|
import os |
|
import argparse |
|
import pickle |
|
import keras |
|
import numpy as np |
|
|
|
STORING_PATH = '../offline_rl_results/' |
|
MODELS_PATH = './trained_models/' |
|
|
|
def save_results(environment, approximator, seed, rewards): |
|
storing_path = os.path.join(STORING_PATH, environment, approximator, str(seed)) |
|
if not os.path.exists(storing_path): |
|
os.makedirs(storing_path) |
|
|
|
np.save(storing_path + '/' + 'upside_down_rewards.npy', rewards) |
|
|
|
def save_trained_model(environment, seed, algorithm, model): |
|
storing_path = os.path.join(MODELS_PATH, environment, str(seed), algorithm) |
|
if not os.path.exists(storing_path): |
|
os.makedirs(storing_path) |
|
|
|
model.save_weights(storing_path + '/' + 'trained_model.h5') |
|
|
|
def save_offline_results(environment, algorithm, seed, returns): |
|
storing_path = os.path.join(STORING_PATH, algorithm, str(seed)) |
|
if not os.path.exists(storing_path): |
|
os.makedirs(storing_path) |
|
|
|
np.save(storing_path + '/rewards.npy', returns) |
|
|