YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Yato Text-to-Video Generation

This repository contains the necessary steps and scripts to generate videos using the Yato text-to-video model. The model leverages LoRA (Low-Rank Adaptation) weights and pre-trained components to create high-quality anime-style videos based on textual prompts.

Prerequisites

Before proceeding, ensure that you have the following installed on your system:

Ubuntu (or a compatible Linux distribution) • Python 3.xpip (Python package manager) • GitGit LFS (Git Large File Storage) • FFmpeg

Installation

  1. Update and Install Dependencies

    sudo apt-get update && sudo apt-get install cbm git-lfs ffmpeg
    
  2. Clone the Repository

    git clone https://huggingface.co/svjack/Yato_wan_2_1_1_3_B_text2video_lora
    cd Yato_wan_2_1_1_3_B_text2video_lora
    
  3. Install Python Dependencies

    pip install torch torchvision
    pip install -r requirements.txt
    pip install ascii-magic matplotlib tensorboard huggingface_hub datasets
    pip install moviepy==1.0.3
    pip install sageattention==1.0.6
    
  4. Download Model Weights

    wget https://huggingface.co/Wan-AI/Wan2.1-T2V-14B/resolve/main/models_t5_umt5-xxl-enc-bf16.pth
    wget https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth
    wget https://huggingface.co/Wan-AI/Wan2.1-T2V-14B/resolve/main/Wan2.1_VAE.pth
    wget https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/diffusion_models/wan2.1_t2v_1.3B_bf16.safetensors
    wget https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/diffusion_models/wan2.1_t2v_14B_bf16.safetensors
    

Usage

To generate a video, use the wan_generate_video.py script with the appropriate parameters. Below are examples of how to generate videos using the Yato model.

Burger

python wan_generate_video.py --fp8 --task t2v-1.3B --video_size 480 832 --video_length 81 --infer_steps 50 \
--save_path save --output_type both \
--dit wan2.1_t2v_1.3B_bf16.safetensors --vae Wan2.1_VAE.pth \
--t5 models_t5_umt5-xxl-enc-bf16.pth \
--attn_mode torch \
--lora_weight Yato_outputs/Yato_w1_3_lora-000010.safetensors \
--lora_multiplier 1.0 \
--prompt "In the style of Noragami , The video features a series of close-up shots of an animated character with black hair and blue eyes. The character is eating a burger."

Money

python wan_generate_video.py --fp8 --task t2v-1.3B --video_size 480 832 --video_length 81 --infer_steps 50 \
--save_path save --output_type both \
--dit wan2.1_t2v_1.3B_bf16.safetensors --vae Wan2.1_VAE.pth \
--t5 models_t5_umt5-xxl-enc-bf16.pth \
--attn_mode torch \
--lora_weight Yato_outputs/Yato_w1_3_lora-000010.safetensors \
--lora_multiplier 1.0 --seed 77 \
--prompt "In the style of Noragami , The video features a series of close-up shots of an animated character with black hair and blue eyes. The character carry money in a wallet at home"

Sun

python wan_generate_video.py --fp8 --task t2v-1.3B --video_size 480 832 --video_length 81 --infer_steps 50 \
--save_path save --output_type both \
--dit wan2.1_t2v_1.3B_bf16.safetensors --vae Wan2.1_VAE.pth \
--t5 models_t5_umt5-xxl-enc-bf16.pth \
--attn_mode torch \
--lora_weight Yato_outputs/Yato_w1_3_lora-000010.safetensors \
--lora_multiplier 1.0 \
--prompt "In the style of Noragami , The video features a series of close-up shots of an animated character with black hair and blue eyes. the character shade from the sun with an umbrella outdoor."

Sleep

python wan_generate_video.py --fp8 --task t2v-1.3B --video_size 480 832 --video_length 81 --infer_steps 50 \
--save_path save --output_type both \
--dit wan2.1_t2v_1.3B_bf16.safetensors --vae Wan2.1_VAE.pth \
--t5 models_t5_umt5-xxl-enc-bf16.pth \
--attn_mode torch \
--lora_weight Yato_outputs/Yato_w1_3_lora-000010.safetensors \
--lora_multiplier 1.0 --seed 57 \
--prompt "In the style of Noragami , The video features a series of close-up shots of an animated character with black hair and blue eyes. the character is sleep on the bed"

Sequential steps

[1] anime style, In the style of Noragami: 这个片段展示了,在校园内, 暗蓝暮色中,蓝发少年斜倚斑驳木门,指尖划过袖口白纹,围巾末端悬停半空,眉间蹙起一缕未解的阴霾。

[2] anime style, In the style of Noragami: 这个片段展示了,镜头一闪, 蓝发少年面对黑色的男人影子,黑色男人在蓝发少年面前一闪而过, 他骤然攥紧围巾褶皱,背景随动作加深,眼底浮起星火般的决意,袖口条纹在暗处灼然生光。

[3] anime style, In the style of Noragami: 这个片段展示了, 蓝发少年迅速跳向高空,随着镜头在下面照向腾空的少年,少年忽仰首直视虚空, scarf扬起如残月弧线,身后木纹扭曲成漩涡,蓝瞳倒映出无形之刃的寒芒。

[4] anime style, In the style of Noragami: 这个片段展示了, 天空迅速变暗, 蓝发少年位于天空的当中,背景为青白的月光, 在白月光下,最终他垂眸轻笑,指尖抵住门框旧伤,所有情绪敛入围巾阴影,唯余袖间白纹如斩破黑暗的刀痕。

Parameters

  • --fp8: Enable FP8 precision (optional).
  • --task: Specify the task (e.g., t2v-1.3B).
  • --video_size: Set the resolution of the generated video (e.g., 1024 1024).
  • --video_length: Define the length of the video in frames.
  • --infer_steps: Number of inference steps.
  • --save_path: Directory to save the generated video.
  • --output_type: Output type (e.g., both for video and frames).
  • --dit: Path to the diffusion model weights.
  • --vae: Path to the VAE model weights.
  • --t5: Path to the T5 model weights.
  • --attn_mode: Attention mode (e.g., torch).
  • --lora_weight: Path to the LoRA weights.
  • --lora_multiplier: Multiplier for LoRA weights.
  • --prompt: Textual prompt for video generation.

Output

The generated video and frames will be saved in the specified save_path directory.

Troubleshooting

• Ensure all dependencies are correctly installed. • Verify that the model weights are downloaded and placed in the correct locations. • Check for any missing Python packages and install them using pip.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Acknowledgments

Hugging Face for hosting the model weights. • Wan-AI for providing the pre-trained models. • DeepBeepMeep for contributing to the model weights.

Contact

For any questions or issues, please open an issue on the repository or contact the maintainer.


Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support