ynat
This model is a fine-tuned version of monologg/koelectra-base-v3-discriminator on the klue-ynat dataset. It achieves the following results on the evaluation set:
- Loss: 0.4226
 - Accuracy: 0.8605
 - Precision: 0.8533
 - Recall: 0.8703
 - F1: 0.8610
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
 - train_batch_size: 64
 - eval_batch_size: 64
 - seed: 42
 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: linear
 - num_epochs: 3
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | 
|---|---|---|---|---|---|---|---|
| 0.2138 | 1.0 | 714 | 0.4986 | 0.8425 | 0.8326 | 0.8645 | 0.8465 | 
| 0.2284 | 2.0 | 1428 | 0.4226 | 0.8605 | 0.8533 | 0.8703 | 0.8610 | 
| 0.1541 | 3.0 | 2142 | 0.4701 | 0.8585 | 0.8487 | 0.8686 | 0.8582 | 
Framework versions
- Transformers 4.51.3
 - Pytorch 2.6.0+cu124
 - Datasets 3.6.0
 - Tokenizers 0.21.1
 
- Downloads last month
 - -
 
Model tree for ssanna/ynat
Base model
monologg/koelectra-base-v3-discriminator