Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a Cross Encoder model finetuned from cross-encoder/ms-marco-MiniLM-L6-v2 using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("cross_encoder_model_id")
# Get scores for pairs of texts
pairs = [
["How does the `DPMSolverMultistepInverse` scheduler relate to DDIM inversion and DPM-Solver's forward and reverse processes?", 'DPMSolverMultistepInverseis the inverted scheduler fromDPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 StepsandDPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Modelsby Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. The implementation is mostly based on the DDIM inversion definition ofNull-text Inversion for Editing Real Images using Guided Diffusion Modelsand notebook implementation of theDiffEditlatent inversion fromXiang-cd/DiffEdit-stable-diffusion.'],
['How can I optimize AudioLDM prompt engineering and inference for faster, higher-quality audio generation?', 'The model usually performs well without requiring any finetuning. The architecture follows a classic encoder-decoder architecture, which means that it relies on thegenerate()function for inference. One can useWhisperProcessorto prepare audio for the model, and decode the predicted ID’s back into text. To convert the model and the processor, we recommend using the following: The script will automatically determine all necessary parameters from the OpenAI checkpoint. Atiktokenlibrary needs to be installed to perform the conversion of the OpenAI tokenizer to thetokenizersversion.'],
['What AuraFlow-related attention processing tasks does the `AuraFlowAttnProcessor2_0` model excel at?', '() Attention processor used in Mochi.'],
['What are the key capabilities and applications of the CLIP (Contrastive Language-Image Pre-training) model?', 'The code snippet below shows how to compute image & text features and similarities: Currently, following scales of pretrained Chinese-CLIP models are available on 🤗 Hub:'],
['How effectively does CogVideoX translate text prompts into 720x480 videos?', 'To generate a video from prompt, run the following Python code: You can change these parameters in the pipeline call: We can also generate longer videos by doing the processing in a chunk-by-chunk manner:'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
"How does the `DPMSolverMultistepInverse` scheduler relate to DDIM inversion and DPM-Solver's forward and reverse processes?",
[
'DPMSolverMultistepInverseis the inverted scheduler fromDPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 StepsandDPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Modelsby Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. The implementation is mostly based on the DDIM inversion definition ofNull-text Inversion for Editing Real Images using Guided Diffusion Modelsand notebook implementation of theDiffEditlatent inversion fromXiang-cd/DiffEdit-stable-diffusion.',
'The model usually performs well without requiring any finetuning. The architecture follows a classic encoder-decoder architecture, which means that it relies on thegenerate()function for inference. One can useWhisperProcessorto prepare audio for the model, and decode the predicted ID’s back into text. To convert the model and the processor, we recommend using the following: The script will automatically determine all necessary parameters from the OpenAI checkpoint. Atiktokenlibrary needs to be installed to perform the conversion of the OpenAI tokenizer to thetokenizersversion.',
'() Attention processor used in Mochi.',
'The code snippet below shows how to compute image & text features and similarities: Currently, following scales of pretrained Chinese-CLIP models are available on 🤗 Hub:',
'To generate a video from prompt, run the following Python code: You can change these parameters in the pipeline call: We can also generate longer videos by doing the processing in a chunk-by-chunk manner:',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Quora-devCEBinaryClassificationEvaluator| Metric | Value |
|---|---|
| accuracy | 0.9118 |
| accuracy_threshold | -0.3893 |
| f1 | 0.8254 |
| f1_threshold | -1.1288 |
| precision | 0.7898 |
| recall | 0.8643 |
| average_precision | 0.8781 |
sentence_0, sentence_1, and label| sentence_0 | sentence_1 | label | |
|---|---|---|---|
| type | string | string | int |
| details |
|
|
|
| sentence_0 | sentence_1 | label |
|---|---|---|
How does the |
DPMSolverMultistepInverseis the inverted scheduler fromDPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 StepsandDPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Modelsby Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. The implementation is mostly based on the DDIM inversion definition ofNull-text Inversion for Editing Real Images using Guided Diffusion Modelsand notebook implementation of theDiffEditlatent inversion fromXiang-cd/DiffEdit-stable-diffusion. |
1 |
How can I optimize AudioLDM prompt engineering and inference for faster, higher-quality audio generation? |
The model usually performs well without requiring any finetuning. The architecture follows a classic encoder-decoder architecture, which means that it relies on thegenerate()function for inference. One can useWhisperProcessorto prepare audio for the model, and decode the predicted ID’s back into text. To convert the model and the processor, we recommend using the following: The script will automatically determine all necessary parameters from the OpenAI checkpoint. Atiktokenlibrary needs to be installed to perform the conversion of the OpenAI tokenizer to thetokenizersversion. |
0 |
What AuraFlow-related attention processing tasks does the |
() Attention processor used in Mochi. |
0 |
FitMixinLosseval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32num_train_epochs: 2overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | Quora-dev_average_precision |
|---|---|---|---|
| 0.1269 | 100 | - | 0.7617 |
| 0.2538 | 200 | - | 0.7991 |
| 0.3807 | 300 | - | 0.8186 |
| 0.5076 | 400 | - | 0.8476 |
| 0.6345 | 500 | 0.327 | 0.8500 |
| 0.7614 | 600 | - | 0.8518 |
| 0.8883 | 700 | - | 0.8616 |
| 1.0 | 788 | - | 0.8599 |
| 1.0152 | 800 | - | 0.8537 |
| 1.1421 | 900 | - | 0.8542 |
| 1.2690 | 1000 | 0.267 | 0.8663 |
| 1.3959 | 1100 | - | 0.8662 |
| 1.5228 | 1200 | - | 0.8781 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
microsoft/MiniLM-L12-H384-uncased