Spaces:
Running
Running
Minor bug fixed
#5
by
zhihuang
- opened
- app.py +1 -1
- data/twitter.asset +2 -2
- helper.py +65 -0
- image2image.py +88 -82
- plip_support.py +0 -9
- text2image.py +86 -80
app.py
CHANGED
|
@@ -5,7 +5,7 @@ import streamlit as st
|
|
| 5 |
|
| 6 |
|
| 7 |
|
| 8 |
-
|
| 9 |
|
| 10 |
st.sidebar.title("Multi-task Vision–Language AI for Pathology")
|
| 11 |
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
|
| 8 |
+
st.set_page_config(layout="wide")
|
| 9 |
|
| 10 |
st.sidebar.title("Multi-task Vision–Language AI for Pathology")
|
| 11 |
|
data/twitter.asset
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8804057c2b910dd56a2cde6f02d317fed9dacc51e6e0ace5fa57effdf06f8c34
|
| 3 |
+
size 266592030
|
helper.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from plip_support import embed_text
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import requests
|
| 7 |
+
import tokenizers
|
| 8 |
+
import os
|
| 9 |
+
from io import BytesIO
|
| 10 |
+
import pickle
|
| 11 |
+
import base64
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
from transformers import (
|
| 15 |
+
VisionTextDualEncoderModel,
|
| 16 |
+
AutoFeatureExtractor,
|
| 17 |
+
AutoTokenizer,
|
| 18 |
+
CLIPModel,
|
| 19 |
+
AutoProcessor
|
| 20 |
+
)
|
| 21 |
+
import streamlit.components.v1 as components
|
| 22 |
+
from st_clickable_images import clickable_images #pip install st-clickable-images
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
@st.cache(
|
| 26 |
+
hash_funcs={
|
| 27 |
+
torch.nn.parameter.Parameter: lambda _: None,
|
| 28 |
+
tokenizers.Tokenizer: lambda _: None,
|
| 29 |
+
tokenizers.AddedToken: lambda _: None
|
| 30 |
+
}
|
| 31 |
+
)
|
| 32 |
+
def load_path_clip():
|
| 33 |
+
model = CLIPModel.from_pretrained("vinid/plip")
|
| 34 |
+
processor = AutoProcessor.from_pretrained("vinid/plip")
|
| 35 |
+
return model, processor
|
| 36 |
+
|
| 37 |
+
@st.cache
|
| 38 |
+
def init():
|
| 39 |
+
with open('data/twitter.asset', 'rb') as f:
|
| 40 |
+
data = pickle.load(f)
|
| 41 |
+
meta = data['meta'].reset_index(drop=True)
|
| 42 |
+
image_embedding = data['image_embedding']
|
| 43 |
+
text_embedding = data['text_embedding']
|
| 44 |
+
print(meta.shape, image_embedding.shape)
|
| 45 |
+
validation_subset_index = meta['source'].values == 'Val_Tweets'
|
| 46 |
+
return meta, image_embedding, text_embedding, validation_subset_index
|
| 47 |
+
|
| 48 |
+
def embed_images(model, images, processor):
|
| 49 |
+
inputs = processor(images=images)
|
| 50 |
+
pixel_values = torch.tensor(np.array(inputs["pixel_values"]))
|
| 51 |
+
|
| 52 |
+
with torch.no_grad():
|
| 53 |
+
embeddings = model.get_image_features(pixel_values=pixel_values)
|
| 54 |
+
return embeddings
|
| 55 |
+
|
| 56 |
+
def embed_texts(model, texts, processor):
|
| 57 |
+
inputs = processor(text=texts, padding="longest")
|
| 58 |
+
input_ids = torch.tensor(inputs["input_ids"])
|
| 59 |
+
attention_mask = torch.tensor(inputs["attention_mask"])
|
| 60 |
+
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
embeddings = model.get_text_features(
|
| 63 |
+
input_ids=input_ids, attention_mask=attention_mask
|
| 64 |
+
)
|
| 65 |
+
return embeddings
|
image2image.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
-
from plip_support import embed_text
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image
|
| 6 |
import requests
|
|
@@ -21,50 +20,38 @@ from transformers import (
|
|
| 21 |
import streamlit.components.v1 as components
|
| 22 |
from st_clickable_images import clickable_images #pip install st-clickable-images
|
| 23 |
|
| 24 |
-
|
| 25 |
-
def embed_images(model, images, processor):
|
| 26 |
-
inputs = processor(images=images)
|
| 27 |
-
pixel_values = torch.tensor(np.array(inputs["pixel_values"]))
|
| 28 |
-
|
| 29 |
-
with torch.no_grad():
|
| 30 |
-
embeddings = model.get_image_features(pixel_values=pixel_values)
|
| 31 |
-
return embeddings
|
| 32 |
-
|
| 33 |
-
@st.cache
|
| 34 |
-
def load_embeddings(embeddings_path):
|
| 35 |
-
print("loading embeddings")
|
| 36 |
-
return np.load(embeddings_path)
|
| 37 |
-
|
| 38 |
-
@st.cache(
|
| 39 |
-
hash_funcs={
|
| 40 |
-
torch.nn.parameter.Parameter: lambda _: None,
|
| 41 |
-
tokenizers.Tokenizer: lambda _: None,
|
| 42 |
-
tokenizers.AddedToken: lambda _: None
|
| 43 |
-
}
|
| 44 |
-
)
|
| 45 |
-
def load_path_clip():
|
| 46 |
-
model = CLIPModel.from_pretrained("vinid/plip")
|
| 47 |
-
processor = AutoProcessor.from_pretrained("vinid/plip")
|
| 48 |
-
return model, processor
|
| 49 |
-
|
| 50 |
-
def init():
|
| 51 |
-
with open('data/twitter.asset', 'rb') as f:
|
| 52 |
-
data = pickle.load(f)
|
| 53 |
-
meta = data['meta'].reset_index(drop=True)
|
| 54 |
-
image_embedding = data['embedding']
|
| 55 |
-
print(meta.shape, image_embedding.shape)
|
| 56 |
-
validation_subset_index = meta['source'].values == 'Val_Tweets'
|
| 57 |
-
return meta, image_embedding, validation_subset_index
|
| 58 |
|
| 59 |
|
| 60 |
def app():
|
| 61 |
st.title('Image to Image Retrieval')
|
| 62 |
st.markdown('#### A pathology image search engine that correlate images with images.')
|
| 63 |
|
| 64 |
-
meta, image_embedding, validation_subset_index = init()
|
| 65 |
model, processor = load_path_clip()
|
| 66 |
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
example_path = 'data/example_images'
|
| 69 |
list_of_examples = [os.path.join(example_path, v) for v in os.listdir(example_path)]
|
| 70 |
example_imgs = []
|
|
@@ -86,18 +73,9 @@ def app():
|
|
| 86 |
|
| 87 |
|
| 88 |
|
| 89 |
-
data_options = ["All twitter data (2006-03-21 — 2023-01-15)",
|
| 90 |
-
"Twitter validation data (2022-11-16 — 2023-01-15)"]
|
| 91 |
-
st.radio(
|
| 92 |
-
"Or choose dataset for image retrieval 👉",
|
| 93 |
-
key="datapool",
|
| 94 |
-
options=data_options,
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
|
| 98 |
|
| 99 |
-
|
| 100 |
-
col1, col2 = st.columns(2)
|
| 101 |
with col1:
|
| 102 |
query = st.file_uploader("Choose a file to upload")
|
| 103 |
|
|
@@ -113,49 +91,77 @@ def app():
|
|
| 113 |
with col2:
|
| 114 |
st.image(image, caption='Your upload')
|
| 115 |
|
| 116 |
-
|
| 117 |
|
| 118 |
-
|
| 119 |
|
| 120 |
# Sort IDs by cosine-similarity from high to low
|
| 121 |
-
similarity_scores = single_image.dot(image_embedding.T)
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
topn = 5
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
id_sorted = np.argsort(similarity_scores)[::-1]
|
| 136 |
-
best_ids = id_sorted[:topn]
|
| 137 |
-
best_scores = similarity_scores[best_ids]
|
| 138 |
-
target_weblinks = meta["weblink"].values[validation_subset_index][best_ids]
|
| 139 |
-
#TODO: Avoid duplicated ID
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
topk_options = ['1st', '2nd', '3rd', '4th', '5th']
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
|
| 161 |
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
from PIL import Image
|
| 5 |
import requests
|
|
|
|
| 20 |
import streamlit.components.v1 as components
|
| 21 |
from st_clickable_images import clickable_images #pip install st-clickable-images
|
| 22 |
|
| 23 |
+
from helper import load_path_clip, init, embed_images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
def app():
|
| 27 |
st.title('Image to Image Retrieval')
|
| 28 |
st.markdown('#### A pathology image search engine that correlate images with images.')
|
| 29 |
|
| 30 |
+
meta, image_embedding, text_embedding, validation_subset_index = init()
|
| 31 |
model, processor = load_path_clip()
|
| 32 |
|
| 33 |
+
|
| 34 |
+
col1, col2 = st.columns(2)
|
| 35 |
+
with col1:
|
| 36 |
+
data_options = ["All twitter data (2006-03-21 — 2023-01-15)",
|
| 37 |
+
"Twitter validation data (2022-11-16 — 2023-01-15)"]
|
| 38 |
+
st.radio(
|
| 39 |
+
"Choose dataset for image retrieval 👉",
|
| 40 |
+
key="datapool",
|
| 41 |
+
options=data_options,
|
| 42 |
+
)
|
| 43 |
+
with col2:
|
| 44 |
+
retrieval_options = ["Image only",
|
| 45 |
+
"Text and image (beta)",
|
| 46 |
+
]
|
| 47 |
+
st.radio(
|
| 48 |
+
"Similarity calcuation 👉",
|
| 49 |
+
key="calculation_option",
|
| 50 |
+
options=retrieval_options,
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
st.markdown('Try out following examples:')
|
| 55 |
example_path = 'data/example_images'
|
| 56 |
list_of_examples = [os.path.join(example_path, v) for v in os.listdir(example_path)]
|
| 57 |
example_imgs = []
|
|
|
|
| 73 |
|
| 74 |
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
|
| 78 |
+
col1, col2, _ = st.columns(3)
|
|
|
|
| 79 |
with col1:
|
| 80 |
query = st.file_uploader("Choose a file to upload")
|
| 81 |
|
|
|
|
| 91 |
with col2:
|
| 92 |
st.image(image, caption='Your upload')
|
| 93 |
|
| 94 |
+
input_image = embed_images(model, [image], processor)[0].detach().cpu().numpy()
|
| 95 |
|
| 96 |
+
input_image = input_image/np.linalg.norm(input_image)
|
| 97 |
|
| 98 |
# Sort IDs by cosine-similarity from high to low
|
|
|
|
| 99 |
|
| 100 |
+
if st.session_state.calculation_option == retrieval_options[0]: # Image only
|
| 101 |
+
similarity_scores = input_image.dot(image_embedding.T)
|
| 102 |
+
else: # Text and Image
|
| 103 |
+
similarity_scores_i = input_image.dot(image_embedding.T)
|
| 104 |
+
similarity_scores_t = input_image.dot(text_embedding.T)
|
| 105 |
+
similarity_scores_i = similarity_scores_i/np.max(similarity_scores_i)
|
| 106 |
+
similarity_scores_t = similarity_scores_t/np.max(similarity_scores_t)
|
| 107 |
+
similarity_scores = (similarity_scores_i + similarity_scores_t)/2
|
| 108 |
|
| 109 |
+
|
| 110 |
+
############################################################
|
| 111 |
+
# Get top results
|
| 112 |
+
############################################################
|
| 113 |
topn = 5
|
| 114 |
+
df = pd.DataFrame(np.c_[np.arange(len(meta)), similarity_scores, meta['weblink'].values], columns = ['idx', 'score', 'twitterlink'])
|
| 115 |
+
if st.session_state.datapool == data_options[1]: #Use val twitter data
|
| 116 |
+
df = df.loc[validation_subset_index,:]
|
| 117 |
+
df = df.sort_values('score', ascending=False)
|
| 118 |
+
df = df.drop_duplicates(subset=['twitterlink'])
|
| 119 |
+
best_id_topk = df['idx'].values[:topn]
|
| 120 |
+
target_scores = df['score'].values[:topn]
|
| 121 |
+
target_weblinks = df['twitterlink'].values[:topn]
|
| 122 |
+
|
| 123 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
+
############################################################
|
| 126 |
+
# Display results
|
| 127 |
+
############################################################
|
| 128 |
+
|
| 129 |
+
st.markdown('#### Top 5 results:')
|
| 130 |
topk_options = ['1st', '2nd', '3rd', '4th', '5th']
|
| 131 |
+
tab = {}
|
| 132 |
+
tab[0], tab[1], tab[2] = st.columns(3)
|
| 133 |
+
for i in [0,1,2]:
|
| 134 |
+
with tab[i]:
|
| 135 |
+
topn_value = i
|
| 136 |
+
topn_txt = topk_options[i]
|
| 137 |
+
st.caption(f'The {topn_txt} relevant image (similarity = {target_scores[topn_value]:.4f})')
|
| 138 |
+
components.html('''
|
| 139 |
+
<blockquote class="twitter-tweet">
|
| 140 |
+
<a href="%s"></a>
|
| 141 |
+
</blockquote>
|
| 142 |
+
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
|
| 143 |
+
</script>
|
| 144 |
+
''' % target_weblinks[topn_value],
|
| 145 |
+
height=800)
|
| 146 |
+
|
| 147 |
+
tab[3], tab[4], tab[5] = st.columns(3)
|
| 148 |
+
for i in [3,4]:
|
| 149 |
+
with tab[i]:
|
| 150 |
+
topn_value = i
|
| 151 |
+
topn_txt = topk_options[i]
|
| 152 |
+
st.caption(f'The {topn_txt} relevant image (similarity = {target_scores[topn_value]:.4f})')
|
| 153 |
+
components.html('''
|
| 154 |
+
<blockquote class="twitter-tweet">
|
| 155 |
+
<a href="%s"></a>
|
| 156 |
+
</blockquote>
|
| 157 |
+
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
|
| 158 |
+
</script>
|
| 159 |
+
''' % target_weblinks[topn_value],
|
| 160 |
+
height=800)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
|
| 166 |
|
| 167 |
|
plip_support.py
DELETED
|
@@ -1,9 +0,0 @@
|
|
| 1 |
-
import clip
|
| 2 |
-
import torch
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
def embed_text(plip, text, device="cpu"):
|
| 8 |
-
idx = clip.tokenize([text], truncate=True).to(device)
|
| 9 |
-
return plip.encode_text(idx).detach().cpu().numpy()[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text2image.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
-
from plip_support import embed_text
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image
|
| 6 |
import requests
|
|
@@ -17,43 +16,9 @@ from transformers import (
|
|
| 17 |
)
|
| 18 |
import streamlit.components.v1 as components
|
| 19 |
|
|
|
|
| 20 |
|
| 21 |
-
def embed_texts(model, texts, processor):
|
| 22 |
-
inputs = processor(text=texts, padding="longest")
|
| 23 |
-
input_ids = torch.tensor(inputs["input_ids"])
|
| 24 |
-
attention_mask = torch.tensor(inputs["attention_mask"])
|
| 25 |
|
| 26 |
-
with torch.no_grad():
|
| 27 |
-
embeddings = model.get_text_features(
|
| 28 |
-
input_ids=input_ids, attention_mask=attention_mask
|
| 29 |
-
)
|
| 30 |
-
return embeddings
|
| 31 |
-
|
| 32 |
-
@st.cache
|
| 33 |
-
def load_embeddings(embeddings_path):
|
| 34 |
-
print("loading embeddings")
|
| 35 |
-
return np.load(embeddings_path)
|
| 36 |
-
|
| 37 |
-
@st.cache(
|
| 38 |
-
hash_funcs={
|
| 39 |
-
torch.nn.parameter.Parameter: lambda _: None,
|
| 40 |
-
tokenizers.Tokenizer: lambda _: None,
|
| 41 |
-
tokenizers.AddedToken: lambda _: None
|
| 42 |
-
}
|
| 43 |
-
)
|
| 44 |
-
def load_path_clip():
|
| 45 |
-
model = CLIPModel.from_pretrained("vinid/plip")
|
| 46 |
-
processor = AutoProcessor.from_pretrained("vinid/plip")
|
| 47 |
-
return model, processor
|
| 48 |
-
|
| 49 |
-
def init():
|
| 50 |
-
with open('data/twitter.asset', 'rb') as f:
|
| 51 |
-
data = pickle.load(f)
|
| 52 |
-
meta = data['meta'].reset_index(drop=True)
|
| 53 |
-
image_embedding = data['embedding']
|
| 54 |
-
print(meta.shape, image_embedding.shape)
|
| 55 |
-
validation_subset_index = meta['source'].values == 'Val_Tweets'
|
| 56 |
-
return meta, image_embedding, validation_subset_index
|
| 57 |
|
| 58 |
def app():
|
| 59 |
|
|
@@ -61,16 +26,29 @@ def app():
|
|
| 61 |
st.markdown('#### A pathology image search engine that correlate texts directly with images.')
|
| 62 |
st.caption('Note: The searching query matches images only. The twitter text does not used for searching.')
|
| 63 |
|
| 64 |
-
meta, image_embedding, validation_subset_index = init()
|
| 65 |
model, processor = load_path_clip()
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
"
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
|
| 76 |
col1, col2 = st.columns(2)
|
|
@@ -106,46 +84,74 @@ def app():
|
|
| 106 |
else:
|
| 107 |
query = query_2
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
| 111 |
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
-
topn = 5
|
| 115 |
-
if st.session_state.datapool == data_options[0]:
|
| 116 |
-
#Use all twitter data
|
| 117 |
-
id_sorted = np.argsort(similarity_scores)[::-1]
|
| 118 |
-
best_ids = id_sorted[:topn]
|
| 119 |
-
best_scores = similarity_scores[best_ids]
|
| 120 |
-
target_weblinks = meta["weblink"].values[best_ids]
|
| 121 |
-
else:
|
| 122 |
-
#Use validation twitter data
|
| 123 |
-
similarity_scores = similarity_scores[validation_subset_index]
|
| 124 |
-
# Sort IDs by cosine-similarity from high to low
|
| 125 |
-
id_sorted = np.argsort(similarity_scores)[::-1]
|
| 126 |
-
best_ids = id_sorted[:topn]
|
| 127 |
-
best_scores = similarity_scores[best_ids]
|
| 128 |
-
target_weblinks = meta["weblink"].values[validation_subset_index][best_ids]
|
| 129 |
-
#TODO: Avoid duplicated ID
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
topk_options = ['1st', '2nd', '3rd', '4th', '5th']
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
|
| 151 |
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
from PIL import Image
|
| 5 |
import requests
|
|
|
|
| 16 |
)
|
| 17 |
import streamlit.components.v1 as components
|
| 18 |
|
| 19 |
+
from helper import load_path_clip, init, embed_texts
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
def app():
|
| 24 |
|
|
|
|
| 26 |
st.markdown('#### A pathology image search engine that correlate texts directly with images.')
|
| 27 |
st.caption('Note: The searching query matches images only. The twitter text does not used for searching.')
|
| 28 |
|
| 29 |
+
meta, image_embedding, text_embedding, validation_subset_index = init()
|
| 30 |
model, processor = load_path_clip()
|
| 31 |
|
| 32 |
+
|
| 33 |
+
col1, col2 = st.columns(2)
|
| 34 |
+
with col1:
|
| 35 |
+
data_options = ["All twitter data (2006-03-21 — 2023-01-15)",
|
| 36 |
+
"Twitter validation data (2022-11-16 — 2023-01-15)"]
|
| 37 |
+
st.radio(
|
| 38 |
+
"Choose dataset for image retrieval 👉",
|
| 39 |
+
key="datapool",
|
| 40 |
+
options=data_options,
|
| 41 |
+
)
|
| 42 |
+
with col2:
|
| 43 |
+
retrieval_options = ["Image only",
|
| 44 |
+
"text and image (beta)",
|
| 45 |
+
]
|
| 46 |
+
st.radio(
|
| 47 |
+
"Similarity calcuation Mapping input with 👉",
|
| 48 |
+
key="calculation_option",
|
| 49 |
+
options=retrieval_options,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
|
| 53 |
|
| 54 |
col1, col2 = st.columns(2)
|
|
|
|
| 84 |
else:
|
| 85 |
query = query_2
|
| 86 |
|
| 87 |
+
|
| 88 |
+
input_text = embed_texts(model, [query], processor)[0].detach().cpu().numpy()
|
| 89 |
+
input_text = input_text/np.linalg.norm(input_text)
|
| 90 |
+
|
| 91 |
|
| 92 |
+
if st.session_state.calculation_option == retrieval_options[0]: # Image only
|
| 93 |
+
similarity_scores = input_text.dot(image_embedding.T)
|
| 94 |
+
else: # Text and Image
|
| 95 |
+
similarity_scores_i = input_text.dot(image_embedding.T)
|
| 96 |
+
similarity_scores_t = input_text.dot(text_embedding.T)
|
| 97 |
+
similarity_scores_i = similarity_scores_i/np.max(similarity_scores_i)
|
| 98 |
+
similarity_scores_t = similarity_scores_t/np.max(similarity_scores_t)
|
| 99 |
+
similarity_scores = (similarity_scores_i + similarity_scores_t)/2
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
############################################################
|
| 105 |
+
# Get top results
|
| 106 |
+
############################################################
|
| 107 |
+
topn = 5
|
| 108 |
+
df = pd.DataFrame(np.c_[np.arange(len(meta)), similarity_scores, meta['weblink'].values], columns = ['idx', 'score', 'twitterlink'])
|
| 109 |
+
if st.session_state.datapool == data_options[1]: #Use val twitter data
|
| 110 |
+
df = df.loc[validation_subset_index,:]
|
| 111 |
+
df = df.sort_values('score', ascending=False)
|
| 112 |
+
df = df.drop_duplicates(subset=['twitterlink'])
|
| 113 |
+
best_id_topk = df['idx'].values[:topn]
|
| 114 |
+
target_scores = df['score'].values[:topn]
|
| 115 |
+
target_weblinks = df['twitterlink'].values[:topn]
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
############################################################
|
| 119 |
+
# Display results
|
| 120 |
+
############################################################
|
| 121 |
+
|
| 122 |
+
st.markdown('Your input query: %s' % query)
|
| 123 |
+
st.markdown('#### Top 5 results:')
|
| 124 |
topk_options = ['1st', '2nd', '3rd', '4th', '5th']
|
| 125 |
+
tab = {}
|
| 126 |
+
tab[0], tab[1], tab[2] = st.columns(3)
|
| 127 |
+
for i in [0,1,2]:
|
| 128 |
+
with tab[i]:
|
| 129 |
+
topn_value = i
|
| 130 |
+
topn_txt = topk_options[i]
|
| 131 |
+
st.caption(f'The {topn_txt} relevant image (similarity = {target_scores[topn_value]:.4f})')
|
| 132 |
+
components.html('''
|
| 133 |
+
<blockquote class="twitter-tweet">
|
| 134 |
+
<a href="%s"></a>
|
| 135 |
+
</blockquote>
|
| 136 |
+
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
|
| 137 |
+
</script>
|
| 138 |
+
''' % target_weblinks[topn_value],
|
| 139 |
+
height=800)
|
| 140 |
+
|
| 141 |
+
tab[3], tab[4], tab[5] = st.columns(3)
|
| 142 |
+
for i in [3,4]:
|
| 143 |
+
with tab[i]:
|
| 144 |
+
topn_value = i
|
| 145 |
+
topn_txt = topk_options[i]
|
| 146 |
+
st.caption(f'The {topn_txt} relevant image (similarity = {target_scores[topn_value]:.4f})')
|
| 147 |
+
components.html('''
|
| 148 |
+
<blockquote class="twitter-tweet">
|
| 149 |
+
<a href="%s"></a>
|
| 150 |
+
</blockquote>
|
| 151 |
+
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
|
| 152 |
+
</script>
|
| 153 |
+
''' % target_weblinks[topn_value],
|
| 154 |
+
height=800)
|
| 155 |
|
| 156 |
|
| 157 |
|