udrl / old_code /experiment_3 /upside_down /prepare_offline_buffer.py
vimmoos@Thor
In the beginning there was darkness
b49af5c
import os
import math
import time
import gym
import random
import utils
import keras
import numpy as np
from collections import deque
from matplotlib import pyplot as plt
class ReplayBuffer():
"""
Thank you: https://github.com/BY571/
"""
def __init__(self, max_size):
self.max_size = max_size
self.buffer = []
def add_sample(self, states, actions, rewards):
episode = {"states": states, "actions":actions, "rewards": rewards, "summed_rewards":sum(rewards)}
self.buffer.append(episode)
def sort(self):
#sort buffer
self.buffer = sorted(self.buffer, key = lambda i: i["summed_rewards"],reverse=True)
# keep the max buffer size
self.buffer = self.buffer[:self.max_size]
def get_random_samples(self, batch_size):
self.sort()
idxs = np.random.randint(0, len(self.buffer), batch_size)
batch = [self.buffer[idx] for idx in idxs]
return batch
def get_n_best(self, n):
self.sort()
return self.buffer[:n]
def __len__(self):
return len(self.buffer)
class UpsideDownAgent():
def __init__(self, environment):
self.environment = gym.make(environment)
self.state_size = self.environment.observation_space.shape[0]
self.action_size = self.environment.action_space.n
self.memory = ReplayBuffer(700)
self.last_few = 75
self.batch_size = 32
self.command_size = 2 # desired return + desired horizon
self.desired_return = 1
self.desired_horizon = 1
self.horizon_scale = 0.02
self.return_scale = 0.02
self.testing_state = 0
self.behaviour_function = utils.get_functional_behaviour_function(self.state_size, self.command_size, self.action_size, True)
self.testing_rewards = []
def get_action(self, observation, command):
"""
We will sample from the action distribution modeled by the Behavior Function
"""
action_probs = self.behaviour_function.predict([observation, command])
action = np.random.choice(np.arange(0, self.action_size), p=action_probs[0])
return action
def get_greedy_action(self, observation, command):
action_probs = self.behaviour_function.predict([observation, command])
action = np.argmax(action_probs)
return action
def sample_exploratory_commands(self):
best_episodes = self.memory.get_n_best(self.last_few)
exploratory_desired_horizon = np.mean([len(i["states"]) for i in best_episodes])
returns = [i["summed_rewards"] for i in best_episodes]
exploratory_desired_returns = np.random.uniform(np.mean(returns), np.mean(returns)+np.std(returns))
return [exploratory_desired_returns, exploratory_desired_horizon]
def generate_offline_episodes(self, environment, e, desired_return, desired_horizon):
env = gym.make(environment)
tot_rewards = []
done = False
score = 0
state = env.reset()
scores = []
states = []
actions = []
rewards = []
while not done:
state = np.reshape(state, [1, self.state_size])
states.append(state)
observation = state
command = np.asarray([desired_return * self.return_scale, desired_horizon * self.horizon_scale])
command = np.reshape(command, [1, len(command)])
action = self.get_action(observation, command)
actions.append(action)
next_state, reward, done, info = env.step(action)
next_state = np.reshape(next_state, [1, self.state_size])
rewards.append(reward)
score += reward
state = next_state
desired_return -= reward # Line 8 Algorithm 2
desired_horizon -= 1 # Line 9 Algorithm 2
desired_horizon = np.maximum(desired_horizon, 1)
self.memory.add_sample(states, actions, rewards)
print('Testing score: {}'.format(score))
def save_buffer(self, environment, seed):
utils.save_buffer(environment, seed, self.memory.buffer)
def run_experiment():
environment = 'CartPole-v0'
seed = 1
offline_episodes = 700
returns = []
agent = UpsideDownAgent(environment)
for e in range(offline_episodes):
tmp_r = []
r = agent.generate_offline_episodes(environment, e, 200, 200)
tmp_r.append(r)
agent.save_buffer(environment, seed)
if __name__ == "__main__":
run_experiment()