SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("srikarvar/multilingual-e5-small-pairclass-contrastive")
# Run inference
sentences = [
'Language spoken by the most people',
'What is the most spoken language in the world?',
'Who was the first person to walk on the moon?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9459 |
| cosine_accuracy_threshold | 0.8864 |
| cosine_f1 | 0.9512 |
| cosine_f1_threshold | 0.8167 |
| cosine_precision | 0.907 |
| cosine_recall | 1.0 |
| cosine_ap | 0.9897 |
| dot_accuracy | 0.9459 |
| dot_accuracy_threshold | 0.8864 |
| dot_f1 | 0.9512 |
| dot_f1_threshold | 0.8167 |
| dot_precision | 0.907 |
| dot_recall | 1.0 |
| dot_ap | 0.9897 |
| manhattan_accuracy | 0.9459 |
| manhattan_accuracy_threshold | 7.3039 |
| manhattan_f1 | 0.9512 |
| manhattan_f1_threshold | 9.5429 |
| manhattan_precision | 0.907 |
| manhattan_recall | 1.0 |
| manhattan_ap | 0.9897 |
| euclidean_accuracy | 0.9459 |
| euclidean_accuracy_threshold | 0.4765 |
| euclidean_f1 | 0.9512 |
| euclidean_f1_threshold | 0.6044 |
| euclidean_precision | 0.907 |
| euclidean_recall | 1.0 |
| euclidean_ap | 0.9897 |
| max_accuracy | 0.9459 |
| max_accuracy_threshold | 7.3039 |
| max_f1 | 0.9512 |
| max_f1_threshold | 9.5429 |
| max_precision | 0.907 |
| max_recall | 1.0 |
| max_ap | 0.9897 |
Binary Classification
- Dataset:
pair-class-test - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9459 |
| cosine_accuracy_threshold | 0.8864 |
| cosine_f1 | 0.9512 |
| cosine_f1_threshold | 0.8167 |
| cosine_precision | 0.907 |
| cosine_recall | 1.0 |
| cosine_ap | 0.9897 |
| dot_accuracy | 0.9459 |
| dot_accuracy_threshold | 0.8864 |
| dot_f1 | 0.9512 |
| dot_f1_threshold | 0.8167 |
| dot_precision | 0.907 |
| dot_recall | 1.0 |
| dot_ap | 0.9897 |
| manhattan_accuracy | 0.9459 |
| manhattan_accuracy_threshold | 7.3039 |
| manhattan_f1 | 0.9512 |
| manhattan_f1_threshold | 9.5429 |
| manhattan_precision | 0.907 |
| manhattan_recall | 1.0 |
| manhattan_ap | 0.9897 |
| euclidean_accuracy | 0.9459 |
| euclidean_accuracy_threshold | 0.4765 |
| euclidean_f1 | 0.9512 |
| euclidean_f1_threshold | 0.6044 |
| euclidean_precision | 0.907 |
| euclidean_recall | 1.0 |
| euclidean_ap | 0.9897 |
| max_accuracy | 0.9459 |
| max_accuracy_threshold | 7.3039 |
| max_f1 | 0.9512 |
| max_f1_threshold | 9.5429 |
| max_precision | 0.907 |
| max_recall | 1.0 |
| max_ap | 0.9897 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 296 training samples
- Columns:
label,sentence2, andsentence1 - Approximate statistics based on the first 1000 samples:
label sentence2 sentence1 type int string string details - 0: ~50.68%
- 1: ~49.32%
- min: 4 tokens
- mean: 9.39 tokens
- max: 20 tokens
- min: 6 tokens
- mean: 10.24 tokens
- max: 20 tokens
- Samples:
label sentence2 sentence1 0How to improve running speed?How to train for a marathon?0What is the distance of a marathon?How to train for a marathon?1Mona Lisa painterWho painted the Mona Lisa? - Loss:
ContrastiveLosswith these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Evaluation Dataset
Unnamed Dataset
- Size: 74 evaluation samples
- Columns:
label,sentence2, andsentence1 - Approximate statistics based on the first 1000 samples:
label sentence2 sentence1 type int string string details - 0: ~47.30%
- 1: ~52.70%
- min: 5 tokens
- mean: 9.18 tokens
- max: 22 tokens
- min: 7 tokens
- mean: 10.15 tokens
- max: 20 tokens
- Samples:
label sentence2 sentence1 1Bitcoin's current valueWhat is the price of Bitcoin?1Who found out about gravity?Who discovered gravity?1Language spoken by the most peopleWhat is the most spoken language in the world? - Loss:
ContrastiveLosswith these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 16per_device_eval_batch_size: 16gradient_accumulation_steps: 2learning_rate: 3e-05weight_decay: 0.01num_train_epochs: 5lr_scheduler_type: reduce_lr_on_plateauwarmup_ratio: 0.1load_best_model_at_end: Trueoptim: adamw_torch_fusedbatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 2eval_accumulation_steps: Nonelearning_rate: 3e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: reduce_lr_on_plateaulr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
|---|---|---|---|---|---|
| 0 | 0 | - | - | 0.6933 | - |
| 0.9474 | 9 | - | 0.0182 | 0.9142 | - |
| 1.0526 | 10 | 0.0311 | - | - | - |
| 2.0 | 19 | - | 0.0091 | 0.9730 | - |
| 2.1053 | 20 | 0.0119 | - | - | - |
| 2.9474 | 28 | - | 0.0090 | 0.9878 | - |
| 3.1579 | 30 | 0.0074 | - | - | - |
| 4.0 | 38 | - | 0.0084 | 0.9891 | - |
| 4.2105 | 40 | 0.005 | - | - | - |
| 4.7368 | 45 | - | 0.0084 | 0.9897 | 0.9897 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- 8
Model tree for srikarvar/multilingual-e5-small-pairclass-contrastive
Evaluation results
- Cosine Accuracy on pair class devself-reported0.946
- Cosine Accuracy Threshold on pair class devself-reported0.886
- Cosine F1 on pair class devself-reported0.951
- Cosine F1 Threshold on pair class devself-reported0.817
- Cosine Precision on pair class devself-reported0.907
- Cosine Recall on pair class devself-reported1.000
- Cosine Ap on pair class devself-reported0.990
- Dot Accuracy on pair class devself-reported0.946
- Dot Accuracy Threshold on pair class devself-reported0.886
- Dot F1 on pair class devself-reported0.951