metadata
base_model: intfloat/multilingual-e5-small
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2000
- loss:OnlineContrastiveLoss
widget:
- source_sentence: How do I sign up for a new account?
sentences:
- How do I book a flight online?
- Can I withdraw money from my bank?
- What is the process for creating a new account?
- source_sentence: How can I enhance my English skills?
sentences:
- What are the ingredients of a pizza?
- How can I improve my English?
- What are the ingredients of a pizza?
- source_sentence: Where can I buy a new bicycle?
sentences:
- What is the importance of a balanced diet?
- How do I update my address?
- Where can I buy a new laptop?
- source_sentence: What steps do I need to follow to log into the company's internal network?
sentences:
- Who wrote the book "To Kill a Mockingbird"?
- How do I reset my password?
- How do I access the company's intranet?
- source_sentence: How can I improve my Spanish?
sentences:
- How can I lose weight?
- How can I improve my English?
- What is the most effective way to lose weight?
model-index:
- name: e5 cogcache small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: base
type: base
metrics:
- type: cosine_accuracy
value: 0.8923076923076924
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8427294492721558
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9166666666666666
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8427294492721558
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9166666666666666
name: Cosine Precision
- type: cosine_recall
value: 0.9166666666666666
name: Cosine Recall
- type: cosine_ap
value: 0.9540451716910969
name: Cosine Ap
- type: dot_accuracy
value: 0.8923076923076924
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.842729389667511
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9166666666666666
name: Dot F1
- type: dot_f1_threshold
value: 0.842729389667511
name: Dot F1 Threshold
- type: dot_precision
value: 0.9166666666666666
name: Dot Precision
- type: dot_recall
value: 0.9166666666666666
name: Dot Recall
- type: dot_ap
value: 0.9540451716910969
name: Dot Ap
- type: manhattan_accuracy
value: 0.8846153846153846
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 10.00046157836914
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9142857142857143
name: Manhattan F1
- type: manhattan_f1_threshold
value: 10.00046157836914
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8791208791208791
name: Manhattan Precision
- type: manhattan_recall
value: 0.9523809523809523
name: Manhattan Recall
- type: manhattan_ap
value: 0.9533842444122883
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8923076923076924
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.5608394742012024
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9166666666666666
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.5608394742012024
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9166666666666666
name: Euclidean Precision
- type: euclidean_recall
value: 0.9166666666666666
name: Euclidean Recall
- type: euclidean_ap
value: 0.9540451716910969
name: Euclidean Ap
- type: max_accuracy
value: 0.8923076923076924
name: Max Accuracy
- type: max_accuracy_threshold
value: 10.00046157836914
name: Max Accuracy Threshold
- type: max_f1
value: 0.9166666666666666
name: Max F1
- type: max_f1_threshold
value: 10.00046157836914
name: Max F1 Threshold
- type: max_precision
value: 0.9166666666666666
name: Max Precision
- type: max_recall
value: 0.9523809523809523
name: Max Recall
- type: max_ap
value: 0.9540451716910969
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: tuned
type: tuned
metrics:
- type: cosine_accuracy
value: 0.8923076923076924
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8427294492721558
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9166666666666666
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8427294492721558
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9166666666666666
name: Cosine Precision
- type: cosine_recall
value: 0.9166666666666666
name: Cosine Recall
- type: cosine_ap
value: 0.9540451716910969
name: Cosine Ap
- type: dot_accuracy
value: 0.8923076923076924
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.842729389667511
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9166666666666666
name: Dot F1
- type: dot_f1_threshold
value: 0.842729389667511
name: Dot F1 Threshold
- type: dot_precision
value: 0.9166666666666666
name: Dot Precision
- type: dot_recall
value: 0.9166666666666666
name: Dot Recall
- type: dot_ap
value: 0.9540451716910969
name: Dot Ap
- type: manhattan_accuracy
value: 0.8846153846153846
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 10.00046157836914
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9142857142857143
name: Manhattan F1
- type: manhattan_f1_threshold
value: 10.00046157836914
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8791208791208791
name: Manhattan Precision
- type: manhattan_recall
value: 0.9523809523809523
name: Manhattan Recall
- type: manhattan_ap
value: 0.9533842444122883
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8923076923076924
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.5608394742012024
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9166666666666666
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.5608394742012024
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9166666666666666
name: Euclidean Precision
- type: euclidean_recall
value: 0.9166666666666666
name: Euclidean Recall
- type: euclidean_ap
value: 0.9540451716910969
name: Euclidean Ap
- type: max_accuracy
value: 0.8923076923076924
name: Max Accuracy
- type: max_accuracy_threshold
value: 10.00046157836914
name: Max Accuracy Threshold
- type: max_f1
value: 0.9166666666666666
name: Max F1
- type: max_f1_threshold
value: 10.00046157836914
name: Max F1 Threshold
- type: max_precision
value: 0.9166666666666666
name: Max Precision
- type: max_recall
value: 0.9523809523809523
name: Max Recall
- type: max_ap
value: 0.9540451716910969
name: Max Ap
e5 cogcache small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/e5-small-cogcachedata")
# Run inference
sentences = [
'How can I improve my Spanish?',
'How can I improve my English?',
'How can I lose weight?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
base - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.8923 |
| cosine_accuracy_threshold | 0.8427 |
| cosine_f1 | 0.9167 |
| cosine_f1_threshold | 0.8427 |
| cosine_precision | 0.9167 |
| cosine_recall | 0.9167 |
| cosine_ap | 0.954 |
| dot_accuracy | 0.8923 |
| dot_accuracy_threshold | 0.8427 |
| dot_f1 | 0.9167 |
| dot_f1_threshold | 0.8427 |
| dot_precision | 0.9167 |
| dot_recall | 0.9167 |
| dot_ap | 0.954 |
| manhattan_accuracy | 0.8846 |
| manhattan_accuracy_threshold | 10.0005 |
| manhattan_f1 | 0.9143 |
| manhattan_f1_threshold | 10.0005 |
| manhattan_precision | 0.8791 |
| manhattan_recall | 0.9524 |
| manhattan_ap | 0.9534 |
| euclidean_accuracy | 0.8923 |
| euclidean_accuracy_threshold | 0.5608 |
| euclidean_f1 | 0.9167 |
| euclidean_f1_threshold | 0.5608 |
| euclidean_precision | 0.9167 |
| euclidean_recall | 0.9167 |
| euclidean_ap | 0.954 |
| max_accuracy | 0.8923 |
| max_accuracy_threshold | 10.0005 |
| max_f1 | 0.9167 |
| max_f1_threshold | 10.0005 |
| max_precision | 0.9167 |
| max_recall | 0.9524 |
| max_ap | 0.954 |
Binary Classification
- Dataset:
tuned - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.8923 |
| cosine_accuracy_threshold | 0.8427 |
| cosine_f1 | 0.9167 |
| cosine_f1_threshold | 0.8427 |
| cosine_precision | 0.9167 |
| cosine_recall | 0.9167 |
| cosine_ap | 0.954 |
| dot_accuracy | 0.8923 |
| dot_accuracy_threshold | 0.8427 |
| dot_f1 | 0.9167 |
| dot_f1_threshold | 0.8427 |
| dot_precision | 0.9167 |
| dot_recall | 0.9167 |
| dot_ap | 0.954 |
| manhattan_accuracy | 0.8846 |
| manhattan_accuracy_threshold | 10.0005 |
| manhattan_f1 | 0.9143 |
| manhattan_f1_threshold | 10.0005 |
| manhattan_precision | 0.8791 |
| manhattan_recall | 0.9524 |
| manhattan_ap | 0.9534 |
| euclidean_accuracy | 0.8923 |
| euclidean_accuracy_threshold | 0.5608 |
| euclidean_f1 | 0.9167 |
| euclidean_f1_threshold | 0.5608 |
| euclidean_precision | 0.9167 |
| euclidean_recall | 0.9167 |
| euclidean_ap | 0.954 |
| max_accuracy | 0.8923 |
| max_accuracy_threshold | 10.0005 |
| max_f1 | 0.9167 |
| max_f1_threshold | 10.0005 |
| max_precision | 0.9167 |
| max_recall | 0.9524 |
| max_ap | 0.954 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,000 training samples
- Columns:
sentence2,sentence1, andlabel - Approximate statistics based on the first 1000 samples:
sentence2 sentence1 label type string string int details - min: 4 tokens
- mean: 13.29 tokens
- max: 55 tokens
- min: 6 tokens
- mean: 13.24 tokens
- max: 66 tokens
- 0: ~55.10%
- 1: ~44.90%
- Samples:
sentence2 sentence1 label What are the ingredients of a pizzaWhat are the ingredients of a pizza?1What are the ingredients of pizzaWhat are the ingredients of a pizza?1What are ingredients of pizzaWhat are the ingredients of a pizza?1 - Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 130 evaluation samples
- Columns:
sentence2,sentence1, andlabel - Approximate statistics based on the first 1000 samples:
sentence2 sentence1 label type string string int details - min: 5 tokens
- mean: 11.48 tokens
- max: 22 tokens
- min: 6 tokens
- mean: 10.85 tokens
- max: 20 tokens
- 0: ~35.38%
- 1: ~64.62%
- Samples:
sentence2 sentence1 label What are the ingredients of a pizzaWhat are the ingredients of a pizza?1What are the ingredients of pizzaWhat are the ingredients of a pizza?1What are ingredients of pizzaWhat are the ingredients of a pizza?1 - Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 6warmup_ratio: 0.1batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 6max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | base_max_ap | tuned_max_ap |
|---|---|---|---|---|---|
| 0 | 0 | - | - | 0.7430 | - |
| 1.0 | 125 | - | 0.5464 | 0.7914 | - |
| 2.0 | 250 | - | 0.2451 | 0.9018 | - |
| 3.0 | 375 | - | 0.1717 | 0.9460 | - |
| 4.0 | 500 | 0.24 | 0.1490 | 0.9532 | - |
| 5.0 | 625 | - | 0.1598 | 0.9523 | - |
| 6.0 | 750 | - | 0.1382 | 0.9540 | 0.9540 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}