Replace Arxiv link with paper page link

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +6 -8
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
- library_name: transformers
3
- license: mit
4
- language:
5
- - en
6
  base_model:
7
  - Qwen/Qwen2.5-Math-1.5B-Instruct
 
 
 
 
8
  pipeline_tag: text-generation
9
  ---
10
 
@@ -12,8 +12,6 @@ pipeline_tag: text-generation
12
 
13
  This model is fine-tuned using self-training methods to generate concise reasoning paths for reasoning tasks while maintaining accuracy.
14
 
15
-
16
-
17
  ## Model Details
18
 
19
  - **Developed by:** Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, Se-Young Yun at KAIST AI
@@ -22,7 +20,7 @@ This model is fine-tuned using self-training methods to generate concise reasoni
22
  - **License:** MIT
23
  - **Finetuned from model:** Qwen/Qwen2.5-Math-1.5B-Instruct
24
  - **Repository:** https://github.com/TergelMunkhbat/concise-reasoning
25
- - **Paper:** [Self-Training Elicits Concise Reasoning in Large Language Models](https://arxiv.org/abs/2502.20122)
26
 
27
  ## How to Get Started with the Model
28
 
@@ -49,7 +47,7 @@ response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
49
  print(response)
50
  ```
51
 
52
- For more detailed information about training methods, evaluation results, limitations, and technical specifications, please refer to our [paper](https://arxiv.org/abs/2502.20122).
53
 
54
  ## Citation
55
 
 
1
  ---
 
 
 
 
2
  base_model:
3
  - Qwen/Qwen2.5-Math-1.5B-Instruct
4
+ language:
5
+ - en
6
+ library_name: transformers
7
+ license: mit
8
  pipeline_tag: text-generation
9
  ---
10
 
 
12
 
13
  This model is fine-tuned using self-training methods to generate concise reasoning paths for reasoning tasks while maintaining accuracy.
14
 
 
 
15
  ## Model Details
16
 
17
  - **Developed by:** Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, Se-Young Yun at KAIST AI
 
20
  - **License:** MIT
21
  - **Finetuned from model:** Qwen/Qwen2.5-Math-1.5B-Instruct
22
  - **Repository:** https://github.com/TergelMunkhbat/concise-reasoning
23
+ - **Paper:** [Self-Training Elicits Concise Reasoning in Large Language Models](https://huggingface.co/papers/2502.20122)
24
 
25
  ## How to Get Started with the Model
26
 
 
47
  print(response)
48
  ```
49
 
50
+ For more detailed information about training methods, evaluation results, limitations, and technical specifications, please refer to our [paper](https://huggingface.co/papers/2502.20122).
51
 
52
  ## Citation
53