audio_classification
This model is a fine-tuned version of facebook/wav2vec2-base on the minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 2.6820
- Accuracy: 0.0708
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| No log | 0.8 | 3 | 2.6643 | 0.0708 |
| No log | 1.8 | 6 | 2.6708 | 0.0796 |
| No log | 2.8 | 9 | 2.6663 | 0.0708 |
| 2.9728 | 3.8 | 12 | 2.6744 | 0.0885 |
| 2.9728 | 4.8 | 15 | 2.6724 | 0.0796 |
| 2.9728 | 5.8 | 18 | 2.6768 | 0.0796 |
| 2.9551 | 6.8 | 21 | 2.6797 | 0.0708 |
| 2.9551 | 7.8 | 24 | 2.6818 | 0.0708 |
| 2.9551 | 8.8 | 27 | 2.6821 | 0.0708 |
| 2.9439 | 9.8 | 30 | 2.6820 | 0.0708 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- -
Model tree for stnleyyg/audio_classification
Base model
facebook/wav2vec2-base