File size: 888 Bytes
85ea4bd 7827a37 4644a82 85ea4bd 7827a37 85ea4bd 7827a37 26a5f67 6b88819 85ea4bd 4644a82 7827a37 4644a82 7827a37 4644a82 7827a37 4644a82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
base = "meta-llama/Llama-2-7b-chat-hf"
adapter = "FinGPT/fingpt-mt_llama2-7b_lora"
tokenizer = AutoTokenizer.from_pretrained(base)
model = AutoModelForCausalLM.from_pretrained(adapter, device_map="auto")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
def chat(user_input, history):
prompt = (history + "\nUser: " + user_input) if history else ("User: " + user_input)
output = pipe(prompt, max_new_tokens=256, do_sample=True)[0]["generated_text"]
return output, prompt + "\nAssistant: " + output
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
txt = gr.Textbox(placeholder="Ask a finance question...")
state = gr.State("")
txt.submit(lambda m, h: (chatbot + [(m, chat(m, h)[0])], chat(m, h)[1]), [txt, state], [chatbot, state])
demo.launch()
|