SentenceTransformer based on google-bert/bert-base-uncased
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 75 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("tomaarsen/bert-base-uncased-tsdae-askubuntu")
# Run inference
sentences = [
'dual boot ubuntu, 10.04 - /home cannot be initialized upon',
'dual boot - ubuntu 9.10 , 10.04 - /home can not be initialized upon startup',
'is it possible to view pdfs right in chrome without downloading them first ?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Reranking
- Datasets:
AskUbuntu-devandAskUbuntu-test - Evaluated with
RerankingEvaluator
| Metric | AskUbuntu-dev | AskUbuntu-test |
|---|---|---|
| map | 0.5211 | 0.5812 |
| mrr@10 | 0.6526 | 0.7053 |
| ndcg@10 | 0.5704 | 0.6326 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 160,436 training samples
- Columns:
noisyandtext - Approximate statistics based on the first 1000 samples:
noisy text type string string details - min: 3 tokens
- mean: 9.27 tokens
- max: 28 tokens
- min: 5 tokens
- mean: 14.43 tokens
- max: 39 tokens
- Samples:
noisy text how to "your broken "to away?how to get the `` your battery is broken '' message to go away ?can to software for non-roothow can i set the software center to install software for non-root users ?what upgrading without using standard upgrade system?what are some alternatives to upgrading without using the standard upgrade system ? - Loss:
DenoisingAutoEncoderLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepslearning_rate: 3e-05num_train_epochs: 1warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 3e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | AskUbuntu-dev_map | AskUbuntu-test_map |
|---|---|---|---|---|
| -1 | -1 | - | 0.4151 | - |
| 0.0499 | 1000 | 5.6837 | - | - |
| 0.0997 | 2000 | 3.7699 | - | - |
| 0.1496 | 3000 | 3.2169 | - | - |
| 0.1995 | 4000 | 2.9133 | - | - |
| 0.2493 | 5000 | 2.7208 | 0.5063 | - |
| 0.2992 | 6000 | 2.6041 | - | - |
| 0.3490 | 7000 | 2.5109 | - | - |
| 0.3989 | 8000 | 2.4326 | - | - |
| 0.4488 | 9000 | 2.3882 | - | - |
| 0.4986 | 10000 | 2.3366 | 0.5148 | - |
| 0.5485 | 11000 | 2.3175 | - | - |
| 0.5984 | 12000 | 2.2561 | - | - |
| 0.6482 | 13000 | 2.2147 | - | - |
| 0.6981 | 14000 | 2.174 | - | - |
| 0.7479 | 15000 | 2.1728 | 0.5203 | - |
| 0.7978 | 16000 | 2.1354 | - | - |
| 0.8477 | 17000 | 2.1214 | - | - |
| 0.8975 | 18000 | 2.1181 | - | - |
| 0.9474 | 19000 | 2.0843 | - | - |
| 0.9973 | 20000 | 2.0789 | 0.5211 | - |
| -1 | -1 | - | - | 0.5812 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.209 kWh
- Carbon Emitted: 0.081 kg of CO2
- Hours Used: 0.915 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
DenoisingAutoEncoderLoss
@inproceedings{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
pages = "671--688",
url = "https://arxiv.org/abs/2104.06979",
}
- Downloads last month
- 1
Model tree for tomaarsen/bert-base-uncased-tsdae-askubuntu
Base model
google-bert/bert-base-uncasedEvaluation results
- Map on AskUbuntu devself-reported0.521
- Mrr@10 on AskUbuntu devself-reported0.653
- Ndcg@10 on AskUbuntu devself-reported0.570
- Map on AskUbuntu testself-reported0.581
- Mrr@10 on AskUbuntu testself-reported0.705
- Ndcg@10 on AskUbuntu testself-reported0.633