 0.9823232323232324,
|
132 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Meta-Llama-3.1-70B-Instruct/index.html?log_file=logs/logs/2024-10-29T20-53-12-04-00_arc-easy_UXzR7cDeNteP39NoXUYnhm.eval"
|
133 |
-
},
|
134 |
-
"mmlu_pro": {
|
135 |
-
"accuracy": 0.6688829787234043,
|
136 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Meta-Llama-3.1-70B-Instruct/index.html?log_file=logs/logs/2024-10-30T06-11-16-04-00_mmlu-pro_oQiEBJdeKtEEt4cm9KL7uy.eval"
|
137 |
-
},
|
138 |
-
"humaneval": {
|
139 |
-
"mean": 0.7865853658536586,
|
140 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Meta-Llama-3.1-70B-Instruct/index.html?log_file=logs/logs/2024-10-30T02-28-25-04-00_humaneval_KcJV2rHuHJ2JLxijihEkcW.eval"
|
141 |
-
},
|
142 |
-
"mmlu": {
|
143 |
-
"accuracy": 0.8033755875231449,
|
144 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Meta-Llama-3.1-70B-Instruct/index.html?log_file=logs/logs/2024-10-30T03-51-50-04-00_mmlu_6SNjs2QmPRvqGnvbnNtaqb.eval"
|
145 |
-
},
|
146 |
-
"mmmu_multiple_choice": {
|
147 |
-
"accuracy": null,
|
148 |
-
"log_url": null
|
149 |
-
},
|
150 |
-
"mmmu_open": {
|
151 |
-
"accuracy": null,
|
152 |
-
"log_url": null
|
153 |
-
},
|
154 |
-
"gaia": {
|
155 |
-
"accuracy": null,
|
156 |
-
"log_url": null
|
157 |
-
},
|
158 |
-
"gdm_intercode_ctf": {
|
159 |
-
"accuracy": null,
|
160 |
-
"log_url": null
|
161 |
-
},
|
162 |
-
"gdm_in_house_ctf": {
|
163 |
-
"accuracy": null,
|
164 |
-
"log_url": null
|
165 |
-
},
|
166 |
-
"agentharm": {
|
167 |
-
"avg_score": null,
|
168 |
-
"log_url": null
|
169 |
-
},
|
170 |
-
"agentharm_benign": {
|
171 |
-
"avg_score": null,
|
172 |
-
"log_url": null
|
173 |
-
},
|
174 |
-
"swe_bench": {
|
175 |
-
"mean": null,
|
176 |
-
"log_url": null
|
177 |
-
}
|
178 |
-
}
|
179 |
-
},
|
180 |
-
"Mistral-Large-Instruct-2407": {
|
181 |
-
"config": {
|
182 |
-
"model_name": "Mistral-Large-Instruct-2407",
|
183 |
-
"model_sha": "https://huggingface.co/mistralai/Mistral-Large-Instruct-2407",
|
184 |
-
"model_dtype": "torch.float16"
|
185 |
-
},
|
186 |
-
"results": {
|
187 |
-
"drop": {
|
188 |
-
"mean": 0.7424257996853698,
|
189 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Mistral-Large-Instruct-2407/index.html?log_file=logs/logs/2024-10-31T01-56-12-04-00_drop_NtvuCoU2LoMbH8DztcCTen.eval"
|
190 |
-
},
|
191 |
-
"ifeval": {
|
192 |
-
"final_acc": 0.8285172231900246,
|
193 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Mistral-Large-Instruct-2407/index.html?log_file=logs/logs/2024-10-31T06-30-16-04-00_ifeval_TLkvCSFEWo4PLv6hAha7YB.eval"
|
194 |
-
},
|
195 |
-
"mmlu": {
|
196 |
-
"accuracy": 0.8035892323030908,
|
197 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Mistral-Large-Instruct-2407/index.html?log_file=logs/logs/2024-10-31T07-21-48-04-00_mmlu_YnUhmHoStr3WuJdchWmNPt.eval"
|
198 |
-
},
|
199 |
-
"gpqa_diamond": {
|
200 |
-
"accuracy": 0.4734848484848485,
|
201 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Mistral-Large-Instruct-2407/index.html?log_file=logs/logs/2024-10-31T04-22-52-04-00_gpqa-diamond_SuZUZxGdqS2ZecbLRNkKd4.eval"
|
202 |
-
},
|
203 |
-
"gsm8k": {
|
204 |
-
"accuracy": 0.9378316906747536,
|
205 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Mistral-Large-Instruct-2407/index.html?log_file=logs/logs/2024-10-31T04-28-49-04-00_gsm8k_5tQp9tbwUMj6NpjNKCAfVm.eval"
|
206 |
-
},
|
207 |
-
"math": {
|
208 |
-
"accuracy": 0.6574,
|
209 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Mistral-Large-Instruct-2407/index.html?log_file=logs/logs/2024-10-31T06-33-09-04-00_math_2CmjBedAfUxqvmcHRdBgyB.eval"
|
210 |
-
},
|
211 |
-
"arc_easy": {
|
212 |
-
"accuracy": 0.9852693602693603,
|
213 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Mistral-Large-Instruct-2407/index.html?log_file=logs/logs/2024-10-31T01-48-39-04-00_arc-easy_YbfuBT3usZXt2xgZkkR5dq.eval"
|
214 |
-
},
|
215 |
-
"mmlu_pro": {
|
216 |
-
"accuracy": 0.6942320478723404,
|
217 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Mistral-Large-Instruct-2407/index.html?log_file=logs/logs/2024-10-31T09-41-25-04-00_mmlu-pro_fyYT4aabPesfY5TpzFMPnd.eval"
|
218 |
-
},
|
219 |
-
"humaneval": {
|
220 |
-
"mean": 0.8658536585365854,
|
221 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Mistral-Large-Instruct-2407/index.html?log_file=logs/logs/2024-10-31T06-29-24-04-00_humaneval_nu8SUSGekKJWB8HLKDigYK.eval"
|
222 |
-
},
|
223 |
-
"hellaswag": {
|
224 |
-
"accuracy": 0.9047998406691894,
|
225 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Mistral-Large-Instruct-2407/index.html?log_file=logs/logs/2024-10-31T04-50-00-04-00_hellaswag_ZzQoZ6gkRQsTzMhQr7GYNn.eval"
|
226 |
-
},
|
227 |
-
"arc_challenge": {
|
228 |
-
"accuracy": 0.9436860068259386,
|
229 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Mistral-Large-Instruct-2407/index.html?log_file=logs/logs/2024-10-31T01-54-13-04-00_arc-challenge_WfQRhMkFcywefpU46isBVP.eval"
|
230 |
-
},
|
231 |
-
"winogrande": {
|
232 |
-
"accuracy": 0.8547750591949487,
|
233 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/Mistral-Large-Instruct-2407/index.html?log_file=logs/logs/2024-10-31T11-57-58-04-00_winogrande_TP3UGwpp37Dyv6ks9Ty5Hk.eval"
|
234 |
-
},
|
235 |
-
"mmmu_multiple_choice": {
|
236 |
-
"accuracy": null,
|
237 |
-
"log_url": null
|
238 |
-
},
|
239 |
-
"mmmu_open": {
|
240 |
-
"accuracy": null,
|
241 |
-
"log_url": null
|
242 |
-
},
|
243 |
-
"gaia": {
|
244 |
-
"accuracy": null,
|
245 |
-
"log_url": null
|
246 |
-
},
|
247 |
-
"gdm_intercode_ctf": {
|
248 |
-
"accuracy": null,
|
249 |
-
"log_url": null
|
250 |
-
},
|
251 |
-
"gdm_in_house_ctf": {
|
252 |
-
"accuracy": null,
|
253 |
-
"log_url": null
|
254 |
-
},
|
255 |
-
"agentharm": {
|
256 |
-
"avg_score": null,
|
257 |
-
"log_url": null
|
258 |
-
},
|
259 |
-
"agentharm_benign": {
|
260 |
-
"avg_score": null,
|
261 |
-
"log_url": null
|
262 |
-
},
|
263 |
-
"swe_bench": {
|
264 |
-
"mean": null,
|
265 |
-
"log_url": null
|
266 |
-
}
|
267 |
-
}
|
268 |
-
},
|
269 |
-
"c4ai-command-r-plus": {
|
270 |
-
"config": {
|
271 |
-
"model_name": "Command R+",
|
272 |
-
"model_sha": "https://huggingface.co/CohereForAI/c4ai-command-r-plus"
|
273 |
-
},
|
274 |
-
"results": {
|
275 |
-
"ifeval": {
|
276 |
-
"final_acc": 0.7779591483929307,
|
277 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/c4ai-command-r-plus/index.html?log_file=logs/logs/2024-10-30T17-23-04-04-00_ifeval_RGucUMwdGmUnRpqyMTZTzW.eval"
|
278 |
-
},
|
279 |
-
"winogrande": {
|
280 |
-
"accuracy": 0.7490134175217048,
|
281 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/c4ai-command-r-plus/index.html?log_file=logs/logs/2024-10-30T14-42-18-04-00_winogrande_bY8yg7aRR5dCCK7NDCZEcc.eval"
|
282 |
-
},
|
283 |
-
"arc_challenge": {
|
284 |
-
"accuracy": 0.8506825938566553,
|
285 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/c4ai-command-r-plus/index.html?log_file=logs/logs/2024-10-29T17-30-03-04-00_arc-challenge_XB7LURXEGaxskWuLtYwdnW.eval"
|
286 |
-
},
|
287 |
-
"drop": {
|
288 |
-
"mean": 0.743557420031463,
|
289 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/c4ai-command-r-plus/index.html?log_file=logs/logs/2024-10-30T12-06-30-04-00_drop_itY9cLiYAW2BF7NTeDceNd.eval"
|
290 |
-
},
|
291 |
-
"math": {
|
292 |
-
"accuracy": 0.2626,
|
293 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/c4ai-command-r-plus/index.html?log_file=logs/logs/2024-10-30T17-26-34-04-00_math_kohBUMpMFuMsR4jz4vUNWM.eval"
|
294 |
-
},
|
295 |
-
"gpqa_diamond": {
|
296 |
-
"accuracy": 0.3194444444444444,
|
297 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/c4ai-command-r-plus/index.html?log_file=logs/logs/2024-10-29T22-47-45-04-00_gpqa-diamond_JKpb6ya4pec9hh7uovPPCZ.eval"
|
298 |
-
},
|
299 |
-
"mmlu_pro": {
|
300 |
-
"accuracy": 0.441156914893617,
|
301 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/c4ai-command-r-plus/index.html?log_file=logs/logs/2024-10-31T01-11-38-04-00_mmlu-pro_gZVAuy3zMKR23BieM5PqAX.eval"
|
302 |
-
},
|
303 |
-
"humaneval": {
|
304 |
-
"mean": 0.6219512195121951,
|
305 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/c4ai-command-r-plus/index.html?log_file=logs/logs/2024-10-30T17-22-23-04-00_humaneval_5ByPqUhoofSbKgvsUQNFCX.eval"
|
306 |
-
},
|
307 |
-
"gsm8k": {
|
308 |
-
"accuracy": 0.7816527672479151,
|
309 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/c4ai-command-r-plus/index.html?log_file=logs/logs/2024-10-30T15-03-35-04-00_gsm8k_QxbfbriJsKGQAg96JyjkoT.eval"
|
310 |
-
},
|
311 |
-
"hellaswag": {
|
312 |
-
"accuracy": 0.7954590718980283,
|
313 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/c4ai-command-r-plus/index.html?log_file=logs/logs/2024-10-30T15-18-17-04-00_hellaswag_UYyBTR6N8VJnKRmnbCrB8N.eval"
|
314 |
-
},
|
315 |
-
"mmlu": {
|
316 |
-
"accuracy": 0.695128899017234,
|
317 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/c4ai-command-r-plus/index.html?log_file=logs/logs/2024-10-30T21-55-26-04-00_mmlu_JUPPLTzfe3Kme6UuorPTqg.eval"
|
318 |
-
},
|
319 |
-
"arc_easy": {
|
320 |
-
"accuracy": 0.9377104377104377,
|
321 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/c4ai-command-r-plus/index.html?log_file=logs/logs/2024-10-29T17-10-40-04-00_arc-easy_UvprihBMLXPF8JENVLRkdx.eval"
|
322 |
-
}
|
323 |
-
}
|
324 |
-
},
|
325 |
-
"claude-3-5-sonnet-20241022": {
|
326 |
-
"config": {
|
327 |
-
"model_name": "Claude-3.5-Sonnet",
|
328 |
-
"model_sha": "https://www.anthropic.com/claude/sonnet",
|
329 |
-
"model_dtype": "torch.float16"
|
330 |
-
},
|
331 |
-
"results": {
|
332 |
-
"mmmu_multiple_choice": {
|
333 |
-
"accuracy": 0.6481700118063755,
|
334 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-21T11-20-03-05-00_mmmu-multiple-choice_CWhKvGdoFo6pdHhDyi9GNm.eval"
|
335 |
-
},
|
336 |
-
"mmlu_pro": {
|
337 |
-
"accuracy": 0.7762632978723404,
|
338 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-16T19-01-05-05-00_mmlu-pro_3vi84or97gQupuj5sT6vgZ.eval"
|
339 |
-
},
|
340 |
-
"hellaswag": {
|
341 |
-
"accuracy": 0.9228241386178052,
|
342 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-15T15-09-33-05-00_hellaswag_QXqFxojvSToMu8ckHEMLkB.eval"
|
343 |
-
},
|
344 |
-
"gpqa_diamond": {
|
345 |
-
"accuracy": 0.6098484848484849,
|
346 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-15T13-56-36-05-00_gpqa-diamond_eg4gFaMRENjnnYvQNtSB59.eval"
|
347 |
-
},
|
348 |
-
"gsm8k": {
|
349 |
-
"accuracy": 0.9620924943138741,
|
350 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-15T14-23-25-05-00_gsm8k_nHB8Z4uZAwRAZFYpKmTptA.eval"
|
351 |
-
},
|
352 |
-
"mmmu_open": {
|
353 |
-
"accuracy": 0.41509433962264153,
|
354 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-21T11-24-21-05-00_mmmu-open_SSjv3Dq9gZkEEUnvJUd5xf.eval"
|
355 |
-
},
|
356 |
-
"arc_easy": {
|
357 |
-
"accuracy": 0.9915824915824916,
|
358 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-15T10-06-24-05-00_arc-easy_oBReQZQM5SAwMMD2jFshPb.eval"
|
359 |
-
},
|
360 |
-
"arc_challenge": {
|
361 |
-
"accuracy": 0.9692832764505119,
|
362 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-15T10-12-11-05-00_arc-challenge_X8i6caCzkcQo5AT5zXkXso.eval"
|
363 |
-
},
|
364 |
-
"mmlu": {
|
365 |
-
"accuracy": 0.8665432274604757,
|
366 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-16T15-16-51-05-00_mmlu_NFDs2kxmh3kQEbpbd8sz3w.eval"
|
367 |
-
},
|
368 |
-
"math": {
|
369 |
-
"accuracy": 0.7942,
|
370 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-16T12-29-54-05-00_math_NvNQU58M8r3fpiwPGnvq8h.eval"
|
371 |
-
},
|
372 |
-
"ifeval": {
|
373 |
-
"final_acc": 0.8958114469607309,
|
374 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-16T11-28-44-05-00_ifeval_fmWxch4ZjbmYCST6yUZsdV.eval"
|
375 |
-
},
|
376 |
-
"humaneval": {
|
377 |
-
"mean": 0.9451219512195121,
|
378 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-16T11-26-12-05-00_humaneval_kUASiaNd9uZfWvCwYHhdF5.eval"
|
379 |
-
},
|
380 |
-
"winogrande": {
|
381 |
-
"accuracy": 0.9021310181531176,
|
382 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-16T22-09-41-05-00_winogrande_mSWGAKg75E5RP79KWizvb9.eval"
|
383 |
-
},
|
384 |
-
"drop": {
|
385 |
-
"mean": 0.8977608809648663,
|
386 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-15T10-15-15-05-00_drop_Z9A2Y84HYponNxnzNT9TNq.eval"
|
387 |
-
},
|
388 |
-
"gaia": {
|
389 |
-
"accuracy": 0.3381818181818182,
|
390 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-12T23-57-37-05-00_claude-3-5-sonnet_gaia_merged.eval"
|
391 |
-
},
|
392 |
-
"gdm_intercode_ctf": {
|
393 |
-
"accuracy": 0.8556962025316455,
|
394 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-11T02-47-45-05-00_claude-3-5-sonnet_gdm-intercode-ctf_merged.eval"
|
395 |
-
},
|
396 |
-
"gdm_in_house_ctf": {
|
397 |
-
"accuracy": 0.6153846153846154,
|
398 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-11T07-41-14+00-00_claude-3-5-sonnet_gdm-in-house-ctf.eval"
|
399 |
-
},
|
400 |
-
"agentharm": {
|
401 |
-
"avg_score": 0.14767992424242424,
|
402 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-15T08-05-14-08-00_agentharm_VJGhWKLrVLdQczBZVgCXHc.eval"
|
403 |
-
},
|
404 |
-
"agentharm_benign": {
|
405 |
-
"avg_score": 0.800704570051161,
|
406 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-21T15-09-48-08-00_agentharm-benign_A3uBBWNvv88P5BsgqwFCfg.eval"
|
407 |
-
},
|
408 |
-
"swe_bench": {
|
409 |
-
"mean": 0.0672,
|
410 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/claude-3-5-sonnet-20241022/index.html?log_file=logs/logs/2025-01-16T18-56-55+00-00_anthropic-claude-3-5-sonnet.eval"
|
411 |
-
}
|
412 |
-
}
|
413 |
-
},
|
414 |
-
"gemini-1.5-flash": {
|
415 |
-
"config": {
|
416 |
-
"model_name": "Gemini-1.5-Flash",
|
417 |
-
"model_sha": "https://deepmind.google/technologies/gemini/flash",
|
418 |
-
"model_dtype": "torch.float16"
|
419 |
-
},
|
420 |
-
"results": {
|
421 |
-
"gpqa_diamond": {
|
422 |
-
"accuracy": 0.40404040404040403,
|
423 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-flash/index.html?log_file=logs/logs/2024-10-30T19-31-26-04-00_gpqa-diamond_7aNe9wQiQKpNN96mfaWBPg.eval"
|
424 |
-
},
|
425 |
-
"arc_challenge": {
|
426 |
-
"accuracy": 0.9308873720136519,
|
427 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-flash/index.html?log_file=logs/logs/2024-10-30T17-34-51-04-00_arc-challenge_FbGgLswBZbRE4EhWiMyRt6.eval"
|
428 |
-
},
|
429 |
-
"math": {
|
430 |
-
"accuracy": 0.452,
|
431 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-flash/index.html?log_file=logs/logs/2024-10-30T21-15-49-04-00_math_YsWdRzpqMq2dqQ9SPKfack.eval"
|
432 |
-
},
|
433 |
-
"mmmu_open": {
|
434 |
-
"accuracy": 0.16981132075471697,
|
435 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-flash/index.html?log_file=logs/logs/2025-01-20T23-13-27-05-00_mmmu-open_GWi6XNYUSLq99BdabtScGm.eval"
|
436 |
-
},
|
437 |
-
"drop": {
|
438 |
-
"mean": 0.751044572627163,
|
439 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-flash/index.html?log_file=logs/logs/2024-10-30T17-36-25-04-00_drop_6TzJGqqEkpFUCxGD4QejV6.eval"
|
440 |
-
},
|
441 |
-
"mmlu_pro": {
|
442 |
-
"accuracy": 0.5993184840425532,
|
443 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-flash/index.html?log_file=logs/logs/2024-10-30T22-43-30-04-00_mmlu-pro_Dc2uu3EV7MJtjg6gg5Y9qH.eval"
|
444 |
-
},
|
445 |
-
"ifeval": {
|
446 |
-
"final_acc": 0.7681296737102001,
|
447 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-flash/index.html?log_file=logs/logs/2024-10-30T21-15-06-04-00_ifeval_nYs9KujQMQjcpbpbLtVx8G.eval"
|
448 |
-
},
|
449 |
-
"hellaswag": {
|
450 |
-
"accuracy": 0.8557060346544513,
|
451 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-flash/index.html?log_file=logs/logs/2024-10-30T19-35-34-04-00_hellaswag_2SAz3cvMpDxFaApdHDR3s4.eval"
|
452 |
-
},
|
453 |
-
"winogrande": {
|
454 |
-
"accuracy": 0.7884767166535123,
|
455 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-flash/index.html?log_file=logs/logs/2024-10-31T00-59-07-04-00_winogrande_Ci55vHvbGGW38zVpMCwtWa.eval"
|
456 |
-
},
|
457 |
-
"humaneval": {
|
458 |
-
"mean": 0.7439024390243902,
|
459 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-flash/index.html?log_file=logs/logs/2024-10-30T21-14-41-04-00_humaneval_Z9aXdUERuwYxoTheZ5GANC.eval"
|
460 |
-
},
|
461 |
-
"arc_easy": {
|
462 |
-
"accuracy": 0.984006734006734,
|
463 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-flash/index.html?log_file=logs/logs/2024-10-30T17-29-56-04-00_arc-easy_XcEzqqPqJsRV29NqYDfnNo.eval"
|
464 |
-
},
|
465 |
-
"gsm8k": {
|
466 |
-
"accuracy": 0.8582259287338894,
|
467 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-flash/index.html?log_file=logs/logs/2024-10-30T19-32-39-04-00_gsm8k_nLSssETKDDWNktAFWnVwfv.eval"
|
468 |
-
},
|
469 |
-
"mmlu": {
|
470 |
-
"accuracy": 0.7714713003845606,
|
471 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-flash/index.html?log_file=logs/logs/2024-10-31T10-49-43-04-00_mmlu_oGb9mspeGbYS2gfbkknskN.eval"
|
472 |
-
},
|
473 |
-
"mmmu_multiple_choice": {
|
474 |
-
"accuracy": 0.5702479338842975,
|
475 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-flash/index.html?log_file=logs/logs/2025-01-20T23-10-01-05-00_mmmu-multiple-choice_c5rLkrXkV83udX6DVJui5F.eval"
|
476 |
-
},
|
477 |
-
"gaia": {
|
478 |
-
"accuracy": null,
|
479 |
-
"log_url": null
|
480 |
-
},
|
481 |
-
"gdm_intercode_ctf": {
|
482 |
-
"accuracy": null,
|
483 |
-
"log_url": null
|
484 |
-
},
|
485 |
-
"gdm_in_house_ctf": {
|
486 |
-
"accuracy": null,
|
487 |
-
"log_url": null
|
488 |
-
},
|
489 |
-
"agentharm": {
|
490 |
-
"avg_score": null,
|
491 |
-
"log_url": null
|
492 |
-
},
|
493 |
-
"agentharm_benign": {
|
494 |
-
"avg_score": null,
|
495 |
-
"log_url": null
|
496 |
-
},
|
497 |
-
"swe_bench": {
|
498 |
-
"mean": null,
|
499 |
-
"log_url": null
|
500 |
-
}
|
501 |
-
}
|
502 |
-
},
|
503 |
-
"gemini-1.5-pro": {
|
504 |
-
"config": {
|
505 |
-
"model_name": "Gemini-1.5-Pro",
|
506 |
-
"model_sha": "https://deepmind.google/technologies/gemini/pro",
|
507 |
-
"model_dtype": "torch.float16"
|
508 |
-
},
|
509 |
-
"results": {
|
510 |
-
"mmlu": {
|
511 |
-
"accuracy": 0.8467454778521578,
|
512 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-pro/index.html?log_file=logs/logs/2024-11-04T16-56-26-05-00_mmlu_Z9KrcK7x4ZLAR5nJ9JaVUe.eval"
|
513 |
-
},
|
514 |
-
"humaneval": {
|
515 |
-
"mean": 0.8719512195121951,
|
516 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-pro/index.html?log_file=logs/logs/2024-11-04T12-43-07-05-00_humaneval_5JBjtymGtK23qwVKxqidhV.eval"
|
517 |
-
},
|
518 |
-
"mmmu_multiple_choice": {
|
519 |
-
"accuracy": 0.6304604486422668,
|
520 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-pro/index.html?log_file=logs/logs/2025-01-20T23-16-04-05-00_mmmu-multiple-choice_NLmxmHYt6CJymRVVa5UsbD.eval"
|
521 |
-
},
|
522 |
-
"mmlu_pro": {
|
523 |
-
"accuracy": 0.7563996010638298,
|
524 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-pro/index.html?log_file=logs/logs/2024-11-04T20-13-09-05-00_mmlu-pro_Hv2ujvKLV6H7ZwQu2q8LNw.eval"
|
525 |
-
},
|
526 |
-
"math": {
|
527 |
-
"accuracy": 0.852,
|
528 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-pro/index.html?log_file=logs/logs/2024-11-04T15-48-46-05-00_math_9DAZmGEfhpa3nUcmMAwqZe.eval"
|
529 |
-
},
|
530 |
-
"arc_easy": {
|
531 |
-
"accuracy": 0.9877946127946128,
|
532 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-pro/index.html?log_file=logs/logs/2024-11-04T12-31-43-05-00_arc-easy_eGxYWywpLuREcaCKvHa8Uk.eval"
|
533 |
-
},
|
534 |
-
"mmmu_open": {
|
535 |
-
"accuracy": 0.3584905660377358,
|
536 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-pro/index.html?log_file=logs/logs/2025-01-20T23-19-25-05-00_mmmu-open_CDbtEQ7tjs5zkj4ScBbzod.eval"
|
537 |
-
},
|
538 |
-
"gsm8k": {
|
539 |
-
"accuracy": 0.9613343442001516,
|
540 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-pro/index.html?log_file=logs/logs/2024-11-04T15-15-26-05-00_gsm8k_cTebw3ugfrVz3dyPwxtdUZ.eval"
|
541 |
-
},
|
542 |
-
"gpqa_diamond": {
|
543 |
-
"accuracy": 0.5782828282828283,
|
544 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-pro/index.html?log_file=logs/logs/2024-11-05T09-56-31-05-00_gpqa-diamond_FBq2bnoyGYQ3NF96xQw8iy.eval"
|
545 |
-
},
|
546 |
-
"ifeval": {
|
547 |
-
"final_acc": 0.8982344623377084,
|
548 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-pro/index.html?log_file=logs/logs/2024-11-04T12-43-32-05-00_ifeval_mSwZ7AwA7akj5PjZbQMjgC.eval"
|
549 |
-
},
|
550 |
-
"winogrande": {
|
551 |
-
"accuracy": 0.8768745067087609,
|
552 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-pro/index.html?log_file=logs/logs/2024-11-04T12-40-46-05-00_winogrande_5SmD6rx47zmZvHHkQSSfHK.eval"
|
553 |
-
},
|
554 |
-
"arc_challenge": {
|
555 |
-
"accuracy": 0.9633105802047781,
|
556 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-pro/index.html?log_file=logs/logs/2024-11-04T12-37-36-05-00_arc-challenge_5VVApyQD22QpJoMm53EMdU.eval"
|
557 |
-
},
|
558 |
-
"drop": {
|
559 |
-
"mean": 0.8800912427897221,
|
560 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-pro/index.html?log_file=logs/logs/2024-11-04T12-44-32-05-00_drop_9dzPKVJojSVsxmiBFnej2m.eval"
|
561 |
-
},
|
562 |
-
"hellaswag": {
|
563 |
-
"accuracy": 0.9123680541724756,
|
564 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gemini-1.5-pro/index.html?log_file=logs/logs/2024-11-05T13-14-31-05-00_hellaswag_N98eeftuY2pucRtgpUYk5m.eval"
|
565 |
-
},
|
566 |
-
"gaia": {
|
567 |
-
"accuracy": 0.13818181818181818,
|
568 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/gemini-1.5-pro-002/index.html?log_file=logs/logs/2025-01-21T15-33-29-05-00_gemini-1.5-pro_gaia_merged.eval"
|
569 |
-
},
|
570 |
-
"gdm_intercode_ctf": {
|
571 |
-
"accuracy": 0.5291139240506328,
|
572 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/gemini-1.5-pro-002/index.html?log_file=logs/logs/2025-01-21T23-59-58+00-00_gemini-1.5-pro_gdm-intercode-ctf_merged.eval"
|
573 |
-
},
|
574 |
-
"gdm_in_house_ctf": {
|
575 |
-
"accuracy": 0.23076923076923078,
|
576 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/gemini-1.5-pro-002/index.html?log_file=logs/logs/2025-01-22T03-42-16+00-00_gemini-1.5-pro_gdm-in-house-ctf.eval"
|
577 |
-
},
|
578 |
-
"agentharm": {
|
579 |
-
"avg_score": 0.2898649645808737,
|
580 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/gemini-1.5-pro-002/index.html?log_file=logs/logs/2025-01-21T12-45-43-08-00_agentharm_VmD26soLwmRgWPo3hpRHBr.eval"
|
581 |
-
},
|
582 |
-
"agentharm_benign": {
|
583 |
-
"avg_score": 0.5961489079102715,
|
584 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/gemini-1.5-pro-002/index.html?log_file=logs/logs/2025-01-21T13-18-51-08-00_agentharm-benign_gP3pQPxAuCtFLiHzt2Egt7.eval"
|
585 |
-
},
|
586 |
-
"swe_bench": {
|
587 |
-
"mean": 0.004,
|
588 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/gemini-1.5-pro-002/index.html?log_file=logs/logs/2025-01-22T03-00-08+00-00_google-gemini-1.5-pro_swe.eval"
|
589 |
-
}
|
590 |
-
}
|
591 |
-
},
|
592 |
-
"gpt-4o": {
|
593 |
-
"config": {
|
594 |
-
"model_name": "GPT-4o",
|
595 |
-
"model_sha": "https://openai.com/index/hello-gpt-4o",
|
596 |
-
"model_dtype": "torch.float16"
|
597 |
-
},
|
598 |
-
"results": {
|
599 |
-
"gpqa_diamond": {
|
600 |
-
"accuracy": 0.51010101010101,
|
601 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o/index.html?log_file=logs/logs/2024-10-31T03-29-33-04-00_gpqa-diamond_nFmRv5MJiYjHjezmq4V6Va.eval"
|
602 |
-
},
|
603 |
-
"arc_challenge": {
|
604 |
-
"accuracy": 0.9633105802047781,
|
605 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o/index.html?log_file=logs/logs/2024-10-31T01-45-55-04-00_arc-challenge_nrsPPxh4DpzgLPQDFdcfVp.eval"
|
606 |
-
},
|
607 |
-
"gsm8k": {
|
608 |
-
"accuracy": 0.9446550416982562,
|
609 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o/index.html?log_file=logs/logs/2024-10-31T03-31-16-04-00_gsm8k_jVXeSvHowbietZCFsFYCwB.eval"
|
610 |
-
},
|
611 |
-
"mmlu": {
|
612 |
-
"accuracy": 0.8435408061529697,
|
613 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o/index.html?log_file=logs/logs/2024-10-31T10-49-43-04-00_mmlu_GarLpfQFSpM3C22nbbGp54.eval"
|
614 |
-
},
|
615 |
-
"ifeval": {
|
616 |
-
"final_acc": 0.8780386042367585,
|
617 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o/index.html?log_file=logs/logs/2024-10-31T05-00-11-04-00_ifeval_jxreUu8JqRdkrcHP4E3hLR.eval"
|
618 |
-
},
|
619 |
-
"mmlu_pro": {
|
620 |
-
"accuracy": 0.7450964095744681,
|
621 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o/index.html?log_file=logs/logs/2024-10-31T06-59-42-04-00_mmlu-pro_EuAKDwAWSfNVpqyyqrf2Ba.eval"
|
622 |
-
},
|
623 |
-
"mmmu_open": {
|
624 |
-
"accuracy": 0.3584905660377358,
|
625 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o/index.html?log_file=logs/logs/2025-01-20T23-07-46-05-00_mmmu-open_d3Q2HvuPZzEX6FAM4NBhnp.eval"
|
626 |
-
},
|
627 |
-
"winogrande": {
|
628 |
-
"accuracy": 0.9013417521704814,
|
629 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o/index.html?log_file=logs/logs/2024-10-31T09-02-03-04-00_winogrande_44kKF7M9mKoqVC7ixZVXuq.eval"
|
630 |
-
},
|
631 |
-
"drop": {
|
632 |
-
"mean": 0.7511693759832198,
|
633 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o/index.html?log_file=logs/logs/2024-10-31T01-47-20-04-00_drop_3gxDcn6vUoR3nvHX9BcSq4.eval"
|
634 |
-
},
|
635 |
-
"arc_easy": {
|
636 |
-
"accuracy": 0.9915824915824916,
|
637 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o/index.html?log_file=logs/logs/2024-10-31T01-41-34-04-00_arc-easy_nUavRHdiRVfrxo6dmCPadh.eval"
|
638 |
-
},
|
639 |
-
"mmmu_multiple_choice": {
|
640 |
-
"accuracy": 0.5903187721369539,
|
641 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o/index.html?log_file=logs/logs/2025-01-20T23-03-21-05-00_mmmu-multiple-choice_eoycAFLMirSqiURdXmBP2e.eval"
|
642 |
-
},
|
643 |
-
"humaneval": {
|
644 |
-
"mean": 0.9085365853658537,
|
645 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o/index.html?log_file=logs/logs/2024-10-31T04-59-42-04-00_humaneval_nmJcd84CcNKjWS8fBfMbZM.eval"
|
646 |
-
},
|
647 |
-
"math": {
|
648 |
-
"accuracy": 0.7054,
|
649 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o/index.html?log_file=logs/logs/2024-10-31T05-01-22-04-00_math_cDSpKPp3nLrFy8uYfYKEbM.eval"
|
650 |
-
},
|
651 |
-
"hellaswag": {
|
652 |
-
"accuracy": 0.924317864967138,
|
653 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o/index.html?log_file=logs/logs/2024-10-31T03-33-47-04-00_hellaswag_JNnnPuz3dhZRpyXzizMUBF.eval"
|
654 |
-
},
|
655 |
-
"gaia": {
|
656 |
-
"accuracy": 0.16606060606060608,
|
657 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/gpt-4o-2024-08-06/index.html?log_file=logs/logs/2025-01-13T15-53-22+00-00_gpt-4o_gaia_merged.eval"
|
658 |
-
},
|
659 |
-
"gdm_intercode_ctf": {
|
660 |
-
"accuracy": 0.6379746835443038,
|
661 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/gpt-4o-2024-08-06/index.html?log_file=logs/logs/2025-01-08T10-06-29-05-00_gpt-4o_gdm-intercode-ctf_merged.eval"
|
662 |
-
},
|
663 |
-
"gdm_in_house_ctf": {
|
664 |
-
"accuracy": 0.23076923076923078,
|
665 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/gpt-4o-2024-08-06/index.html?log_file=logs/logs/2025-01-11T07-02-14+00-00_gpt-4o_gdm-in-house-ctf.eval"
|
666 |
-
},
|
667 |
-
"agentharm": {
|
668 |
-
"avg_score": 0.49953844451003543,
|
669 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/gpt-4o-2024-08-06/index.html?log_file=logs/logs/2025-01-07T16-34-15-08-00_agentharm_UfSoyHEAH2E5RVdrPVUemy.eval"
|
670 |
-
},
|
671 |
-
"agentharm_benign": {
|
672 |
-
"avg_score": 0.8249433048012594,
|
673 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/gpt-4o-2024-08-06/index.html?log_file=logs/logs/2025-01-21T13-45-18-08-00_agentharm-benign_8DhGJqEAvw6o8uCv4a4dVz.eval"
|
674 |
-
},
|
675 |
-
"swe_bench": {
|
676 |
-
"mean": 0.012,
|
677 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/gpt-4o-2024-08-06/index.html?log_file=logs/logs/2025-01-14T23-09-10+00-00_openai-gpt-4o_swe.eval"
|
678 |
-
}
|
679 |
-
}
|
680 |
-
},
|
681 |
-
"gpt-4o-mini": {
|
682 |
-
"config": {
|
683 |
-
"model_name": "GPT-4o-mini",
|
684 |
-
"model_sha": "https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence",
|
685 |
-
"model_dtype": "torch.float16"
|
686 |
-
},
|
687 |
-
"results": {
|
688 |
-
"drop": {
|
689 |
-
"mean": 0.8065915049816466,
|
690 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o-mini/index.html?log_file=logs/logs/2024-10-30T17-36-25-04-00_drop_6TzJGqqEkpFUCxGD4QejV6.eval"
|
691 |
-
},
|
692 |
-
"humaneval": {
|
693 |
-
"mean": 0.8597560975609756,
|
694 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o-mini/index.html?log_file=logs/logs/2024-10-30T21-14-41-04-00_humaneval_Z9aXdUERuwYxoTheZ5GANC.eval"
|
695 |
-
},
|
696 |
-
"gpqa_diamond": {
|
697 |
-
"accuracy": 0.3838383838383838,
|
698 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o-mini/index.html?log_file=logs/logs/2024-10-30T19-31-26-04-00_gpqa-diamond_7aNe9wQiQKpNN96mfaWBPg.eval"
|
699 |
-
},
|
700 |
-
"mmmu_open": {
|
701 |
-
"accuracy": 0.18867924528301888,
|
702 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o-mini/index.html?log_file=logs/logs/2025-01-20T23-13-27-05-00_mmmu-open_GWi6XNYUSLq99BdabtScGm.eval"
|
703 |
-
},
|
704 |
-
"arc_challenge": {
|
705 |
-
"accuracy": 0.9249146757679181,
|
706 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o-mini/index.html?log_file=logs/logs/2024-10-30T17-34-51-04-00_arc-challenge_FbGgLswBZbRE4EhWiMyRt6.eval"
|
707 |
-
},
|
708 |
-
"mmlu": {
|
709 |
-
"accuracy": 0.7698333570716422,
|
710 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o-mini/index.html?log_file=logs/logs/2024-10-31T10-49-43-04-00_mmlu_oGb9mspeGbYS2gfbkknskN.eval"
|
711 |
-
},
|
712 |
-
"hellaswag": {
|
713 |
-
"accuracy": 0.8750248954391555,
|
714 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o-mini/index.html?log_file=logs/logs/2024-10-30T19-35-34-04-00_hellaswag_2SAz3cvMpDxFaApdHDR3s4.eval"
|
715 |
-
},
|
716 |
-
"ifeval": {
|
717 |
-
"final_acc": 0.8419061423689144,
|
718 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o-mini/index.html?log_file=logs/logs/2024-10-30T21-15-06-04-00_ifeval_nYs9KujQMQjcpbpbLtVx8G.eval"
|
719 |
-
},
|
720 |
-
"mmmu_multiple_choice": {
|
721 |
-
"accuracy": 0.5395513577331759,
|
722 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o-mini/index.html?log_file=logs/logs/2025-01-20T23-10-01-05-00_mmmu-multiple-choice_c5rLkrXkV83udX6DVJui5F.eval"
|
723 |
-
},
|
724 |
-
"arc_easy": {
|
725 |
-
"accuracy": 0.9793771043771043,
|
726 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o-mini/index.html?log_file=logs/logs/2024-10-30T17-29-56-04-00_arc-easy_XcEzqqPqJsRV29NqYDfnNo.eval"
|
727 |
-
},
|
728 |
-
"winogrande": {
|
729 |
-
"accuracy": 0.7529597474348856,
|
730 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o-mini/index.html?log_file=logs/logs/2024-10-31T00-59-07-04-00_winogrande_Ci55vHvbGGW38zVpMCwtWa.eval"
|
731 |
-
},
|
732 |
-
"mmlu_pro": {
|
733 |
-
"accuracy": 0.6396276595744681,
|
734 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o-mini/index.html?log_file=logs/logs/2024-10-30T22-43-30-04-00_mmlu-pro_Dc2uu3EV7MJtjg6gg5Y9qH.eval"
|
735 |
-
},
|
736 |
-
"math": {
|
737 |
-
"accuracy": 0.633,
|
738 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o-mini/index.html?log_file=logs/logs/2024-10-30T21-15-49-04-00_math_YsWdRzpqMq2dqQ9SPKfack.eval"
|
739 |
-
},
|
740 |
-
"gsm8k": {
|
741 |
-
"accuracy": 0.9181197877179682,
|
742 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/gpt-4o-mini/index.html?log_file=logs/logs/2024-10-30T19-32-39-04-00_gsm8k_nLSssETKDDWNktAFWnVwfv.eval"
|
743 |
-
},
|
744 |
-
"gaia": {
|
745 |
-
"accuracy": null,
|
746 |
-
"log_url": null
|
747 |
-
},
|
748 |
-
"gdm_intercode_ctf": {
|
749 |
-
"accuracy": null,
|
750 |
-
"log_url": null
|
751 |
-
},
|
752 |
-
"gdm_in_house_ctf": {
|
753 |
-
"accuracy": null,
|
754 |
-
"log_url": null
|
755 |
-
},
|
756 |
-
"agentharm": {
|
757 |
-
"avg_score": null,
|
758 |
-
"log_url": null
|
759 |
-
},
|
760 |
-
"agentharm_benign": {
|
761 |
-
"avg_score": null,
|
762 |
-
"log_url": null
|
763 |
-
},
|
764 |
-
"swe_bench": {
|
765 |
-
"mean": null,
|
766 |
-
"log_url": null
|
767 |
-
}
|
768 |
-
}
|
769 |
-
},
|
770 |
-
"o1": {
|
771 |
-
"config": {
|
772 |
-
"model_name": "o1",
|
773 |
-
"model_sha": "https://openai.com/o1",
|
774 |
-
"model_dtype": "torch.float16"
|
775 |
-
},
|
776 |
-
"results": {
|
777 |
-
"winogrande": {
|
778 |
-
"accuracy": 0.9392265193370166,
|
779 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o1/index.html?log_file=logs/logs/2025-01-20T16-46-06-05-00_winogrande_YUtAdEsForRffqe4Sm3wtR.eval"
|
780 |
-
},
|
781 |
-
"humaneval": {
|
782 |
-
"mean": 0.9695121951219512,
|
783 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o1/index.html?log_file=logs/logs/2025-01-17T14-59-12-05-00_humaneval_RRL8GMy9NakTxUHsDVWNng.eval"
|
784 |
-
},
|
785 |
-
"mmmu_open": {
|
786 |
-
"accuracy": 0.6981132075471698,
|
787 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o1/index.html?log_file=logs/logs/2025-01-20T22-48-09-05-00_mmmu-open_oBzxJBYbvnktbbAwhoCrYK.eval"
|
788 |
-
},
|
789 |
-
"math": {
|
790 |
-
"accuracy": 0.959,
|
791 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o1/index.html?log_file=logs/logs/2025-01-17T15-03-22-05-00_math_6BbvHFF8hLMsVYozyNLbyQ.eval"
|
792 |
-
},
|
793 |
-
"arc_easy": {
|
794 |
-
"accuracy": 0.9911616161616161,
|
795 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o1/index.html?log_file=logs/logs/2025-01-17T11-29-26-05-00_arc-easy_DFbir4BdgQDbKd52r7tRKR.eval"
|
796 |
-
},
|
797 |
-
"arc_challenge": {
|
798 |
-
"accuracy": 0.9786689419795221,
|
799 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o1/index.html?log_file=logs/logs/2025-01-17T11-44-42-05-00_arc-challenge_PsWXaBqrgv3EcTZC55gRzJ.eval"
|
800 |
-
},
|
801 |
-
"gsm8k": {
|
802 |
-
"accuracy": 0.9416224412433661,
|
803 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o1/index.html?log_file=logs/logs/2025-01-17T12-56-38-05-00_gsm8k_iD8275qeyNTgX523pn45bF.eval"
|
804 |
-
},
|
805 |
-
"gpqa_diamond": {
|
806 |
-
"accuracy": 0.7550505050505051,
|
807 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o1/index.html?log_file=logs/logs/2025-01-17T11-53-53-05-00_gpqa-diamond_EJV7ULFSQLRoFTEqsv3t6q.eval"
|
808 |
-
},
|
809 |
-
"mmlu_pro": {
|
810 |
-
"accuracy": 0.8447473404255319,
|
811 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o1/index.html?log_file=logs/logs/2025-01-20T14-02-37-05-00_mmlu-pro_EvDzvqaahQwhv6fJovN4BT.eval"
|
812 |
-
},
|
813 |
-
"mmmu_multiple_choice": {
|
814 |
-
"accuracy": 0.8063754427390791,
|
815 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o1/index.html?log_file=logs/logs/2025-01-20T21-04-57-05-00_mmmu-multiple-choice_MctxjookaeTLCL8KpUeazT.eval"
|
816 |
-
},
|
817 |
-
"drop": {
|
818 |
-
"mean": null,
|
819 |
-
"log_url": null
|
820 |
-
},
|
821 |
-
"hellaswag": {
|
822 |
-
"accuracy": null,
|
823 |
-
"log_url": null
|
824 |
-
},
|
825 |
-
"ifeval": {
|
826 |
-
"final_acc": null,
|
827 |
-
"log_url": null
|
828 |
-
},
|
829 |
-
"mmlu": {
|
830 |
-
"accuracy": null,
|
831 |
-
"log_url": null
|
832 |
-
},
|
833 |
-
"gaia": {
|
834 |
-
"accuracy": 0.41090909090909084,
|
835 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/o1-2024-12-17/index.html?log_file=logs/logs/2025-01-22T13-42-00-05-00_o1_gaia_merged.eval"
|
836 |
-
},
|
837 |
-
"gdm_intercode_ctf": {
|
838 |
-
"accuracy": 0.8481012658227849,
|
839 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/o1-2024-12-17/index.html?log_file=logs/logs/2025-01-22T20-46-35+00-00_o1_gdm-intercode-ctf_merged.eval"
|
840 |
-
},
|
841 |
-
"gdm_in_house_ctf": {
|
842 |
-
"accuracy": 0.46153846153846156,
|
843 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/o1-2024-12-17/index.html?log_file=logs/logs/2025-01-22T05-52-25+00-00_o1_gdm-in-house-ctf.eval"
|
844 |
-
},
|
845 |
-
"agentharm": {
|
846 |
-
"avg_score": 0.08782061688311688,
|
847 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/o1-2024-12-17/index.html?log_file=logs/logs/2025-01-21T09-05-42-08-00_agentharm_UGDq2yJeLAnPH6p7FgDgD8.eval"
|
848 |
-
},
|
849 |
-
"agentharm_benign": {
|
850 |
-
"avg_score": 0.7235176849665487,
|
851 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/o1-2024-12-17/index.html?log_file=logs/logs/2025-01-21T18-20-15-08-00_agentharm-benign_bkW2Bf5xLyDQdNtfLdjCpJ.eval"
|
852 |
-
},
|
853 |
-
"swe_bench": {
|
854 |
-
"mean": 0.0036,
|
855 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/o1-2024-12-17/index.html?log_file=logs/logs/2025-01-21T17-42-11+00-00_openai-o1_swe.eval "
|
856 |
-
}
|
857 |
-
}
|
858 |
-
},
|
859 |
-
"o3-mini": {
|
860 |
-
"config": {
|
861 |
-
"model_name": "o3-mini",
|
862 |
-
"model_sha": "https://openai.com/index/openai-o3-mini",
|
863 |
-
"model_dtype": "torch.float16"
|
864 |
-
},
|
865 |
-
"results": {
|
866 |
-
"math": {
|
867 |
-
"accuracy": 0.9691320905993185,
|
868 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o3-mini-2025-01-31/index.html?log_file=logs/logs/2025-02-06T18-33-30-05-00_math_86Gx8n4BxhpyfaSHmRcCUm.eval"
|
869 |
-
},
|
870 |
-
"humaneval": {
|
871 |
-
"mean": 0.9817073170731707,
|
872 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o3-mini-2025-01-31/index.html?log_file=logs/logs/2025-02-06T20-58-48-05-00_humaneval_Dkod7CS9RmbbogYx9aEXtx.eval"
|
873 |
-
},
|
874 |
-
"mmlu_pro": {
|
875 |
-
"accuracy": 0.7924606807023383,
|
876 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o3-mini-2025-01-31/index.html?log_file=logs/logs/2025-02-06T19-49-27-05-00_mmlu-pro_jz9woKfdKt8VMzqNFsy7kY.eval"
|
877 |
-
},
|
878 |
-
"gpqa_diamond": {
|
879 |
-
"accuracy": 0.7365319865319865,
|
880 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o3-mini-2025-01-31/index.html?log_file=logs/logs/2025-02-06T17-57-54-05-00_gpqa-diamond_2znyMtdc7X4LJufxXeXA8Z.eval"
|
881 |
-
},
|
882 |
-
"winogrande": {
|
883 |
-
"accuracy": 0.8492501973164956,
|
884 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o3-mini-2025-01-31/index.html?log_file=logs/logs/2025-02-06T22-50-40-05-00_winogrande_VsTW2uU2Kj66YoNoFfRfUj.eval"
|
885 |
-
},
|
886 |
-
"gsm8k": {
|
887 |
-
"accuracy": 0.9454131918119788,
|
888 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o3-mini-2025-01-31/index.html?log_file=logs/logs/2025-02-06T18-23-05-05-00_gsm8k_d523pJzkcvobxamhhobCRb.eval"
|
889 |
-
},
|
890 |
-
"arc_challenge": {
|
891 |
-
"accuracy": 0.9641638225255973,
|
892 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o3-mini-2025-01-31/index.html?log_file=logs/logs/2025-02-06T17-53-30-05-00_arc-challenge_AYFHec7wmd4jELF2Rgzfya.eval"
|
893 |
-
},
|
894 |
-
"arc_easy": {
|
895 |
-
"accuracy": 0.9755892255892256,
|
896 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/base/eval/o3-mini-2025-01-31/index.html?log_file=logs/logs/2025-02-06T17-45-57-05-00_arc-easy_Nd8NP3K48tvwLVZb8kXDwg.eval"
|
897 |
-
},
|
898 |
-
"drop": {
|
899 |
-
"mean": null,
|
900 |
-
"log_url": null
|
901 |
-
},
|
902 |
-
"hellaswag": {
|
903 |
-
"accuracy": null,
|
904 |
-
"log_url": null
|
905 |
-
},
|
906 |
-
"ifeval": {
|
907 |
-
"final_acc": null,
|
908 |
-
"log_url": null
|
909 |
-
},
|
910 |
-
"mmlu": {
|
911 |
-
"accuracy": null,
|
912 |
-
"log_url": null
|
913 |
-
},
|
914 |
-
"mmmu_multiple_choice": {
|
915 |
-
"accuracy": null,
|
916 |
-
"log_url": null
|
917 |
-
},
|
918 |
-
"mmmu_open": {
|
919 |
-
"accuracy": null,
|
920 |
-
"log_url": null
|
921 |
-
},
|
922 |
-
"gaia": {
|
923 |
-
"accuracy": 0.27030303030303043,
|
924 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/o1-2024-12-17/index.html?log_file=logs/logs/2025-02-05T23-21-20+00-00_gaia_hyMq8MzMm6NgAeq3dNqZSU.eval"
|
925 |
-
},
|
926 |
-
"gdm_intercode_ctf": {
|
927 |
-
"accuracy": 0.8278481012658225,
|
928 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/o3-mini-2025-01-31/index.html?log_file=logs/logs/2025-02-05T21-43-18+00-00_gdm-intercode-ctf_gdm29C6DuTEsX9qm9ymmrC.eval"
|
929 |
-
},
|
930 |
-
"gdm_in_house_ctf": {
|
931 |
-
"accuracy": 0.38461538461538464,
|
932 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/o3-mini-2025-01-31/index.html?log_file=logs/logs/2025-02-05T23-59-08+00-00_gdm-in-house-ctf_2zkAX5nkJoxDnVKpJL9VgW.eval"
|
933 |
-
},
|
934 |
-
"agentharm": {
|
935 |
-
"avg_score": 0.1241931080283353,
|
936 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/o3-mini-2025-01-31/index.html?log_file=logs/logs/2025-02-03T18-17-03-08-00_agentharm_DmN6i5HrgXHNARjsuSewjg.eval"
|
937 |
-
},
|
938 |
-
"agentharm_benign": {
|
939 |
-
"avg_score": 0.5429306867375049,
|
940 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/o3-mini-2025-01-31/index.html?log_file=logs/logs/2025-02-03T18-49-08-08-00_agentharm-benign_Gv94YFpAXaaCJqe3Fc6yr3.eval"
|
941 |
-
},
|
942 |
-
"swe_bench": {
|
943 |
-
"mean": 0.0024,
|
944 |
-
"log_url": "https://storage.googleapis.com/inspect-evals/agentic/eval/o3-mini-2025-01-31/index.html?log_file=logs/logs/2025-02-03T06-49-09+00-00_openai-o3-mini_swe.eval"
|
945 |
-
}
|
946 |
-
}
|
947 |
-
}
|
948 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/tasks.json
DELETED
@@ -1,142 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"arc_easy": {
|
3 |
-
"benchmark": "arc_easy",
|
4 |
-
"metric": "accuracy",
|
5 |
-
"display_name": "ARC-E",
|
6 |
-
"type": "base",
|
7 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/arc"
|
8 |
-
},
|
9 |
-
"arc_challenge": {
|
10 |
-
"benchmark": "arc_challenge",
|
11 |
-
"metric": "accuracy",
|
12 |
-
"display_name": "ARC-C",
|
13 |
-
"type": "base",
|
14 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/arc"
|
15 |
-
},
|
16 |
-
"drop": {
|
17 |
-
"benchmark": "drop",
|
18 |
-
"metric": "mean",
|
19 |
-
"display_name": "DROP",
|
20 |
-
"type": "base",
|
21 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/drop"
|
22 |
-
},
|
23 |
-
"winogrande": {
|
24 |
-
"benchmark": "winogrande",
|
25 |
-
"metric": "accuracy",
|
26 |
-
"display_name": "WinoGrande",
|
27 |
-
"type": "base",
|
28 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/winogrande"
|
29 |
-
},
|
30 |
-
"gsm8k": {
|
31 |
-
"benchmark": "gsm8k",
|
32 |
-
"metric": "accuracy",
|
33 |
-
"display_name": "GSM8K",
|
34 |
-
"type": "base",
|
35 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gsm8k"
|
36 |
-
},
|
37 |
-
"hellaswag": {
|
38 |
-
"benchmark": "hellaswag",
|
39 |
-
"metric": "accuracy",
|
40 |
-
"display_name": "HellaSwag",
|
41 |
-
"type": "base",
|
42 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/hellaswag"
|
43 |
-
},
|
44 |
-
"humaneval": {
|
45 |
-
"benchmark": "humaneval",
|
46 |
-
"metric": "mean",
|
47 |
-
"display_name": "HumanEval",
|
48 |
-
"type": "base",
|
49 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/humaneval"
|
50 |
-
},
|
51 |
-
"ifeval": {
|
52 |
-
"benchmark": "ifeval",
|
53 |
-
"metric": "final_acc",
|
54 |
-
"display_name": "IFEval",
|
55 |
-
"type": "base",
|
56 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/ifeval"
|
57 |
-
},
|
58 |
-
"math": {
|
59 |
-
"benchmark": "math",
|
60 |
-
"metric": "accuracy",
|
61 |
-
"display_name": "MATH",
|
62 |
-
"type": "base",
|
63 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/mathematics"
|
64 |
-
},
|
65 |
-
"mmlu": {
|
66 |
-
"benchmark": "mmlu",
|
67 |
-
"metric": "accuracy",
|
68 |
-
"display_name": "MMLU",
|
69 |
-
"type": "base",
|
70 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/mmlu"
|
71 |
-
},
|
72 |
-
"mmlu_pro": {
|
73 |
-
"benchmark": "mmlu_pro",
|
74 |
-
"metric": "accuracy",
|
75 |
-
"display_name": "MMLU-Pro",
|
76 |
-
"type": "base",
|
77 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/mmlu_pro"
|
78 |
-
},
|
79 |
-
"gpqa_diamond": {
|
80 |
-
"benchmark": "gpqa_diamond",
|
81 |
-
"metric": "accuracy",
|
82 |
-
"display_name": "GPQA-D",
|
83 |
-
"type": "base",
|
84 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gpqa"
|
85 |
-
},
|
86 |
-
"mmmu_multiple_choice": {
|
87 |
-
"benchmark": "mmmu_multiple_choice",
|
88 |
-
"metric": "accuracy",
|
89 |
-
"display_name": "MMMU-MC",
|
90 |
-
"type": "base",
|
91 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/mmmu"
|
92 |
-
},
|
93 |
-
"mmmu_open": {
|
94 |
-
"benchmark": "mmmu_open",
|
95 |
-
"metric": "accuracy",
|
96 |
-
"display_name": "MMMU-OE",
|
97 |
-
"type": "base",
|
98 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/mmmu"
|
99 |
-
},
|
100 |
-
"gaia": {
|
101 |
-
"benchmark": "gaia",
|
102 |
-
"metric": "accuracy",
|
103 |
-
"display_name": "GAIA",
|
104 |
-
"type": "agentic",
|
105 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gaia"
|
106 |
-
},
|
107 |
-
"gdm_intercode_ctf": {
|
108 |
-
"benchmark": "gdm_intercode_ctf",
|
109 |
-
"metric": "accuracy",
|
110 |
-
"display_name": "InterCode-CTF",
|
111 |
-
"type": "agentic",
|
112 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gdm_capabilities/intercode_ctf"
|
113 |
-
},
|
114 |
-
"gdm_in_house_ctf": {
|
115 |
-
"benchmark": "gdm_in_house_ctf",
|
116 |
-
"metric": "accuracy",
|
117 |
-
"display_name": "In-House-CTF",
|
118 |
-
"type": "agentic",
|
119 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gdm_capabilities/in_house_ctf"
|
120 |
-
},
|
121 |
-
"agentharm": {
|
122 |
-
"benchmark": "agentharm",
|
123 |
-
"metric": "avg_score",
|
124 |
-
"display_name": "AgentHarm",
|
125 |
-
"type": "agentic",
|
126 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/agentharm"
|
127 |
-
},
|
128 |
-
"agentharm_benign": {
|
129 |
-
"benchmark": "agentharm_benign",
|
130 |
-
"metric": "avg_score",
|
131 |
-
"display_name": "AgentHarm-Benign",
|
132 |
-
"type": "agentic",
|
133 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/agentharm"
|
134 |
-
},
|
135 |
-
"swe_bench": {
|
136 |
-
"benchmark": "swe_bench",
|
137 |
-
"metric": "mean",
|
138 |
-
"display_name": "SWE-Bench",
|
139 |
-
"type": "agentic",
|
140 |
-
"source": "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/swe_bench"
|
141 |
-
}
|
142 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inspect_log_file_names.json
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"gemini-1.5-pro": {
|
3 |
+
"mmlu": "2024-11-04T16-56-26-05-00_mmlu_Z9KrcK7x4ZLAR5nJ9JaVUe.json",
|
4 |
+
"humaneval": "2024-11-04T12-43-07-05-00_humaneval_5JBjtymGtK23qwVKxqidhV.json",
|
5 |
+
"mmlu_pro": "2024-11-04T20-13-09-05-00_mmlu-pro_Hv2ujvKLV6H7ZwQu2q8LNw.json",
|
6 |
+
"math": "2024-11-04T15-48-46-05-00_math_9DAZmGEfhpa3nUcmMAwqZe.json",
|
7 |
+
"arc_easy": "2024-11-04T12-31-43-05-00_arc-easy_eGxYWywpLuREcaCKvHa8Uk.json",
|
8 |
+
"gsm8k": "2024-11-04T15-15-26-05-00_gsm8k_cTebw3ugfrVz3dyPwxtdUZ.json",
|
9 |
+
"gpqa_diamond": "2024-11-05T09-56-31-05-00_gpqa-diamond_FBq2bnoyGYQ3NF96xQw8iy.json",
|
10 |
+
"ifeval": "2024-11-04T12-43-32-05-00_ifeval_mSwZ7AwA7akj5PjZbQMjgC.json",
|
11 |
+
"winogrande": "2024-11-04T12-40-46-05-00_winogrande_5SmD6rx47zmZvHHkQSSfHK.json",
|
12 |
+
"arc_challenge": "2024-11-04T12-37-36-05-00_arc-challenge_5VVApyQD22QpJoMm53EMdU.json",
|
13 |
+
"drop": "2024-11-04T12-44-32-05-00_drop_9dzPKVJojSVsxmiBFnej2m.json",
|
14 |
+
"hellaswag": "2024-11-05T13-14-31-05-00_hellaswag_N98eeftuY2pucRtgpUYk5m.json",
|
15 |
+
"gaia": "2024-11-15T12-53-32-05-00_gaia_NvyGRTXFrFskJfUvuLwvVr.json",
|
16 |
+
"gdm_intercode_ctf": "2024-11-15T16-23-23-05-00_gdm-intercode-ctf_3JrgtTMcijTUxHVaagPRYh.json"
|
17 |
+
},
|
18 |
+
"gemini-1.5-flash": {
|
19 |
+
"gpqa_diamond": "2024-11-04T12-47-34-05-00_gpqa-diamond_cL5kQj8DWbRfxz79piTSdy.json",
|
20 |
+
"arc_challenge": "2024-11-04T12-45-59-05-00_arc-challenge_YQLMHfEXqeYgGJY86EB9bp.json",
|
21 |
+
"math": "2024-11-04T15-25-38-05-00_math_eaYBRMFgo8p6VUUCYxnCWj.json",
|
22 |
+
"drop": "2024-11-04T12-52-08-05-00_drop_5i253AQzbENgHTYN4ATemV.json",
|
23 |
+
"mmlu_pro": "2024-11-04T19-44-13-05-00_mmlu-pro_8GrR6wUsYNkthiZNMmLa8y.json",
|
24 |
+
"ifeval": "2024-11-04T12-51-30-05-00_ifeval_ZATErMbLHoyxh4kDaSqy8j.json",
|
25 |
+
"hellaswag": "2024-11-05T23-19-25-05-00_hellaswag_MRffohuzgVjighGb8FoqSJ.json",
|
26 |
+
"winogrande": "2024-11-04T12-48-29-05-00_winogrande_Hmqo6Ydz3nfCnQAdUwgrbD.json",
|
27 |
+
"humaneval": "2024-11-04T12-50-47-05-00_humaneval_9j4rYguKeKmxEoD9VuddwX.json",
|
28 |
+
"arc_easy": "2024-11-04T12-39-50-05-00_arc-easy_NwmTEw6C8VSCXzzwZCFy48.json",
|
29 |
+
"gsm8k": "2024-11-04T15-22-21-05-00_gsm8k_hdJs3Z6XzpR5netTcWLXJT.json",
|
30 |
+
"mmlu": "2024-11-04T16-26-13-05-00_mmlu_QvfQ46qJen2bvxiktHu86H.json",
|
31 |
+
"gdm_intercode_ctf": "2024-11-15T20-52-53-05-00_gdm-intercode-ctf_oLYr3H6bFtrcmgM6EABmNt.json"
|
32 |
+
},
|
33 |
+
"o1": {
|
34 |
+
"winogrande": "2025-01-20T16-46-06-05-00_winogrande_YUtAdEsForRffqe4Sm3wtR.json",
|
35 |
+
"humaneval": "2025-01-17T14-59-12-05-00_humaneval_RRL8GMy9NakTxUHsDVWNng.json",
|
36 |
+
"mmmu_open": "2025-01-20T22-48-09-05-00_mmmu-open_oBzxJBYbvnktbbAwhoCrYK.json",
|
37 |
+
"mmlu_pro": "2025-01-20T14-02-37-05-00_mmlu-pro_EvDzvqaahQwhv6fJovN4BT.json",
|
38 |
+
"math": "2025-01-17T15-03-22-05-00_math_6BbvHFF8hLMsVYozyNLbyQ.json",
|
39 |
+
"arc_easy": "2025-01-17T11-29-26-05-00_arc-easy_DFbir4BdgQDbKd52r7tRKR.json",
|
40 |
+
"arc_challenge": "2025-01-17T11-44-42-05-00_arc-challenge_PsWXaBqrgv3EcTZC55gRzJ.json",
|
41 |
+
"gsm8k": "2025-01-17T12-56-38-05-00_gsm8k_iD8275qeyNTgX523pn45bF.json",
|
42 |
+
"gpqa_diamond": "2025-01-17T11-53-53-05-00_gpqa-diamond_EJV7ULFSQLRoFTEqsv3t6q.json",
|
43 |
+
"hellaswag": "2025-01-17T13-14-39-05-00_hellaswag_73sQJFnwpzWjTvEqKjUk4M.json",
|
44 |
+
"mmmu_multiple_choice": "2025-01-20T21-04-57-05-00_mmmu-multiple-choice_MctxjookaeTLCL8KpUeazT.json"
|
45 |
+
},
|
46 |
+
"claude-3-5-sonnet-20241022": {
|
47 |
+
"mmmu_multiple_choice": "2025-01-21T11-20-03-05-00_mmmu-multiple-choice_CWhKvGdoFo6pdHhDyi9GNm.json",
|
48 |
+
"mmlu_pro": "2025-01-16T19-01-05-05-00_mmlu-pro_3vi84or97gQupuj5sT6vgZ.json",
|
49 |
+
"hellaswag": "2025-01-15T15-09-33-05-00_hellaswag_QXqFxojvSToMu8ckHEMLkB.json",
|
50 |
+
"gpqa_diamond": "2025-01-15T13-56-36-05-00_gpqa-diamond_eg4gFaMRENjnnYvQNtSB59.json",
|
51 |
+
"gsm8k": "2025-01-15T14-23-25-05-00_gsm8k_nHB8Z4uZAwRAZFYpKmTptA.json",
|
52 |
+
"mmmu_open": "2025-01-21T11-24-21-05-00_mmmu-open_SSjv3Dq9gZkEEUnvJUd5xf.json",
|
53 |
+
"arc_easy": "2025-01-15T10-06-24-05-00_arc-easy_oBReQZQM5SAwMMD2jFshPb.json",
|
54 |
+
"arc_challenge": "2025-01-15T10-12-11-05-00_arc-challenge_X8i6caCzkcQo5AT5zXkXso.json",
|
55 |
+
"mmlu": "2025-01-16T15-16-51-05-00_mmlu_NFDs2kxmh3kQEbpbd8sz3w.json",
|
56 |
+
"math": "2025-01-16T12-29-54-05-00_math_NvNQU58M8r3fpiwPGnvq8h.json",
|
57 |
+
"ifeval": "2025-01-16T11-28-44-05-00_ifeval_fmWxch4ZjbmYCST6yUZsdV.json",
|
58 |
+
"humaneval": "2025-01-16T11-26-12-05-00_humaneval_kUASiaNd9uZfWvCwYHhdF5.json",
|
59 |
+
"winogrande": "2025-01-16T22-09-41-05-00_winogrande_mSWGAKg75E5RP79KWizvb9.json",
|
60 |
+
"drop": "2025-01-15T10-15-15-05-00_drop_Z9A2Y84HYponNxnzNT9TNq.json"
|
61 |
+
},
|
62 |
+
"c4ai-command-r-plus": {
|
63 |
+
"ifeval": "2024-10-30T17-23-04-04-00_ifeval_RGucUMwdGmUnRpqyMTZTzW.json",
|
64 |
+
"winogrande": "2024-10-30T14-42-18-04-00_winogrande_bY8yg7aRR5dCCK7NDCZEcc.json",
|
65 |
+
"arc_challenge": "2024-10-29T17-30-03-04-00_arc-challenge_XB7LURXEGaxskWuLtYwdnW.json",
|
66 |
+
"drop": "2024-10-30T12-06-30-04-00_drop_itY9cLiYAW2BF7NTeDceNd.json",
|
67 |
+
"math": "2024-10-30T17-26-34-04-00_math_kohBUMpMFuMsR4jz4vUNWM.json",
|
68 |
+
"gpqa_diamond": "2024-10-29T22-47-45-04-00_gpqa-diamond_JKpb6ya4pec9hh7uovPPCZ.json",
|
69 |
+
"mmlu_pro": "2024-10-31T01-11-38-04-00_mmlu-pro_gZVAuy3zMKR23BieM5PqAX.json",
|
70 |
+
"humaneval": "2024-10-30T17-22-23-04-00_humaneval_5ByPqUhoofSbKgvsUQNFCX.json",
|
71 |
+
"gsm8k": "2024-10-30T15-03-35-04-00_gsm8k_QxbfbriJsKGQAg96JyjkoT.json",
|
72 |
+
"hellaswag": "2024-10-30T15-18-17-04-00_hellaswag_UYyBTR6N8VJnKRmnbCrB8N.json",
|
73 |
+
"mmlu": "2024-10-30T21-55-26-04-00_mmlu_JUPPLTzfe3Kme6UuorPTqg.json",
|
74 |
+
"arc_easy": "2024-10-29T17-10-40-04-00_arc-easy_UvprihBMLXPF8JENVLRkdx.json"
|
75 |
+
},
|
76 |
+
"gpt-4o-mini": {
|
77 |
+
"drop": "2024-10-30T17-36-25-04-00_drop_6TzJGqqEkpFUCxGD4QejV6.json",
|
78 |
+
"humaneval": "2024-10-30T21-14-41-04-00_humaneval_Z9aXdUERuwYxoTheZ5GANC.json",
|
79 |
+
"gpqa_diamond": "2024-10-30T19-31-26-04-00_gpqa-diamond_7aNe9wQiQKpNN96mfaWBPg.json",
|
80 |
+
"mmmu_open": "2025-01-20T23-13-27-05-00_mmmu-open_GWi6XNYUSLq99BdabtScGm.json",
|
81 |
+
"arc_challenge": "2024-10-30T17-34-51-04-00_arc-challenge_FbGgLswBZbRE4EhWiMyRt6.json",
|
82 |
+
"mmlu": "2024-10-31T10-49-43-04-00_mmlu_oGb9mspeGbYS2gfbkknskN.json",
|
83 |
+
"hellaswag": "2024-10-30T19-35-34-04-00_hellaswag_2SAz3cvMpDxFaApdHDR3s4.json",
|
84 |
+
"ifeval": "2024-10-30T21-15-06-04-00_ifeval_nYs9KujQMQjcpbpbLtVx8G.json",
|
85 |
+
"mmmu_multiple_choice": "2025-01-20T23-10-01-05-00_mmmu-multiple-choice_c5rLkrXkV83udX6DVJui5F.json",
|
86 |
+
"arc_easy": "2024-10-30T17-29-56-04-00_arc-easy_XcEzqqPqJsRV29NqYDfnNo.json",
|
87 |
+
"winogrande": "2024-10-31T00-59-07-04-00_winogrande_Ci55vHvbGGW38zVpMCwtWa.json",
|
88 |
+
"mmlu_pro": "2024-10-30T22-43-30-04-00_mmlu-pro_Dc2uu3EV7MJtjg6gg5Y9qH.json",
|
89 |
+
"math": "2024-10-30T21-15-49-04-00_math_YsWdRzpqMq2dqQ9SPKfack.json",
|
90 |
+
"gsm8k": "2024-10-30T19-32-39-04-00_gsm8k_nLSssETKDDWNktAFWnVwfv.json"
|
91 |
+
},
|
92 |
+
"Meta-Llama-3.1-70B-Instruct": {
|
93 |
+
"hellaswag": "2024-10-30T00-45-54-04-00_hellaswag_BKfQG9yGAr383MGnooMLBH.json",
|
94 |
+
"drop": "2024-10-29T21-01-02-04-00_drop_LzAWvLWkNrNKu5qf56wXRo.json",
|
95 |
+
"gpqa_diamond": "2024-10-29T23-41-39-04-00_gpqa-diamond_TdLdYmVM6GCVMAECcXkuhj.json",
|
96 |
+
"winogrande": "2024-10-30T09-20-56-04-00_winogrande_WnUgkSRhSMvh3zUjnuJWQZ.json",
|
97 |
+
"gsm8k": "2024-10-30T00-03-31-04-00_gsm8k_bKsUfCAfcmBCeryboNaLoX.json",
|
98 |
+
"math": "2024-10-30T02-34-50-04-00_math_2xiNcrGih26uzJdG4q88bM.json",
|
99 |
+
"ifeval": "2024-10-30T02-29-32-04-00_ifeval_Dwh3CF2ZYFrvw7UcTwrsvK.json",
|
100 |
+
"arc_challenge": "2024-10-29T20-58-56-04-00_arc-challenge_oFL5wFjT7KwNFhMFfe72JN.json",
|
101 |
+
"arc_easy": "2024-10-29T20-53-12-04-00_arc-easy_UXzR7cDeNteP39NoXUYnhm.json",
|
102 |
+
"mmlu_pro": "2024-10-30T06-11-16-04-00_mmlu-pro_oQiEBJdeKtEEt4cm9KL7uy.json",
|
103 |
+
"humaneval": "2024-10-30T02-28-25-04-00_humaneval_KcJV2rHuHJ2JLxijihEkcW.json",
|
104 |
+
"mmlu": "2024-10-30T03-51-50-04-00_mmlu_6SNjs2QmPRvqGnvbnNtaqb.json"
|
105 |
+
},
|
106 |
+
"gpt-4o": {
|
107 |
+
"gpqa_diamond": "2024-10-31T03-29-33-04-00_gpqa-diamond_nFmRv5MJiYjHjezmq4V6Va.json",
|
108 |
+
"arc_challenge": "2024-10-31T01-45-55-04-00_arc-challenge_nrsPPxh4DpzgLPQDFdcfVp.json",
|
109 |
+
"gsm8k": "2024-10-31T03-31-16-04-00_gsm8k_jVXeSvHowbietZCFsFYCwB.json",
|
110 |
+
"mmlu": "2024-10-31T10-49-43-04-00_mmlu_GarLpfQFSpM3C22nbbGp54.json",
|
111 |
+
"ifeval": "2024-10-31T05-00-11-04-00_ifeval_jxreUu8JqRdkrcHP4E3hLR.json",
|
112 |
+
"mmlu_pro": "2024-10-31T06-59-42-04-00_mmlu-pro_EuAKDwAWSfNVpqyyqrf2Ba.json",
|
113 |
+
"mmmu_open": "2025-01-20T23-07-46-05-00_mmmu-open_d3Q2HvuPZzEX6FAM4NBhnp.json",
|
114 |
+
"winogrande": "2024-10-31T09-02-03-04-00_winogrande_44kKF7M9mKoqVC7ixZVXuq.json",
|
115 |
+
"drop": "2024-10-31T01-47-20-04-00_drop_3gxDcn6vUoR3nvHX9BcSq4.json",
|
116 |
+
"arc_easy": "2024-10-31T01-41-34-04-00_arc-easy_nUavRHdiRVfrxo6dmCPadh.json",
|
117 |
+
"mmmu_multiple_choice": "2025-01-20T23-03-21-05-00_mmmu-multiple-choice_eoycAFLMirSqiURdXmBP2e.json",
|
118 |
+
"humaneval": "2024-10-31T04-59-42-04-00_humaneval_nmJcd84CcNKjWS8fBfMbZM.json",
|
119 |
+
"math": "2024-10-31T05-01-22-04-00_math_cDSpKPp3nLrFy8uYfYKEbM.json",
|
120 |
+
"hellaswag": "2024-10-31T03-33-47-04-00_hellaswag_JNnnPuz3dhZRpyXzizMUBF.json"
|
121 |
+
},
|
122 |
+
"Mistral-Large-Instruct-2407": {
|
123 |
+
"drop": "2024-10-31T01-56-12-04-00_drop_NtvuCoU2LoMbH8DztcCTen.json",
|
124 |
+
"ifeval": "2024-10-31T06-30-16-04-00_ifeval_TLkvCSFEWo4PLv6hAha7YB.json",
|
125 |
+
"mmlu": "2024-10-31T07-21-48-04-00_mmlu_YnUhmHoStr3WuJdchWmNPt.json",
|
126 |
+
"gpqa_diamond": "2024-10-31T04-22-52-04-00_gpqa-diamond_SuZUZxGdqS2ZecbLRNkKd4.json",
|
127 |
+
"gsm8k": "2024-10-31T04-28-49-04-00_gsm8k_5tQp9tbwUMj6NpjNKCAfVm.json",
|
128 |
+
"math": "2024-10-31T06-33-09-04-00_math_2CmjBedAfUxqvmcHRdBgyB.json",
|
129 |
+
"arc_easy": "2024-10-31T01-48-39-04-00_arc-easy_YbfuBT3usZXt2xgZkkR5dq.json",
|
130 |
+
"mmlu_pro": "2024-10-31T09-41-25-04-00_mmlu-pro_fyYT4aabPesfY5TpzFMPnd.json",
|
131 |
+
"humaneval": "2024-10-31T06-29-24-04-00_humaneval_nu8SUSGekKJWB8HLKDigYK.json",
|
132 |
+
"hellaswag": "2024-10-31T04-50-00-04-00_hellaswag_ZzQoZ6gkRQsTzMhQr7GYNn.json",
|
133 |
+
"arc_challenge": "2024-10-31T01-54-13-04-00_arc-challenge_WfQRhMkFcywefpU46isBVP.json",
|
134 |
+
"winogrande": "2024-10-31T11-57-58-04-00_winogrande_TP3UGwpp37Dyv6ks9Ty5Hk.json"
|
135 |
+
},
|
136 |
+
"Qwen2.5-72B-Instruct": {
|
137 |
+
"arc_challenge": "2024-10-31T13-46-34-04-00_arc-challenge_FSybKYYwpXVLQag8VwpjKe.json",
|
138 |
+
"mmlu_pro": "2024-11-01T20-31-04-04-00_mmlu-pro_2TfSPmsVmKatntHy2CnR7A.json",
|
139 |
+
"gpqa_diamond": "2024-10-31T13-48-32-04-00_gpqa-diamond_8qSySicySUyNvRRYVFBKLU.json",
|
140 |
+
"winogrande": "2024-10-31T14-46-29-04-00_winogrande_CX692dYh53gJ6JigT9GMpa.json",
|
141 |
+
"mmlu": "2024-11-01T10-08-50-04-00_mmlu_AgK27yYvmAo2LxotBH7ZL9.json",
|
142 |
+
"hellaswag": "2024-11-01T02-55-55-04-00_hellaswag_RSk8rGcQWg3HRrLffTNoiM.json",
|
143 |
+
"gsm8k": "2024-11-01T01-15-16-04-00_gsm8k_3h4W6xZjXpz9oCwtgKNYzo.json",
|
144 |
+
"arc_easy": "2024-10-31T13-40-08-04-00_arc-easy_3JUyzfoEHxhSBUdCU2AaVC.json",
|
145 |
+
"math": "2024-11-01T10-06-46-04-00_math_UUpS2R9eQc9KxBxkanT2gE.json",
|
146 |
+
"ifeval": "2024-10-31T14-51-45-04-00_ifeval_VGxA7gTZLZSruceM9Ci37C.json",
|
147 |
+
"humaneval": "2024-10-31T14-49-39-04-00_humaneval_9u7khnxivCDroJoPNRFpjs.json",
|
148 |
+
"drop": "2024-10-31T15-03-20-04-00_drop_DDLi98VhiV2bLzuw7fx6H4.json"
|
149 |
+
}
|
150 |
+
}
|
refactor_eval_results.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
|
5 |
+
METRIC_NAME = {
|
6 |
+
# single-turn
|
7 |
+
"arc_easy": "accuracy",
|
8 |
+
"arc_challenge": "accuracy",
|
9 |
+
"gpqa_diamond": "accuracy",
|
10 |
+
"drop": "mean",
|
11 |
+
"winogrande": "accuracy",
|
12 |
+
"gsm8k": "accuracy",
|
13 |
+
"hellaswag": "accuracy",
|
14 |
+
"humaneval": "mean",
|
15 |
+
"ifeval": "final_acc",
|
16 |
+
"math": "accuracy",
|
17 |
+
"mmlu": "accuracy",
|
18 |
+
"mmlu_pro": "accuracy",
|
19 |
+
"mmmu_multiple_choice": "accuracy",
|
20 |
+
"mmmu_open": "accuracy",
|
21 |
+
|
22 |
+
# agentic
|
23 |
+
"gaia": "mean",
|
24 |
+
"gdm_intercode_ctf": "accuracy",
|
25 |
+
}
|
26 |
+
|
27 |
+
MODEL_SHA_MAP = {
|
28 |
+
# open source models
|
29 |
+
"c4ai-command-r-plus": "https://huggingface.co/CohereForAI/c4ai-command-r-plus", # TODO: verify for the 08-2024 version
|
30 |
+
"Meta-Llama-3.1-70B-Instruct": "https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct",
|
31 |
+
"Mistral-Large-Instruct-2407": "https://huggingface.co/mistralai/Mistral-Large-Instruct-2407",
|
32 |
+
"Qwen2.5-72B-Instruct": "https://huggingface.co/Qwen/Qwen2.5-72B-Instruct",
|
33 |
+
|
34 |
+
# closed source models
|
35 |
+
"claude-3-5-sonnet-20241022": "https://www.anthropic.com/claude/sonnet",
|
36 |
+
"gemini-1.5-flash": "https://deepmind.google/technologies/gemini/flash", # TODO: points to 2.0, can't find page for 1.5
|
37 |
+
"gemini-1.5-pro": "https://deepmind.google/technologies/gemini/pro",
|
38 |
+
"gpt-4o": "https://openai.com/index/hello-gpt-4o",
|
39 |
+
"gpt-4o-mini": "https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence",
|
40 |
+
"o1": "https://openai.com/o1",
|
41 |
+
}
|
42 |
+
|
43 |
+
|
44 |
+
def combine_eval_results(results_path: str, model_name: str) -> dict:
|
45 |
+
results = dict(
|
46 |
+
{
|
47 |
+
"config": {
|
48 |
+
"model_name": model_name,
|
49 |
+
# dummy keys
|
50 |
+
"model_sha": MODEL_SHA_MAP[model_name],
|
51 |
+
"model_dtype": "torch.float16",
|
52 |
+
},
|
53 |
+
"results": {},
|
54 |
+
}
|
55 |
+
)
|
56 |
+
for file in os.listdir(os.path.join(results_path, model_name)):
|
57 |
+
if file.endswith(".json"):
|
58 |
+
with open(os.path.join(results_path, model_name, file), "r") as f:
|
59 |
+
try:
|
60 |
+
result = json.load(f)
|
61 |
+
task_name = result["eval"]["task"].split("/")[-1]
|
62 |
+
if task_name == "math":
|
63 |
+
metrics = [elm for elm in result["results"]["scores"] if elm["name"] == "expression_equivalance"][0]["metrics"] # TODO: change scorer if required
|
64 |
+
else:
|
65 |
+
metrics = result["results"]["scores"][0]["metrics"]
|
66 |
+
metric_name = metrics[METRIC_NAME[task_name]]["name"]
|
67 |
+
metric_value = metrics[METRIC_NAME[task_name]]["value"]
|
68 |
+
results["results"].update(
|
69 |
+
{
|
70 |
+
task_name: {
|
71 |
+
metric_name: metric_value
|
72 |
+
}
|
73 |
+
}
|
74 |
+
)
|
75 |
+
except KeyError as e:
|
76 |
+
print(f"KeyError: {e}")
|
77 |
+
print(model_name)
|
78 |
+
print(file)
|
79 |
+
return results
|
80 |
+
|
81 |
+
|
82 |
+
def main():
|
83 |
+
|
84 |
+
CACHE_PATH=os.getenv("HF_HOME", ".")
|
85 |
+
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
86 |
+
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
87 |
+
|
88 |
+
base_bm_input_path = "./base_benchmarking_logs"
|
89 |
+
agentic_bm_input_path = "./agentic_benchmarking_logs"
|
90 |
+
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
|
91 |
+
os.makedirs(EVAL_REQUESTS_PATH, exist_ok=True)
|
92 |
+
|
93 |
+
for model_name in os.listdir(base_bm_input_path):
|
94 |
+
if os.path.isdir(os.path.join(base_bm_input_path, model_name)):
|
95 |
+
results = combine_eval_results(base_bm_input_path, model_name)
|
96 |
+
# TMP: Add dummy agentic benchmarks to the results
|
97 |
+
for metric in METRIC_NAME.items():
|
98 |
+
if metric[0] not in results["results"]:
|
99 |
+
results["results"].update({metric[0]: {metric[1]: None}})
|
100 |
+
if os.path.isdir(os.path.join(agentic_bm_input_path, model_name)):
|
101 |
+
agentic_bm_results = combine_eval_results(agentic_bm_input_path, model_name)
|
102 |
+
results["results"].update(agentic_bm_results["results"])
|
103 |
+
with open(os.path.join(EVAL_RESULTS_PATH, f"{model_name}.json"), "w") as f:
|
104 |
+
json.dump(results, f, indent=4)
|
105 |
+
|
106 |
+
# Create dummy requests file
|
107 |
+
requests = {
|
108 |
+
"model": model_name,
|
109 |
+
"model_sha": MODEL_SHA_MAP[model_name],
|
110 |
+
"base_model": "",
|
111 |
+
"revision": "main",
|
112 |
+
"private": False,
|
113 |
+
"precision": "float16",
|
114 |
+
"weight_type": "Original",
|
115 |
+
"status": "FINISHED",
|
116 |
+
"submitted_time": "",
|
117 |
+
"model_type": "pretrained",
|
118 |
+
"likes": 0,
|
119 |
+
"params": 0,
|
120 |
+
"license": "custom",
|
121 |
+
}
|
122 |
+
with open(os.path.join(EVAL_REQUESTS_PATH, f"{model_name}.json"), "w") as f:
|
123 |
+
json.dump(requests, f, indent=4)
|
124 |
+
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
main()
|
src/about.py
CHANGED
@@ -1,96 +1,132 @@
|
|
1 |
-
|
2 |
-
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
# What does your leaderboard evaluate?
|
8 |
-
INTRODUCTION_TEXT = f"""
|
9 |
-
Powered by **Inspect** and **Inspect Evals**, the **Vector Evaluation Leaderboard** presents an evaluation of leading frontier models across a comprehensive suite of benchmarks. Go beyond the summary metrics: click through to interactive reporting for each model and benchmark to explore sample-level performance and detailed traces."""
|
10 |
|
11 |
-
#
|
12 |
-
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
|
|
|
|
18 |
|
19 |
-
This leaderboard showcases performance across a comprehensive suite of benchmarks, designed to rigorously evaluate different aspects of AI model capabilities. Let's explore the benchmarks we use:
|
20 |
|
21 |
-
|
|
|
22 |
|
23 |
-
This leaderboard leverages [Inspect Evals](https://ukgovernmentbeis.github.io/inspect_evals/) to power evaluation. Inspect Evals is an open-source repository built upon the Inspect AI framework. Developed in collaboration between the Vector Institute, Arcadia Impact and the UK AI Security Institute, Inspect Evals provides a comprehensive suite of high-quality benchmarks spanning diverse domains like coding, mathematics, cybersecurity, reasoning, and general knowledge.
|
24 |
|
25 |
-
#### Transparent and Detailed Insights
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
### ⚙️ Base Benchmarks
|
30 |
|
31 |
-
|
|
|
32 |
|
33 |
-
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
| **DROP** | Comprehension benchmark evaluating advanced reasoning capability. |
|
39 |
-
| **WinoGrande** | Commonsense reasoning challenge. |
|
40 |
-
| **GSM8K** | Grade-school math word problems testing math capability & multi-step reasoning. |
|
41 |
-
| **HellaSwag** | Commonsense reasoning task. |
|
42 |
-
| **HumanEval** | Evaluates code generation and reasoning in a programming context. |
|
43 |
-
| **IFEval** | Specialized benchmark for instruction following. |
|
44 |
-
| **MATH** | Challenging questions sourced from math competitions. |
|
45 |
-
| **MMLU** / **MMLU-Pro**| Multi-subject multiple-choice tests of advanced knowledge. |
|
46 |
-
| **GPQA-Diamond** | Question-answering benchmark assessing deeper reasoning. |
|
47 |
-
| **MMMU** (Multi-Choice / Open-Ended) | Multi-modal tasks testing structured & open responses. |
|
48 |
-
</div>
|
49 |
|
50 |
-
|
|
|
51 |
|
52 |
-
|
|
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
"""
|
65 |
|
66 |
-
|
67 |
-
##
|
68 |
-
The [Vector State of Evaluation Leaderboard Repository](https://github.com/VectorInstitute/evaluation) repository contains the evaluation script to reproduce results presented on the leaderboard.
|
69 |
-
|
70 |
-
### Install dependencies
|
71 |
|
72 |
-
1
|
73 |
-
```
|
74 |
-
|
75 |
-
|
|
|
|
|
76 |
```
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
python -m pip install -r requirements.txt
|
81 |
-
```
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
python -m pip install <model_package>
|
86 |
-
```
|
87 |
-
Note: ```openai``` package is already included in ```requirements.txt```
|
88 |
|
89 |
-
###
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
95 |
"""
|
96 |
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from enum import Enum
|
3 |
|
4 |
+
@dataclass
|
5 |
+
class Task:
|
6 |
+
benchmark: str
|
7 |
+
metric: str
|
8 |
+
col_name: str
|
9 |
+
type: str
|
10 |
+
source: str
|
11 |
|
|
|
|
|
|
|
12 |
|
13 |
+
# Select your tasks here
|
14 |
+
# ---------------------------------------------------
|
15 |
+
class Tasks(Enum):
|
16 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
17 |
|
18 |
+
# base
|
19 |
+
task0 = Task("arc_easy", "accuracy", "ARC-Easy", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/arc")
|
20 |
+
task1 = Task("arc_challenge", "accuracy", "ARC-Challenge", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/arc")
|
21 |
+
task2 = Task("drop", "mean", "DROP", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/drop")
|
22 |
+
task3 = Task("winogrande", "accuracy", "WinoGrande", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/winogrande")
|
23 |
+
task4 = Task("gsm8k", "accuracy", "GSM8K", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gsm8k")
|
24 |
+
task5 = Task("hellaswag", "accuracy", "HellaSwag", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/hellaswag")
|
25 |
+
task6 = Task("humaneval", "mean", "HumanEval", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/humaneval")
|
26 |
+
task7 = Task("ifeval", "final_acc", "IFEval", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/ifeval")
|
27 |
+
task8 = Task("math", "accuracy", "MATH", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/mathematics")
|
28 |
+
task9 = Task("mmlu", "accuracy", "MMLU", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/mmlu")
|
29 |
+
task10 = Task("mmlu_pro", "accuracy", "MMLU-Pro", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/mmlu_pro")
|
30 |
+
task11 = Task("gpqa_diamond", "accuracy", "GPQA-Diamond", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gpqa")
|
31 |
+
task12 = Task("mmmu_multiple_choice", "accuracy", "MMMU-Multiple-Choice", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/mmmu")
|
32 |
+
task13 = Task("mmmu_open", "accuracy", "MMMU-Open-Ended", "base", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/mmmu")
|
33 |
|
34 |
+
# agentic
|
35 |
+
task14 = Task("gaia", "mean", "GAIA", "agentic", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gaia")
|
36 |
+
task15 = Task("gdm_intercode_ctf", "accuracy", "GDM-InterCode-CTF", "agentic", "https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals/gdm_capabilities/intercode_ctf")
|
37 |
|
|
|
38 |
|
39 |
+
NUM_FEWSHOT = 0 # Change with your few shot
|
40 |
+
# ---------------------------------------------------
|
41 |
|
|
|
42 |
|
|
|
43 |
|
44 |
+
# Your leaderboard name
|
45 |
+
TITLE = """<h1 align="center" id="space-title">Vector State of Evaluation Leaderboard</h1>"""
|
|
|
46 |
|
47 |
+
SINGLE_TURN_TASK_NAMES = ", ".join([f"[{task.value.col_name}]({task.value.source})" for task in Tasks if task.value.type == "base"])
|
48 |
+
AGENTIC_TASK_NAMES = ", ".join([f"[{task.value.col_name}]({task.value.source})" for task in Tasks if task.value.type == "agentic"])
|
49 |
|
50 |
+
# What does your leaderboard evaluate?
|
51 |
+
INTRODUCTION_TEXT = f"""
|
52 |
+
This leaderboard presents the performance of selected LLM models on a set of tasks. The tasks are divided into two categories: base and agentic. The base tasks are: {SINGLE_TURN_TASK_NAMES}. The agentic tasks are: {AGENTIC_TASK_NAMES}."""
|
53 |
|
54 |
+
# Which evaluations are you running? how can people reproduce what you have?
|
55 |
+
LLM_BENCHMARKS_TEXT = f"""
|
56 |
+
# Vector State of Evaluation Leaderboard
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
## Overview
|
59 |
+
The **Vector State of Evaluation Leaderboard** presents the performance of selected LLM models on a variety of tasks. These tasks are divided into two categories:
|
60 |
|
61 |
+
- **Base Tasks**: ARC-Easy, ARC-Challenge, DROP, WinoGrande, GSM8K, HellaSwag, HumanEval, IFEval, MATH, MMLU, MMLU-Pro, GPQA-Diamond, MMMU-Multiple-Choice, MMMU-Open-Ended
|
62 |
+
- **Agentic Tasks**: GAIA, GDM-InterCode-CTF
|
63 |
|
64 |
+
Users can compare models side by side to see how they perform on both base-level understanding tasks and more advanced, “agentic” tasks.
|
65 |
|
66 |
+
## Vector Institute
|
67 |
+
The **Vector Institute** is dedicated to advancing the fields of artificial intelligence and machine learning through cutting-edge research, collaborative projects, and open-source contributions. This leaderboard is part of Vector’s broader effort to promote transparency and progress in AI research.
|
68 |
+
|
69 |
+
## Model
|
70 |
+
We evaluate a variety of **Large Language Models (LLMs)** across the included benchmarks. Each model:
|
71 |
+
- Is tested on the same set of tasks.
|
72 |
+
- Has standardized prompts or evaluation methodologies.
|
73 |
+
- Generates performance metrics (accuracy, F1, etc.) for comparison.
|
74 |
+
|
75 |
+
Our goal is to provide clear, reproducible metrics that shed light on how each model handles different task complexities and reasoning requirements.
|
76 |
+
|
77 |
+
## Benchmarks
|
78 |
+
Here is a closer look at each benchmark included in the leaderboard:
|
79 |
+
|
80 |
+
### Base Benchmarks
|
81 |
+
- **ARC-Easy / ARC-Challenge**: A set of multiple-choice science questions designed to measure a model’s scientific and commonsense reasoning.
|
82 |
+
- **DROP**: A reading comprehension benchmark emphasizing discrete reasoning steps.
|
83 |
+
- **WinoGrande**: A commonsense reasoning challenge focused on co-reference resolution.
|
84 |
+
- **GSM8K**: Grade-school math word problems testing arithmetic and multi-step reasoning.
|
85 |
+
- **HellaSwag**: A commonsense inference task centered on action completion.
|
86 |
+
- **HumanEval**: Evaluates code generation and reasoning in a programming context.
|
87 |
+
- **IFEval**: A specialized benchmark for incremental formal reasoning.
|
88 |
+
- **MATH**: High school-level math questions requiring detailed solutions.
|
89 |
+
- **MMLU / MMLU-Pro**: Multi-subject multiple-choice tests covering advanced high school and collegiate-level knowledge.
|
90 |
+
- **GPQA-Diamond**: A question-answering benchmark that assesses deeper reasoning and knowledge linking.
|
91 |
+
- **MMMU (Multiple-Choice / Open-Ended)**: A suite of multilingual and multi-domain tasks testing both structured and open-form responses.
|
92 |
+
|
93 |
+
### Agentic Benchmarks
|
94 |
+
- **GAIA**: Evaluates more autonomous or “agentic” reasoning, including planning and problem-solving.
|
95 |
+
- **GDM-InterCode-CTF**: A capture-the-flag style challenge focusing on code interpretation and generative debugging strategies.
|
96 |
+
|
97 |
+
---
|
98 |
"""
|
99 |
|
100 |
+
EVALUATION_QUEUE_TEXT = """
|
101 |
+
## Some good practices before submitting a model
|
|
|
|
|
|
|
102 |
|
103 |
+
### 1) Make sure you can load your model and tokenizer using AutoClasses:
|
104 |
+
```python
|
105 |
+
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
106 |
+
config = AutoConfig.from_pretrained("your model name", revision=revision)
|
107 |
+
model = AutoModel.from_pretrained("your model name", revision=revision)
|
108 |
+
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
|
109 |
```
|
110 |
+
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
|
111 |
|
112 |
+
Note: make sure your model is public!
|
113 |
+
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
|
|
|
|
|
114 |
|
115 |
+
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
|
116 |
+
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
|
|
|
|
|
|
|
117 |
|
118 |
+
### 3) Make sure your model has an open license!
|
119 |
+
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
|
120 |
+
|
121 |
+
### 4) Fill up your model card
|
122 |
+
When we add extra information about models to the leaderboard, it will be automatically taken from the model card
|
123 |
+
|
124 |
+
## In case of model failure
|
125 |
+
If your model is displayed in the `FAILED` category, its execution stopped.
|
126 |
+
Make sure you have followed the above steps first.
|
127 |
+
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
|
128 |
"""
|
129 |
|
130 |
+
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
131 |
+
CITATION_BUTTON_TEXT = r"""
|
132 |
+
"""
|
src/assets/logo-icon-black.png
DELETED
Binary file (32.4 kB)
|
|
src/assets/logo-icon-white.png
DELETED
Binary file (32.6 kB)
|
|
src/display/css_html_js.py
CHANGED
@@ -1,192 +1,236 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
custom_css = """
|
14 |
-
footer {visibility: hidden}
|
15 |
-
|
16 |
-
#main {
|
17 |
-
max-width: 1200px;
|
18 |
-
margin: 0 auto;
|
19 |
-
padding: 0 20px;
|
20 |
-
}
|
21 |
-
|
22 |
-
.gradio-container {
|
23 |
-
max-width: 1200px !important;
|
24 |
-
margin: 0 auto !important;
|
25 |
-
}
|
26 |
-
|
27 |
-
.intro-text {
|
28 |
-
text-align: center; /* Center the text */
|
29 |
-
font-size: 3rem; /* Slightly larger font size if desired */
|
30 |
-
color: #555; /* A slightly softer color than black */
|
31 |
-
margin-bottom: 5px; /* Add some space below the text before the tabs */
|
32 |
-
padding: 0 10px; /* Add some horizontal padding for wider screens */
|
33 |
-
line-height: 1.2; /* Improve readability with line height */
|
34 |
-
max-width: 1200px; /* Limit width for better readability on large screens */
|
35 |
-
margin-left: auto; /* Center the block horizontally */
|
36 |
-
margin-right: auto; /* Center the block horizontally */
|
37 |
-
}
|
38 |
|
39 |
.tab-buttons button {
|
40 |
font-size: 20px;
|
41 |
}
|
42 |
|
43 |
-
.intro-block {
|
44 |
-
padding: 20px;
|
45 |
-
}
|
46 |
-
|
47 |
-
.header-row {
|
48 |
-
height: 0;
|
49 |
-
min-height: 0;
|
50 |
-
}
|
51 |
-
|
52 |
-
.tabitem {
|
53 |
-
padding-top: 0;
|
54 |
-
}
|
55 |
-
|
56 |
-
.html-container {
|
57 |
-
padding: 0;
|
58 |
-
}
|
59 |
-
|
60 |
-
#page-header {
|
61 |
-
display: flex;
|
62 |
-
justify-content: center;
|
63 |
-
text-align: center;
|
64 |
-
margin-bottom: 1rem;
|
65 |
-
}
|
66 |
-
|
67 |
-
#header-container{
|
68 |
-
display: flex;
|
69 |
-
width: 800px;
|
70 |
-
}
|
71 |
-
|
72 |
-
#left-container {
|
73 |
-
flex: 1;
|
74 |
-
}
|
75 |
-
|
76 |
-
#left-container #black-logo, #left-container #white-logo {
|
77 |
-
height: 150px;
|
78 |
-
width: 150px;
|
79 |
-
}
|
80 |
-
|
81 |
-
#left-container #black-logo {
|
82 |
-
display: block;
|
83 |
-
}
|
84 |
-
|
85 |
-
#left-container #white-logo {
|
86 |
-
display: none;
|
87 |
-
}
|
88 |
-
|
89 |
-
#centre-container {
|
90 |
-
align-self: center;
|
91 |
-
}
|
92 |
-
|
93 |
-
#right-container {
|
94 |
-
flex: 1;
|
95 |
-
align-self: center;
|
96 |
-
}
|
97 |
-
|
98 |
-
#right-container #black-logo, #right-container #white-logo {
|
99 |
-
height: 150px;
|
100 |
-
width: 150px;
|
101 |
-
}
|
102 |
-
|
103 |
-
#right-container #black-logo {
|
104 |
-
display: block;
|
105 |
-
}
|
106 |
-
|
107 |
-
#right-container #white-logo {
|
108 |
-
display: none;
|
109 |
-
}
|
110 |
-
|
111 |
-
.llm-benchmark-tab-table .table-wrap table.table {
|
112 |
-
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, sans-serif;
|
113 |
-
color: rgb(97, 97, 97);
|
114 |
-
overflow-y: auto;
|
115 |
-
overflow-x: auto;
|
116 |
-
}
|
117 |
-
|
118 |
-
.llm-benchmark-tab-table .table-wrap table.table a {
|
119 |
-
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, sans-serif;
|
120 |
-
color: #ec4899
|
121 |
-
}
|
122 |
-
|
123 |
-
.llm-benchmark-tab-table .table-wrap table.table tr td,
|
124 |
-
.llm-benchmark-tab-table .table-wrap table.table tr th {
|
125 |
-
border-bottom: 1px solid var(--border-color-primary);
|
126 |
-
}
|
127 |
-
|
128 |
-
.llm-benchmark-tab-table .table-wrap table.table a {
|
129 |
-
color: rgb(2, 136, 209) !important;
|
130 |
-
}
|
131 |
-
|
132 |
-
.llm-benchmark-tab-table .table-wrap table.table th {
|
133 |
-
font-size: 14px; /* Smaller font size for table headers */
|
134 |
-
font-weight: 600; /* Semi-bold instead of full bold */
|
135 |
-
}
|
136 |
-
|
137 |
-
@media (prefers-color-scheme: dark) {
|
138 |
-
#left-container #black-logo {
|
139 |
-
display: none;
|
140 |
-
}
|
141 |
-
#left-container #white-logo {
|
142 |
-
display: block;
|
143 |
-
}
|
144 |
-
#right-container #black-logo {
|
145 |
-
display: none;
|
146 |
-
}
|
147 |
-
#right-container #white-logo {
|
148 |
-
display: block;
|
149 |
-
}
|
150 |
-
}
|
151 |
-
|
152 |
-
.benchmark-table-container table {
|
153 |
-
width: 100%; /* Make table take full width of its container */
|
154 |
-
border-collapse: collapse; /* Remove spacing between table cells */
|
155 |
-
margin-bottom: 20px; /* Add some space below the table */
|
156 |
-
}
|
157 |
-
|
158 |
-
.benchmark-table-container th, .benchmark-table-container td {
|
159 |
-
border: 1px solid #ddd; /* Light gray border for cells */
|
160 |
-
padding: 8px; /* Padding within cells for better spacing */
|
161 |
-
text-align: left; /* Align text to the left within cells */
|
162 |
-
vertical-align: top; /* Align content to the top of cells */
|
163 |
-
}
|
164 |
|
165 |
-
.benchmark-table-container th {
|
166 |
-
background-color: #f2f2f2; /* Light gray background for header row */
|
167 |
-
font-weight: bold; /* Make header text bold */
|
168 |
-
}
|
169 |
|
170 |
-
|
171 |
-
background-color: #f9f9f9; /* Very light gray background for even rows for zebra striping */
|
172 |
-
}
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
display: block;
|
180 |
-
}
|
181 |
-
.benchmark-table-container th {
|
182 |
-
background-color: #3b3b3b;
|
183 |
-
}
|
184 |
-
.benchmark-table-container tbody tr:nth-child(even) {
|
185 |
-
background-color: #2b2b2b;
|
186 |
-
}
|
187 |
-
}
|
188 |
|
189 |
-
"""
|
190 |
|
191 |
get_window_url_params = """
|
192 |
function(url_params) {
|
|
|
1 |
+
# custom_css = """
|
2 |
+
|
3 |
+
# .markdown-text {
|
4 |
+
# font-size: 16px !important;
|
5 |
+
# }
|
6 |
+
|
7 |
+
# #models-to-add-text {
|
8 |
+
# font-size: 18px !important;
|
9 |
+
# }
|
10 |
+
|
11 |
+
# #citation-button span {
|
12 |
+
# font-size: 16px !important;
|
13 |
+
# }
|
14 |
+
|
15 |
+
# #citation-button textarea {
|
16 |
+
# font-size: 16px !important;
|
17 |
+
# }
|
18 |
+
|
19 |
+
# #citation-button > label > button {
|
20 |
+
# margin: 6px;
|
21 |
+
# transform: scale(1.3);
|
22 |
+
# }
|
23 |
+
|
24 |
+
# #leaderboard-table {
|
25 |
+
# margin-top: 15px
|
26 |
+
# }
|
27 |
+
|
28 |
+
# #leaderboard-table-lite {
|
29 |
+
# margin-top: 15px
|
30 |
+
# }
|
31 |
+
|
32 |
+
# #search-bar-table-box > div:first-child {
|
33 |
+
# background: none;
|
34 |
+
# border: none;
|
35 |
+
# }
|
36 |
+
|
37 |
+
# #search-bar {
|
38 |
+
# padding: 0px;
|
39 |
+
# }
|
40 |
+
|
41 |
+
# /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
42 |
+
# #leaderboard-table td:nth-child(2),
|
43 |
+
# #leaderboard-table th:nth-child(2) {
|
44 |
+
# max-width: 400px;
|
45 |
+
# overflow: auto;
|
46 |
+
# white-space: nowrap;
|
47 |
+
# }
|
48 |
+
|
49 |
+
# .tab-buttons button {
|
50 |
+
# font-size: 20px;
|
51 |
+
# }
|
52 |
+
|
53 |
+
# #scale-logo {
|
54 |
+
# border-style: none !important;
|
55 |
+
# box-shadow: none;
|
56 |
+
# display: block;
|
57 |
+
# margin-left: auto;
|
58 |
+
# margin-right: auto;
|
59 |
+
# max-width: 600px;
|
60 |
+
# }
|
61 |
+
|
62 |
+
# #scale-logo .download {
|
63 |
+
# display: none;
|
64 |
+
# }
|
65 |
+
# #filter_type{
|
66 |
+
# border: 0;
|
67 |
+
# padding-left: 0;
|
68 |
+
# padding-top: 0;
|
69 |
+
# }
|
70 |
+
# #filter_type label {
|
71 |
+
# display: flex;
|
72 |
+
# }
|
73 |
+
# #filter_type label > span{
|
74 |
+
# margin-top: var(--spacing-lg);
|
75 |
+
# margin-right: 0.5em;
|
76 |
+
# }
|
77 |
+
# #filter_type label > .wrap{
|
78 |
+
# width: 103px;
|
79 |
+
# }
|
80 |
+
# #filter_type label > .wrap .wrap-inner{
|
81 |
+
# padding: 2px;
|
82 |
+
# }
|
83 |
+
# #filter_type label > .wrap .wrap-inner input{
|
84 |
+
# width: 1px
|
85 |
+
# }
|
86 |
+
# #filter-columns-type{
|
87 |
+
# border:0;
|
88 |
+
# padding:0.5;
|
89 |
+
# }
|
90 |
+
# #filter-columns-size{
|
91 |
+
# border:0;
|
92 |
+
# padding:0.5;
|
93 |
+
# }
|
94 |
+
# #box-filter > .form{
|
95 |
+
# border: 0
|
96 |
+
# }
|
97 |
+
|
98 |
+
# body, .gradio-container {
|
99 |
+
# font-family: Roboto, sans-serif;
|
100 |
+
# background-color: #ffffff;
|
101 |
+
# color: #000000; /* main text color */
|
102 |
+
# margin: 0;
|
103 |
+
# padding: 0;
|
104 |
+
# }
|
105 |
+
|
106 |
+
# h1, h2, h3, h4, h5, h6 {
|
107 |
+
# color: #eb088a; /* your brand color for headings */
|
108 |
+
# font-weight: 600;
|
109 |
+
# margin-bottom: 1rem;
|
110 |
+
# }
|
111 |
+
|
112 |
+
# /* Example ‘intro-block’ styling if you want extra flair */
|
113 |
+
# .intro-block {
|
114 |
+
# background-color: #eb088a10; /* light tinted background */
|
115 |
+
# padding: 1.5rem;
|
116 |
+
# border-radius: 10px;
|
117 |
+
# margin-bottom: 2rem;
|
118 |
+
# }
|
119 |
+
|
120 |
+
# """
|
121 |
+
|
122 |
+
# custom_css = """
|
123 |
+
# /* 1) Load Karbon Font: Make sure this points to your actual font files */
|
124 |
+
# @font-face {
|
125 |
+
# font-family: 'Karbon';
|
126 |
+
# src: url('path/to/Karbon.woff2') format('woff2'),
|
127 |
+
# url('path/to/Karbon.woff') format('woff');
|
128 |
+
# font-weight: normal;
|
129 |
+
# font-style: normal;
|
130 |
+
# }
|
131 |
+
|
132 |
+
# /* 2) Global Container */
|
133 |
+
# body, .gradio-container {
|
134 |
+
# font-family: 'Karbon', sans-serif;
|
135 |
+
# margin: 0;
|
136 |
+
# padding: 0;
|
137 |
+
# background-color: #fafafa; /* Light background */
|
138 |
+
# color: #000000;
|
139 |
+
# }
|
140 |
+
|
141 |
+
# .gradio-container {
|
142 |
+
# max-width: 1200px;
|
143 |
+
# margin: 0 auto;
|
144 |
+
# padding: 2rem 1rem;
|
145 |
+
# }
|
146 |
+
|
147 |
+
# /* 3) Headings, with brand color #eb088a */
|
148 |
+
# h1, h2, h3, h4, h5, h6 {
|
149 |
+
# color: #000000;
|
150 |
+
# margin-bottom: 1rem;
|
151 |
+
# font-weight: 600;
|
152 |
+
# }
|
153 |
+
|
154 |
+
# /* 4) Intro Block for a slight highlight */
|
155 |
+
# .intro-block {
|
156 |
+
# background-color: #ffe2f1; /* lighter tint of #eb088a */
|
157 |
+
# padding: 1.5rem;
|
158 |
+
# border-radius: 8px;
|
159 |
+
# border: 1px solid #f8badb;
|
160 |
+
# margin-bottom: 2rem;
|
161 |
+
# }
|
162 |
+
|
163 |
+
# /* 5) Tab styling - remove default orange styling */
|
164 |
+
# .tab-buttons {
|
165 |
+
# margin-top: 1rem;
|
166 |
+
# margin-bottom: 1rem;
|
167 |
+
# display: flex;
|
168 |
+
# }
|
169 |
+
# .tab-buttons > .tabitem {
|
170 |
+
# padding: 0.6rem 1.2rem;
|
171 |
+
# background-color: #ffffff;
|
172 |
+
# border: 1px solid #eb088a;
|
173 |
+
# border-radius: 6px;
|
174 |
+
# color: #eb088a;
|
175 |
+
# margin-right: 5px;
|
176 |
+
# cursor: pointer;
|
177 |
+
# transition: background-color 0.2s ease, color 0.2s ease;
|
178 |
+
# font-weight: 500;
|
179 |
+
# }
|
180 |
+
# .tab-buttons > .tabitem.selected {
|
181 |
+
# background-color: #eb088a;
|
182 |
+
# color: #ffffff;
|
183 |
+
# }
|
184 |
+
# .tab-buttons > .tabitem:hover {
|
185 |
+
# background-color: #eb088a;
|
186 |
+
# color: #ffffff;
|
187 |
+
# }
|
188 |
+
|
189 |
+
# /* 6) Dataframe Styling */
|
190 |
+
# .gr-dataframe table {
|
191 |
+
# width: 100%;
|
192 |
+
# border-collapse: collapse;
|
193 |
+
# border: 1px solid #cccccc;
|
194 |
+
# margin-bottom: 2rem;
|
195 |
+
# }
|
196 |
+
# .gr-dataframe th {
|
197 |
+
# background-color: #eb088a;
|
198 |
+
# color: #ffffff;
|
199 |
+
# padding: 0.6rem;
|
200 |
+
# text-align: left;
|
201 |
+
# font-weight: 600;
|
202 |
+
# }
|
203 |
+
# .gr-dataframe td {
|
204 |
+
# padding: 0.6rem;
|
205 |
+
# border-bottom: 1px solid #e0e0e0;
|
206 |
+
# }
|
207 |
+
# .gr-dataframe tr:nth-child(even) {
|
208 |
+
# background-color: #fdfdfd;
|
209 |
+
# }
|
210 |
+
|
211 |
+
# /* 7) Make default markdown text nice */
|
212 |
+
# .markdown-text p {
|
213 |
+
# margin-bottom: 1rem;
|
214 |
+
# line-height: 1.6;
|
215 |
+
# }
|
216 |
+
# """
|
217 |
|
218 |
custom_css = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
.tab-buttons button {
|
221 |
font-size: 20px;
|
222 |
}
|
223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
|
|
|
|
|
|
|
|
225 |
|
226 |
+
"""
|
|
|
|
|
227 |
|
228 |
+
# .selected.svelte-1tcem6n.svelte-1tcem6n {
|
229 |
+
# background-color: #000000 !important; /* Desired background color */
|
230 |
+
# color: #eb088a !important; /* Desired text color */
|
231 |
+
# border-color: #eb088a !important; /* Desired border color */
|
232 |
+
# }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
|
|
234 |
|
235 |
get_window_url_params = """
|
236 |
function(url_params) {
|
src/display/formatting.py
CHANGED
@@ -5,8 +5,6 @@ def model_hyperlink(link, model_name):
|
|
5 |
def make_clickable_model(model_name, model_sha):
|
6 |
return model_hyperlink(model_sha, model_name)
|
7 |
|
8 |
-
def make_clickable_field(name, url):
|
9 |
-
return model_hyperlink(url, name)
|
10 |
|
11 |
def styled_error(error):
|
12 |
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
|
|
5 |
def make_clickable_model(model_name, model_sha):
|
6 |
return model_hyperlink(model_sha, model_name)
|
7 |
|
|
|
|
|
8 |
|
9 |
def styled_error(error):
|
10 |
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
src/display/utils.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, make_dataclass
|
2 |
+
from enum import Enum
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
from src.about import Tasks
|
7 |
+
|
8 |
+
def fields(raw_class):
|
9 |
+
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
10 |
+
|
11 |
+
|
12 |
+
# These classes are for user facing column names,
|
13 |
+
# to avoid having to change them all around the code
|
14 |
+
# when a modif is needed
|
15 |
+
@dataclass
|
16 |
+
class ColumnContent:
|
17 |
+
name: str
|
18 |
+
type: str
|
19 |
+
displayed_by_default: bool
|
20 |
+
hidden: bool = False
|
21 |
+
never_hidden: bool = False
|
22 |
+
|
23 |
+
## Leaderboard columns
|
24 |
+
auto_eval_column_dict = []
|
25 |
+
# Init
|
26 |
+
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
27 |
+
# Scores
|
28 |
+
for task in Tasks:
|
29 |
+
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "markdown", True)])
|
30 |
+
|
31 |
+
# We use make dataclass to dynamically fill the scores from Tasks
|
32 |
+
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
33 |
+
|
34 |
+
## For the queue columns in the submission tab
|
35 |
+
@dataclass(frozen=True)
|
36 |
+
class EvalQueueColumn: # Queue column
|
37 |
+
model = ColumnContent("model", "markdown", True)
|
38 |
+
revision = ColumnContent("revision", "str", True)
|
39 |
+
private = ColumnContent("private", "bool", True)
|
40 |
+
precision = ColumnContent("precision", "str", True)
|
41 |
+
weight_type = ColumnContent("weight_type", "str", "Original")
|
42 |
+
status = ColumnContent("status", "str", True)
|
43 |
+
|
44 |
+
## All the model information that we might need
|
45 |
+
@dataclass
|
46 |
+
class ModelDetails:
|
47 |
+
name: str
|
48 |
+
display_name: str = ""
|
49 |
+
symbol: str = "" # emoji
|
50 |
+
|
51 |
+
|
52 |
+
class ModelType(Enum):
|
53 |
+
PT = ModelDetails(name="pretrained", symbol="🟢")
|
54 |
+
FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
55 |
+
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
56 |
+
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
57 |
+
Unknown = ModelDetails(name="", symbol="?")
|
58 |
+
|
59 |
+
def to_str(self, separator=" "):
|
60 |
+
return f"{self.value.symbol}{separator}{self.value.name}"
|
61 |
+
|
62 |
+
@staticmethod
|
63 |
+
def from_str(type):
|
64 |
+
if "fine-tuned" in type or "🔶" in type:
|
65 |
+
return ModelType.FT
|
66 |
+
if "pretrained" in type or "🟢" in type:
|
67 |
+
return ModelType.PT
|
68 |
+
if "RL-tuned" in type or "🟦" in type:
|
69 |
+
return ModelType.RL
|
70 |
+
if "instruction-tuned" in type or "⭕" in type:
|
71 |
+
return ModelType.IFT
|
72 |
+
return ModelType.Unknown
|
73 |
+
|
74 |
+
class WeightType(Enum):
|
75 |
+
Adapter = ModelDetails("Adapter")
|
76 |
+
Original = ModelDetails("Original")
|
77 |
+
Delta = ModelDetails("Delta")
|
78 |
+
|
79 |
+
class Precision(Enum):
|
80 |
+
float16 = ModelDetails("float16")
|
81 |
+
bfloat16 = ModelDetails("bfloat16")
|
82 |
+
Unknown = ModelDetails("?")
|
83 |
+
|
84 |
+
def from_str(precision):
|
85 |
+
if precision in ["torch.float16", "float16"]:
|
86 |
+
return Precision.float16
|
87 |
+
if precision in ["torch.bfloat16", "bfloat16"]:
|
88 |
+
return Precision.bfloat16
|
89 |
+
return Precision.Unknown
|
90 |
+
|
91 |
+
# Column selection
|
92 |
+
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
93 |
+
|
94 |
+
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
95 |
+
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
96 |
+
|
97 |
+
ST_BENCHMARK_COLS = [t.value.col_name for t in Tasks if t.value.type=="base"]
|
98 |
+
AGENTIC_BENCHMARK_COLS = [t.value.col_name for t in Tasks if t.value.type=="agentic"]
|
src/envs.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from huggingface_hub import HfApi
|
4 |
+
|
5 |
+
# Info to change for your repository
|
6 |
+
# ----------------------------------
|
7 |
+
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
8 |
+
|
9 |
+
OWNER = "vector-institute" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
+
# ----------------------------------
|
11 |
+
|
12 |
+
REPO_ID = f"{OWNER}/llm-eval-leaderboard"
|
13 |
+
QUEUE_REPO = f"{OWNER}/llm-eval-requests"
|
14 |
+
RESULTS_REPO = f"{OWNER}/llm-eval-results"
|
15 |
+
|
16 |
+
# If you setup a cache later, just change HF_HOME
|
17 |
+
CACHE_PATH=os.getenv("HF_HOME", ".")
|
18 |
+
|
19 |
+
# Local caches
|
20 |
+
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
21 |
+
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
22 |
+
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
23 |
+
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
24 |
+
|
25 |
+
API = HfApi(token=TOKEN)
|
src/leaderboard/read_evals.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
import dateutil
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
from src.display.formatting import make_clickable_model
|
11 |
+
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
|
12 |
+
from src.submission.check_validity import is_model_on_hub
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class EvalResult:
|
17 |
+
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
18 |
+
"""
|
19 |
+
eval_name: str # org_model_precision (uid)
|
20 |
+
full_model: str # org/model (path on hub)
|
21 |
+
org: str
|
22 |
+
model: str
|
23 |
+
revision: str # commit hash, "" if main
|
24 |
+
results: dict
|
25 |
+
precision: Precision = Precision.Unknown
|
26 |
+
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
27 |
+
weight_type: WeightType = WeightType.Original # Original or Adapter
|
28 |
+
architecture: str = "Unknown"
|
29 |
+
license: str = "?"
|
30 |
+
likes: int = 0
|
31 |
+
num_params: int = 0
|
32 |
+
date: str = "" # submission date of request file
|
33 |
+
still_on_hub: bool = False
|
34 |
+
|
35 |
+
@classmethod
|
36 |
+
def init_from_json_file(self, json_filepath):
|
37 |
+
"""Inits the result from the specific model result file"""
|
38 |
+
with open(json_filepath) as fp:
|
39 |
+
data = json.load(fp)
|
40 |
+
|
41 |
+
config = data.get("config")
|
42 |
+
|
43 |
+
# Precision
|
44 |
+
precision = Precision.from_str(config.get("model_dtype"))
|
45 |
+
|
46 |
+
# Get model and org
|
47 |
+
org_and_model = config.get("model_name", config.get("model_args", None))
|
48 |
+
org_and_model = org_and_model.split("/", 1)
|
49 |
+
|
50 |
+
if len(org_and_model) == 1:
|
51 |
+
org = None
|
52 |
+
model = org_and_model[0]
|
53 |
+
result_key = f"{model}"
|
54 |
+
else:
|
55 |
+
org = org_and_model[0]
|
56 |
+
model = org_and_model[1]
|
57 |
+
result_key = f"{org}_{model}"
|
58 |
+
full_model = "/".join(org_and_model)
|
59 |
+
|
60 |
+
still_on_hub, _, model_config = is_model_on_hub(
|
61 |
+
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
62 |
+
)
|
63 |
+
architecture = "?"
|
64 |
+
if model_config is not None:
|
65 |
+
architectures = getattr(model_config, "architectures", None)
|
66 |
+
if architectures:
|
67 |
+
architecture = ";".join(architectures)
|
68 |
+
|
69 |
+
# Extract results available in this file (some results are split in several files)
|
70 |
+
results = {}
|
71 |
+
for task in Tasks:
|
72 |
+
task = task.value
|
73 |
+
|
74 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
75 |
+
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
76 |
+
# if accs.size == 0 or any([acc is None for acc in accs]):
|
77 |
+
# continue
|
78 |
+
if accs.size == 0:
|
79 |
+
continue
|
80 |
+
elif any([acc is None for acc in accs]):
|
81 |
+
mean_acc = None
|
82 |
+
else:
|
83 |
+
mean_acc = np.mean(accs) * 100.0
|
84 |
+
results[task.benchmark] = mean_acc
|
85 |
+
|
86 |
+
return self(
|
87 |
+
eval_name=result_key,
|
88 |
+
full_model=full_model,
|
89 |
+
org=org,
|
90 |
+
model=model,
|
91 |
+
results=results,
|
92 |
+
precision=precision,
|
93 |
+
revision= config.get("model_sha", ""),
|
94 |
+
still_on_hub=still_on_hub,
|
95 |
+
architecture=architecture
|
96 |
+
)
|
97 |
+
|
98 |
+
def update_with_request_file(self, requests_path):
|
99 |
+
"""Finds the relevant request file for the current model and updates info with it"""
|
100 |
+
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
101 |
+
|
102 |
+
try:
|
103 |
+
with open(request_file, "r") as f:
|
104 |
+
request = json.load(f)
|
105 |
+
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
106 |
+
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
107 |
+
self.license = request.get("license", "?")
|
108 |
+
self.likes = request.get("likes", 0)
|
109 |
+
self.num_params = request.get("params", 0)
|
110 |
+
self.date = request.get("submitted_time", "")
|
111 |
+
except Exception:
|
112 |
+
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
|
113 |
+
|
114 |
+
def to_dict(self):
|
115 |
+
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
116 |
+
data_dict = {
|
117 |
+
"eval_name": self.eval_name, # not a column, just a save name,
|
118 |
+
AutoEvalColumn.model.name: make_clickable_model(self.full_model, self.revision),
|
119 |
+
}
|
120 |
+
|
121 |
+
for task in Tasks:
|
122 |
+
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
123 |
+
|
124 |
+
return data_dict
|
125 |
+
|
126 |
+
|
127 |
+
def get_request_file_for_model(requests_path, model_name, precision):
|
128 |
+
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
129 |
+
request_files = os.path.join(
|
130 |
+
requests_path,
|
131 |
+
f"{model_name}.json",
|
132 |
+
)
|
133 |
+
request_files = glob.glob(request_files)
|
134 |
+
|
135 |
+
# Select correct request file (precision)
|
136 |
+
request_file = ""
|
137 |
+
request_files = sorted(request_files, reverse=True)
|
138 |
+
for tmp_request_file in request_files:
|
139 |
+
with open(tmp_request_file, "r") as f:
|
140 |
+
req_content = json.load(f)
|
141 |
+
if (
|
142 |
+
req_content["status"] in ["FINISHED"]
|
143 |
+
and req_content["precision"] == precision.split(".")[-1]
|
144 |
+
):
|
145 |
+
request_file = tmp_request_file
|
146 |
+
return request_file
|
147 |
+
|
148 |
+
|
149 |
+
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
150 |
+
"""From the path of the results folder root, extract all needed info for results"""
|
151 |
+
model_result_filepaths = []
|
152 |
+
|
153 |
+
for root, _, files in os.walk(results_path):
|
154 |
+
# We should only have json files in model results
|
155 |
+
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
156 |
+
continue
|
157 |
+
|
158 |
+
# Sort the files by date
|
159 |
+
try:
|
160 |
+
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
161 |
+
except dateutil.parser._parser.ParserError:
|
162 |
+
files = [files[-1]]
|
163 |
+
|
164 |
+
for file in files:
|
165 |
+
model_result_filepaths.append(os.path.join(root, file))
|
166 |
+
|
167 |
+
eval_results = {}
|
168 |
+
for model_result_filepath in model_result_filepaths:
|
169 |
+
# Creation of result
|
170 |
+
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
171 |
+
eval_result.update_with_request_file(requests_path)
|
172 |
+
|
173 |
+
# Store results of same eval together
|
174 |
+
eval_name = eval_result.eval_name
|
175 |
+
if eval_name in eval_results.keys():
|
176 |
+
eval_results[eval_name].results.update(eval_result.results)
|
177 |
+
else:
|
178 |
+
eval_results[eval_name] = eval_result
|
179 |
+
|
180 |
+
results = []
|
181 |
+
for v in eval_results.values():
|
182 |
+
try:
|
183 |
+
v.to_dict() # we test if the dict version is complete
|
184 |
+
results.append(v)
|
185 |
+
except KeyError: # not all eval values present
|
186 |
+
continue
|
187 |
+
|
188 |
+
return results
|
src/populate.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
from src.about import Tasks
|
8 |
+
from src.display.formatting import has_no_nan_values, make_clickable_model
|
9 |
+
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
10 |
+
from src.leaderboard.read_evals import get_raw_eval_results
|
11 |
+
|
12 |
+
|
13 |
+
TASK_NAME_INVERSE_MAP = dict()
|
14 |
+
for task in Tasks:
|
15 |
+
TASK_NAME_INVERSE_MAP[task.value.col_name] = {
|
16 |
+
"name": task.value.benchmark,
|
17 |
+
"type": task.value.type,
|
18 |
+
"source": task.value.source,
|
19 |
+
}
|
20 |
+
|
21 |
+
EMPTY_SYMBOL = "--"
|
22 |
+
|
23 |
+
|
24 |
+
def get_inspect_log_url(model_name: str, benchmark_name: str) -> str:
|
25 |
+
"""Returns the URL to the log file for a given model and benchmark"""
|
26 |
+
with open("./inspect_log_file_names.json", "r") as f:
|
27 |
+
inspect_log_files = json.load(f)
|
28 |
+
log_file_name = inspect_log_files[model_name].get(benchmark_name, None)
|
29 |
+
if log_file_name is None:
|
30 |
+
return ""
|
31 |
+
else:
|
32 |
+
# replace .json with .eval
|
33 |
+
log_file_name = log_file_name.replace(".json", ".eval")
|
34 |
+
return f"https://storage.googleapis.com/inspect-evals/eval/{model_name}/index.html?log_file=logs/logs/{log_file_name}"
|
35 |
+
|
36 |
+
|
37 |
+
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
38 |
+
"""Creates a dataframe from all the individual experiment results"""
|
39 |
+
raw_data = get_raw_eval_results(results_path, requests_path)
|
40 |
+
all_data_json = [v.to_dict() for v in raw_data]
|
41 |
+
|
42 |
+
df = pd.DataFrame.from_records(all_data_json)
|
43 |
+
|
44 |
+
df = df[cols].round(decimals=2)
|
45 |
+
|
46 |
+
# subset for model and benchmark cols
|
47 |
+
df = df[[AutoEvalColumn.model.name] + benchmark_cols]
|
48 |
+
|
49 |
+
df = df.fillna(EMPTY_SYMBOL)
|
50 |
+
|
51 |
+
# make values clickable and link to log files
|
52 |
+
for col in benchmark_cols:
|
53 |
+
df[col] = df[[AutoEvalColumn.model.name, col]].apply(lambda x: f"[{x[col]}]({get_inspect_log_url(model_name=x[AutoEvalColumn.model.name].split('>')[1].split('<')[0], benchmark_name=TASK_NAME_INVERSE_MAP[col]['name'])})" if x[col] != EMPTY_SYMBOL else x[col], axis=1)
|
54 |
+
|
55 |
+
return df
|
56 |
+
|
57 |
+
|
58 |
+
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
59 |
+
"""Creates the different dataframes for the evaluation queues requestes"""
|
60 |
+
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
61 |
+
all_evals = []
|
62 |
+
|
63 |
+
for entry in entries:
|
64 |
+
if ".json" in entry:
|
65 |
+
file_path = os.path.join(save_path, entry)
|
66 |
+
with open(file_path) as fp:
|
67 |
+
data = json.load(fp)
|
68 |
+
|
69 |
+
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"], data["model_sha"])
|
70 |
+
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
71 |
+
|
72 |
+
all_evals.append(data)
|
73 |
+
elif ".md" not in entry:
|
74 |
+
# this is a folder
|
75 |
+
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
|
76 |
+
for sub_entry in sub_entries:
|
77 |
+
file_path = os.path.join(save_path, entry, sub_entry)
|
78 |
+
with open(file_path) as fp:
|
79 |
+
data = json.load(fp)
|
80 |
+
|
81 |
+
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"], data["model_sha"])
|
82 |
+
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
83 |
+
all_evals.append(data)
|
84 |
+
|
85 |
+
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
86 |
+
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
87 |
+
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
88 |
+
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
89 |
+
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
90 |
+
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
91 |
+
return df_finished[cols], df_running[cols], df_pending[cols]
|
src/submission/check_validity.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from collections import defaultdict
|
5 |
+
from datetime import datetime, timedelta, timezone
|
6 |
+
|
7 |
+
import huggingface_hub
|
8 |
+
from huggingface_hub import ModelCard
|
9 |
+
from huggingface_hub.hf_api import ModelInfo
|
10 |
+
from transformers import AutoConfig
|
11 |
+
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
12 |
+
|
13 |
+
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
14 |
+
"""Checks if the model card and license exist and have been filled"""
|
15 |
+
try:
|
16 |
+
card = ModelCard.load(repo_id)
|
17 |
+
except huggingface_hub.utils.EntryNotFoundError:
|
18 |
+
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
19 |
+
|
20 |
+
# Enforce license metadata
|
21 |
+
if card.data.license is None:
|
22 |
+
if not ("license_name" in card.data and "license_link" in card.data):
|
23 |
+
return False, (
|
24 |
+
"License not found. Please add a license to your model card using the `license` metadata or a"
|
25 |
+
" `license_name`/`license_link` pair."
|
26 |
+
)
|
27 |
+
|
28 |
+
# Enforce card content
|
29 |
+
if len(card.text) < 200:
|
30 |
+
return False, "Please add a description to your model card, it is too short."
|
31 |
+
|
32 |
+
return True, ""
|
33 |
+
|
34 |
+
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
|
35 |
+
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
36 |
+
try:
|
37 |
+
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
38 |
+
if test_tokenizer:
|
39 |
+
try:
|
40 |
+
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
41 |
+
except ValueError as e:
|
42 |
+
return (
|
43 |
+
False,
|
44 |
+
f"uses a tokenizer which is not in a transformers release: {e}",
|
45 |
+
None
|
46 |
+
)
|
47 |
+
except Exception as e:
|
48 |
+
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
49 |
+
return True, None, config
|
50 |
+
|
51 |
+
except ValueError:
|
52 |
+
return (
|
53 |
+
False,
|
54 |
+
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
55 |
+
None
|
56 |
+
)
|
57 |
+
|
58 |
+
except Exception as e:
|
59 |
+
return False, "was not found on hub!", None
|
60 |
+
|
61 |
+
|
62 |
+
def get_model_size(model_info: ModelInfo, precision: str):
|
63 |
+
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
64 |
+
try:
|
65 |
+
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
66 |
+
except (AttributeError, TypeError):
|
67 |
+
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
68 |
+
|
69 |
+
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
70 |
+
model_size = size_factor * model_size
|
71 |
+
return model_size
|
72 |
+
|
73 |
+
def get_model_arch(model_info: ModelInfo):
|
74 |
+
"""Gets the model architecture from the configuration"""
|
75 |
+
return model_info.config.get("architectures", "Unknown")
|
76 |
+
|
77 |
+
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
78 |
+
"""Gather a list of already submitted models to avoid duplicates"""
|
79 |
+
depth = 1
|
80 |
+
file_names = []
|
81 |
+
users_to_submission_dates = defaultdict(list)
|
82 |
+
|
83 |
+
for root, _, files in os.walk(requested_models_dir):
|
84 |
+
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
85 |
+
if current_depth == depth:
|
86 |
+
for file in files:
|
87 |
+
if not file.endswith(".json"):
|
88 |
+
continue
|
89 |
+
with open(os.path.join(root, file), "r") as f:
|
90 |
+
info = json.load(f)
|
91 |
+
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
|
92 |
+
|
93 |
+
# Select organisation
|
94 |
+
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
95 |
+
continue
|
96 |
+
organisation, _ = info["model"].split("/")
|
97 |
+
users_to_submission_dates[organisation].append(info["submitted_time"])
|
98 |
+
|
99 |
+
return set(file_names), users_to_submission_dates
|
src/submission/submit.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from datetime import datetime, timezone
|
4 |
+
|
5 |
+
from src.display.formatting import styled_error, styled_message, styled_warning
|
6 |
+
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
7 |
+
from src.submission.check_validity import (
|
8 |
+
already_submitted_models,
|
9 |
+
check_model_card,
|
10 |
+
get_model_size,
|
11 |
+
is_model_on_hub,
|
12 |
+
)
|
13 |
+
|
14 |
+
REQUESTED_MODELS = None
|
15 |
+
USERS_TO_SUBMISSION_DATES = None
|
16 |
+
|
17 |
+
def add_new_eval(
|
18 |
+
model: str,
|
19 |
+
base_model: str,
|
20 |
+
revision: str,
|
21 |
+
precision: str,
|
22 |
+
weight_type: str,
|
23 |
+
model_type: str,
|
24 |
+
):
|
25 |
+
global REQUESTED_MODELS
|
26 |
+
global USERS_TO_SUBMISSION_DATES
|
27 |
+
if not REQUESTED_MODELS:
|
28 |
+
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
29 |
+
|
30 |
+
user_name = ""
|
31 |
+
model_path = model
|
32 |
+
if "/" in model:
|
33 |
+
user_name = model.split("/")[0]
|
34 |
+
model_path = model.split("/")[1]
|
35 |
+
|
36 |
+
precision = precision.split(" ")[0]
|
37 |
+
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
38 |
+
|
39 |
+
if model_type is None or model_type == "":
|
40 |
+
return styled_error("Please select a model type.")
|
41 |
+
|
42 |
+
# Does the model actually exist?
|
43 |
+
if revision == "":
|
44 |
+
revision = "main"
|
45 |
+
|
46 |
+
# Is the model on the hub?
|
47 |
+
if weight_type in ["Delta", "Adapter"]:
|
48 |
+
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
49 |
+
if not base_model_on_hub:
|
50 |
+
return styled_error(f'Base model "{base_model}" {error}')
|
51 |
+
|
52 |
+
if not weight_type == "Adapter":
|
53 |
+
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
54 |
+
if not model_on_hub:
|
55 |
+
return styled_error(f'Model "{model}" {error}')
|
56 |
+
|
57 |
+
# Is the model info correctly filled?
|
58 |
+
try:
|
59 |
+
model_info = API.model_info(repo_id=model, revision=revision)
|
60 |
+
except Exception:
|
61 |
+
return styled_error("Could not get your model information. Please fill it up properly.")
|
62 |
+
|
63 |
+
model_size = get_model_size(model_info=model_info, precision=precision)
|
64 |
+
|
65 |
+
# Were the model card and license filled?
|
66 |
+
try:
|
67 |
+
license = model_info.cardData["license"]
|
68 |
+
except Exception:
|
69 |
+
return styled_error("Please select a license for your model")
|
70 |
+
|
71 |
+
modelcard_OK, error_msg = check_model_card(model)
|
72 |
+
if not modelcard_OK:
|
73 |
+
return styled_error(error_msg)
|
74 |
+
|
75 |
+
# Seems good, creating the eval
|
76 |
+
print("Adding new eval")
|
77 |
+
|
78 |
+
eval_entry = {
|
79 |
+
"model": model,
|
80 |
+
"base_model": base_model,
|
81 |
+
"revision": revision,
|
82 |
+
"precision": precision,
|
83 |
+
"weight_type": weight_type,
|
84 |
+
"status": "PENDING",
|
85 |
+
"submitted_time": current_time,
|
86 |
+
"model_type": model_type,
|
87 |
+
"likes": model_info.likes,
|
88 |
+
"params": model_size,
|
89 |
+
"license": license,
|
90 |
+
"private": False,
|
91 |
+
}
|
92 |
+
|
93 |
+
# Check for duplicate submission
|
94 |
+
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
95 |
+
return styled_warning("This model has been already submitted.")
|
96 |
+
|
97 |
+
print("Creating eval file")
|
98 |
+
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
99 |
+
os.makedirs(OUT_DIR, exist_ok=True)
|
100 |
+
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
|
101 |
+
|
102 |
+
with open(out_path, "w") as f:
|
103 |
+
f.write(json.dumps(eval_entry))
|
104 |
+
|
105 |
+
print("Uploading eval file")
|
106 |
+
API.upload_file(
|
107 |
+
path_or_fileobj=out_path,
|
108 |
+
path_in_repo=out_path.split("eval-queue/")[1],
|
109 |
+
repo_id=QUEUE_REPO,
|
110 |
+
repo_type="dataset",
|
111 |
+
commit_message=f"Add {model} to eval queue",
|
112 |
+
)
|
113 |
+
|
114 |
+
# Remove the local file
|
115 |
+
os.remove(out_path)
|
116 |
+
|
117 |
+
return styled_message(
|
118 |
+
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
119 |
+
)
|