|
--- |
|
license: mit |
|
datasets: |
|
- tuandunghcmut/normal_dataset |
|
- tuandunghcmut/coding-mcq-reasoning |
|
language: |
|
- en |
|
base_model: |
|
- unsloth/Qwen2.5-Coder-1.5B-Instruct |
|
pipeline_tag: text-generation |
|
--- |
|
# Qwen25_Coder_MultipleChoice |
|
|
|
* This project focuses on distilling YAML-based structured multi-step reasoning capabilities from the GPT-4o teacher model into the smaller Qwen2.5 Coder 1.5B-Instruct LLM. |
|
|
|
* This document provides guidance on getting started with `tuandunghcmut/Qwen25_Coder_MultipleChoice`, a model fine-tuned for multiple-choice coding questions. |
|
|
|
* A demonstration notebook is available on Google Colab (click the badge below). Please note that the training code has been omitted from this notebook. It is intended solely for testing and inference using the latest checkpoint. |
|
[](https://drive.google.com/file/d/1Q4jtRjIkFWIAM82pAg4OBPCLjpQ8ndpI/view?usp=sharing) |
|
|
|
* Note: The initial training was conducted on a dataset with errors rather than a perfectly preprocessed one—<span style="color:red;">**garbage in, garbage out**</span>. As a result, while the model successfully adheres to the desired YAML format and demonstrates structured reasoning, its performance remains <span style="color:red;">**unstable**</span>. Future iterations will focus on retraining with a <span style="color:red;">**more extensive, high-quality dataset**</span> to improve stability and accuracy. |
|
|
|
* Apologies for the current state of the project. The initial version has some inconsistencies due to training on the old dataset, [tuandunghcmut/normal_dataset](https://huggingface.co/datasets/tuandunghcmut/normal_dataset). Future plans include refactoring the code into a more structured format, expanding the dataset to the new one, [tuandunghcmut/coding-mcq-reasoning](https://huggingface.co/datasets/tuandunghcmut/coding-mcq-reasoning), and retraining the model using distributed training for improved scalability. Additionally, I plan to train on a larger, high-quality dataset to enhance performance and ensure better stability. |
|
|
|
* The guide below provides an explanation of the code presented in the notebook. I hope you will understand my ideas and the structure of the code. |
|
|
|
## Installation |
|
|
|
First, install the required dependencies: |
|
|
|
```bash |
|
# Install core dependencies |
|
pip install transformers torch pandas |
|
|
|
# For faster inference (important) |
|
pip install unsloth accelerate bitsandbytes |
|
|
|
# Flash Attention (highly recommended for speed) |
|
pip install flash-attn --no-build-isolation |
|
|
|
# For dataset handling and YAML parsing |
|
pip install datasets pyyaml |
|
``` |
|
|
|
## Key Classes |
|
|
|
The project provides several key classes for working with the model: |
|
|
|
### 1. QwenModelHandler |
|
```python |
|
class QwenModelHandler: |
|
"""Handler for Qwen models with inference and saving capabilities using Unsloth""" |
|
|
|
def __init__(self, model_name="unsloth/Qwen2.5-7B", max_seq_length=768, |
|
quantization=None, device_map="auto", cache_dir=None): |
|
""" |
|
Initialize model and tokenizer using Unsloth |
|
|
|
Args: |
|
model_name: Name or path of the model (preferably an unsloth model) |
|
max_seq_length: Maximum sequence length for the model |
|
quantization: Quantization type (None, '4bit', '8bit') - for compatibility |
|
device_map: Device mapping strategy |
|
cache_dir: Cache directory for models |
|
""" |
|
``` |
|
|
|
This class handles the core model operations: |
|
- Model loading and initialization |
|
- Text generation with streaming support |
|
- Perplexity calculation |
|
- Model saving and pushing to HuggingFace Hub |
|
|
|
### 2. PromptCreator |
|
```python |
|
class PromptCreator: |
|
"""Creates and formats prompts for multiple choice questions""" |
|
|
|
# Prompt types |
|
BASIC = "basic" # Simple answer-only format |
|
YAML_REASONING = "yaml" # YAML formatted reasoning |
|
TEACHER_REASONED = "teacher" # Same YAML format but using teacher completions |
|
``` |
|
|
|
This class manages prompt creation with three modes: |
|
- Basic: Simple answer-only format |
|
- YAML Reasoning: Structured reasoning in YAML format |
|
- Teacher Reasoned: YAML format with teacher completions for training |
|
|
|
### 3. ResponseParser |
|
```python |
|
class ResponseParser: |
|
"""Parser for model responses with support for different formats""" |
|
|
|
# Parser modes |
|
BASIC = "basic" # Extract single letter answer |
|
YAML = "yaml" # Parse YAML formatted response with reasoning |
|
``` |
|
|
|
This class handles response parsing: |
|
- Extracts answers from model responses |
|
- Parses YAML-formatted reasoning |
|
- Supports both basic and YAML formats |
|
|
|
### 4. MultipleChoiceTester |
|
```python |
|
class MultipleChoiceTester: |
|
"""Framework for testing Qwen models on multiple choice questions""" |
|
|
|
def __init__(self, model_handler, prompt_creator=None): |
|
""" |
|
Initialize with model handler and prompt configuration |
|
|
|
Args: |
|
model_handler: The QwenModelHandler instance |
|
prompt_creator: Optional PromptCreator instance |
|
""" |
|
``` |
|
|
|
This class provides a complete testing framework: |
|
- Single example inference |
|
- Batch processing |
|
- Dataset evaluation |
|
- Performance metrics tracking |
|
- Results saving and visualization |
|
|
|
## Full Class Implementations |
|
|
|
<details> |
|
<summary>Click to expand/collapse full class implementations</summary> |
|
|
|
### 1. QwenModelHandler |
|
```python |
|
class QwenModelHandler: |
|
"""Handler for Qwen models with inference and saving capabilities using Unsloth""" |
|
|
|
def __init__(self, model_name="unsloth/Qwen2.5-7B", max_seq_length=768, |
|
quantization=None, device_map="auto", cache_dir=None): |
|
self.model_name = model_name |
|
self.max_seq_length = max_seq_length |
|
self.device_map = device_map |
|
self.quantization = quantization |
|
self.cache_dir = cache_dir |
|
|
|
# Convert quantization parameter to load_in_4bit parameter for Unsloth |
|
self.load_in_4bit = quantization == "4bit" |
|
|
|
# Load tokenizer and model |
|
self.tokenizer, self.model = self._load_model() |
|
self.response_parser = ResponseParser() |
|
|
|
def _load_model(self): |
|
"""Load model and tokenizer with Unsloth for optimization""" |
|
from unsloth import FastLanguageModel |
|
import torch |
|
|
|
print(f"Loading {self.model_name} with Unsloth, max_seq_length={self.max_seq_length}") |
|
|
|
# Set dtype based on hardware |
|
dtype = None # None for auto detection |
|
|
|
# Load model and tokenizer with Unsloth |
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name=self.model_name, |
|
max_seq_length=self.max_seq_length, |
|
dtype=dtype, |
|
load_in_4bit=self.load_in_4bit, |
|
cache_dir=self.cache_dir, |
|
) |
|
|
|
return tokenizer, model |
|
|
|
def generate_with_streaming(self, prompt, temperature=0.7, max_tokens=1024, stream=True): |
|
"""Generate completion with optional streaming using Unsloth's optimized inference""" |
|
# Enable faster inference |
|
from unsloth import FastLanguageModel |
|
FastLanguageModel.for_inference(self.model) |
|
|
|
# Format as chat |
|
messages = [{"role": "user", "content": prompt}] |
|
chat_text = self.tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
# Tokenize input |
|
model_inputs = self.tokenizer([chat_text], return_tensors="pt").to(self.model.device) |
|
|
|
# Generate with streaming if requested |
|
if stream: |
|
from transformers import TextIteratorStreamer |
|
import threading |
|
|
|
# Set up streamer |
|
streamer = TextIteratorStreamer( |
|
self.tokenizer, |
|
skip_prompt=True, |
|
skip_special_tokens=True |
|
) |
|
|
|
# Start generation in a thread |
|
generation_kwargs = { |
|
"input_ids": model_inputs.input_ids, |
|
"attention_mask": model_inputs.attention_mask, |
|
"temperature": temperature, |
|
"max_new_tokens": max_tokens, |
|
"streamer": streamer, |
|
"do_sample": temperature > 0.0, |
|
"use_cache": True, |
|
"min_p": 0.1 if temperature > 0.0 else None, |
|
} |
|
|
|
thread = threading.Thread(target=self.model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
return streamer |
|
else: |
|
# Generate without streaming |
|
generated_ids = self.model.generate( |
|
input_ids=model_inputs.input_ids, |
|
attention_mask=model_inputs.attention_mask, |
|
temperature=temperature, |
|
max_new_tokens=max_tokens, |
|
do_sample=temperature > 0.0, |
|
use_cache=True, |
|
min_p=0.1 if temperature > 0.0 else None, |
|
) |
|
|
|
# Decode the generated text |
|
generated_text = self.tokenizer.decode( |
|
generated_ids[0][model_inputs.input_ids.shape[1]:], |
|
skip_special_tokens=True |
|
) |
|
|
|
return generated_text |
|
|
|
def calculate_perplexity(self, prompt, answer, temperature=0.0): |
|
"""Calculate perplexity for a prompt and answer pair""" |
|
import torch |
|
|
|
# Format chat for perplexity calculation |
|
messages = [ |
|
{"role": "user", "content": prompt}, |
|
{"role": "assistant", "content": answer} |
|
] |
|
chat_text = self.tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False |
|
) |
|
|
|
# Tokenize the text |
|
encodings = self.tokenizer(chat_text, return_tensors="pt").to(self.model.device) |
|
|
|
# Calculate loss |
|
with torch.no_grad(): |
|
outputs = self.model(**encodings, labels=encodings.input_ids) |
|
|
|
# Get loss and calculate perplexity |
|
neg_log_likelihood = outputs.loss.item() |
|
perplexity = torch.exp(torch.tensor(neg_log_likelihood)).item() |
|
|
|
return perplexity |
|
|
|
def save_model(self, output_dir, save_method="lora"): |
|
"""Save model to disk using Unsloth's optimized methods""" |
|
import os |
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
# Use Unsloth's saving methods |
|
if save_method == "lora": |
|
self.model.save_pretrained(output_dir) |
|
self.tokenizer.save_pretrained(output_dir) |
|
elif save_method == "merged_16bit": |
|
self.model.save_pretrained_merged(output_dir, self.tokenizer, save_method="merged_16bit") |
|
elif save_method == "merged_4bit": |
|
self.model.save_pretrained_merged(output_dir, self.tokenizer, save_method="merged_4bit") |
|
elif save_method == "gguf": |
|
self.model.save_pretrained_gguf(output_dir, self.tokenizer, quantization_method="q4_k_m") |
|
else: |
|
raise ValueError(f"Unknown save method: {save_method}") |
|
|
|
print(f"Model saved to {output_dir} using method {save_method}") |
|
return output_dir |
|
|
|
def push_to_hub(self, repo_id, token=None, save_method="lora", private=False): |
|
"""Push model to Hugging Face Hub using Unsloth's optimized methods""" |
|
if save_method == "lora": |
|
self.model.push_to_hub_merged(repo_id, self.tokenizer, save_method="lora", token=token) |
|
elif save_method == "merged_16bit": |
|
self.model.push_to_hub_merged(repo_id, self.tokenizer, save_method="merged_16bit", token=token) |
|
elif save_method == "merged_4bit": |
|
self.model.push_to_hub_merged(repo_id, self.tokenizer, save_method="merged_4bit", token=token) |
|
elif save_method == "gguf": |
|
self.model.push_to_hub_gguf( |
|
repo_id, |
|
self.tokenizer, |
|
quantization_method=["q4_k_m", "q5_k_m"], |
|
token=token |
|
) |
|
else: |
|
raise ValueError(f"Unknown save method: {save_method}") |
|
|
|
print(f"Model successfully pushed to: https://huggingface.co/{repo_id}") |
|
return f"https://huggingface.co/{repo_id}" |
|
``` |
|
|
|
### 2. PromptCreator |
|
```python |
|
class PromptCreator: |
|
"""Creates and formats prompts for multiple choice questions""" |
|
|
|
# Prompt types |
|
BASIC = "basic" # Simple answer-only format |
|
YAML_REASONING = "yaml" # YAML formatted reasoning |
|
TEACHER_REASONED = "teacher" # Same YAML format but using teacher completions |
|
|
|
def __init__(self, prompt_type=BASIC): |
|
if prompt_type == self.TEACHER_REASONED: |
|
prompt_type = self.YAML_REASONING |
|
self.prompt_type = prompt_type |
|
self.original_type = prompt_type |
|
|
|
def format_choices(self, choices): |
|
"""Format choices as a lettered list""" |
|
return "\n".join( |
|
[f"{chr(65 + i)}. {choice}" for i, choice in enumerate(choices)] |
|
) |
|
|
|
def get_max_letter(self, choices): |
|
"""Get the maximum letter based on number of choices""" |
|
return chr(65 + len(choices) - 1) |
|
|
|
def create_inference_prompt(self, question, choices): |
|
"""Create a prompt for inference based on current prompt type""" |
|
formatted_choices = self.format_choices(choices) |
|
max_letter = self.get_max_letter(choices) |
|
|
|
if self.prompt_type == self.YAML_REASONING: |
|
return self._create_yaml_prompt(question, formatted_choices, max_letter) |
|
else: |
|
return self._create_basic_prompt(question, formatted_choices, max_letter) |
|
|
|
def _create_basic_prompt(self, question, formatted_choices, max_letter): |
|
"""Create a basic prompt asking for just the answer letter""" |
|
return f""" |
|
QUESTION: |
|
{question} |
|
|
|
CHOICES: |
|
{formatted_choices} |
|
|
|
Answer with a single letter from A through {max_letter} without any additional explanation or commentary. |
|
""" |
|
|
|
def _create_yaml_prompt(self, question, formatted_choices, max_letter): |
|
"""Create a prompt requesting YAML-formatted reasoning""" |
|
return f""" |
|
QUESTION: |
|
{question} |
|
|
|
CHOICES: |
|
{formatted_choices} |
|
|
|
Analyze this question step-by-step and provide a detailed explanation. |
|
Your response MUST be in YAML format as follows: |
|
|
|
understanding: | |
|
<your understanding of what the question is asking> |
|
analysis: | |
|
<your analysis of each option> |
|
reasoning: | |
|
<your step-by-step reasoning process> |
|
conclusion: | |
|
<your final conclusion> |
|
answer: <single letter A through {max_letter}> |
|
|
|
The answer field MUST contain ONLY a single character letter. |
|
""" |
|
|
|
def create_training_prompt(self, question, choices): |
|
"""Create a prompt for training with the current prompt type""" |
|
formatted_choices = self.format_choices(choices) |
|
max_letter = self.get_max_letter(choices) |
|
|
|
if self.prompt_type == self.YAML_REASONING: |
|
return self._create_yaml_training_prompt( |
|
question, formatted_choices, max_letter |
|
) |
|
else: |
|
return self._create_basic_training_prompt( |
|
question, formatted_choices, max_letter |
|
) |
|
|
|
def _create_basic_training_prompt(self, question, formatted_choices, max_letter): |
|
"""Create a basic training prompt""" |
|
return f""" |
|
QUESTION: |
|
{question} |
|
|
|
CHOICES: |
|
{formatted_choices} |
|
|
|
The answer is a single letter (A, B, C, etc.). Only provide ONE character as your answer: |
|
""" |
|
|
|
def _create_yaml_training_prompt(self, question, formatted_choices, max_letter): |
|
"""Create a YAML-formatted training prompt""" |
|
return f""" |
|
QUESTION: |
|
{question} |
|
|
|
CHOICES: |
|
{formatted_choices} |
|
|
|
Analyze this question step-by-step and provide a detailed explanation. |
|
Follow the YAML format in your response: |
|
|
|
understanding: | |
|
<your understanding of the question> |
|
analysis: | |
|
<your analysis of each option> |
|
reasoning: | |
|
<your reasoning about the correct answer> |
|
conclusion: | |
|
<your final conclusion> |
|
answer: <single letter A through {max_letter}> |
|
""" |
|
|
|
def set_prompt_type(self, prompt_type): |
|
"""Set the prompt type""" |
|
self.original_type = prompt_type |
|
if prompt_type == self.TEACHER_REASONED: |
|
pass |
|
self.prompt_type = prompt_type |
|
return self |
|
|
|
def is_teacher_mode(self): |
|
"""Check if we're using teacher mode""" |
|
return self.original_type == self.TEACHER_REASONED |
|
``` |
|
|
|
### 3. ResponseParser |
|
```python |
|
class ResponseParser: |
|
"""Parser for model responses with support for different formats""" |
|
|
|
# Parser modes |
|
BASIC = "basic" # Extract single letter answer |
|
YAML = "yaml" # Parse YAML formatted response with reasoning |
|
|
|
def __init__(self, parser_mode=BASIC): |
|
self.parser_mode = parser_mode |
|
|
|
def parse(self, response_text): |
|
"""Parse the model's response according to the current mode""" |
|
if self.parser_mode == self.YAML: |
|
return self._parse_yaml_response(response_text) |
|
else: |
|
return self._parse_basic_response(response_text) |
|
|
|
def _parse_basic_response(self, response_text): |
|
"""Parse basic response looking for a letter answer""" |
|
import re |
|
|
|
# Try to extract a single letter answer (A-Z) |
|
answer_match = re.search(r"(?:^|\s)([A-Z])(?:\s|$|\.)", response_text) |
|
if answer_match: |
|
answer = answer_match.group(1) |
|
else: |
|
# Take first character if it's a letter |
|
if response_text and response_text[0].isalpha(): |
|
answer = response_text[0].upper() |
|
else: |
|
answer = None |
|
|
|
# For basic mode, we don't extract detailed reasoning |
|
reasoning = "" |
|
|
|
return answer, reasoning |
|
|
|
def _parse_yaml_response(self, response_text): |
|
"""Parse YAML formatted response extracting answer and reasoning""" |
|
import re |
|
import yaml |
|
|
|
# First try to find answer in YAML format |
|
yaml_match = re.search(r"answer:\s*([A-Z])", response_text) |
|
if yaml_match: |
|
answer = yaml_match.group(1) |
|
else: |
|
# Fall back to basic extraction if YAML parsing fails |
|
answer_match = re.search(r"(?:^|\s)([A-Z])(?:\s|$|\.)", response_text) |
|
if answer_match: |
|
answer = answer_match.group(1) |
|
elif response_text and response_text[0].isalpha(): |
|
answer = response_text[0].upper() |
|
else: |
|
answer = None |
|
|
|
# Try to parse reasoning from YAML format |
|
reasoning = "" |
|
if "reasoning:" in response_text: |
|
yaml_content = yaml.safe_load("---\n" + response_text) |
|
if isinstance(yaml_content, dict) and "reasoning" in yaml_content: |
|
reasoning = yaml_content["reasoning"] |
|
|
|
# Add other YAML fields if available |
|
if "understanding" in yaml_content: |
|
reasoning = f"Understanding: {yaml_content['understanding']}\n\n{reasoning}" |
|
if "conclusion" in yaml_content: |
|
reasoning = f"{reasoning}\n\nConclusion: {yaml_content['conclusion']}" |
|
else: |
|
# Use the full response as reasoning if not in YAML format |
|
reasoning = response_text |
|
|
|
return answer, reasoning |
|
|
|
def set_parser_mode(self, parser_mode): |
|
"""Set the parser mode""" |
|
self.parser_mode = parser_mode |
|
return self |
|
|
|
@classmethod |
|
def from_prompt_type(cls, prompt_type): |
|
"""Create a parser instance with mode matching the prompt type""" |
|
if prompt_type == PromptCreator.YAML_REASONING or prompt_type == PromptCreator.TEACHER_REASONED: |
|
return cls(parser_mode=cls.YAML) |
|
else: |
|
return cls(parser_mode=cls.BASIC) |
|
``` |
|
|
|
### 4. MultipleChoiceTester |
|
```python |
|
class MultipleChoiceTester: |
|
"""Framework for testing Qwen models on multiple choice questions""" |
|
|
|
def __init__(self, model_handler, prompt_creator=None): |
|
self.model_handler = model_handler |
|
self.prompt_creator = prompt_creator or PromptCreator(PromptCreator.BASIC) |
|
self.response_parser = ResponseParser.from_prompt_type(self.prompt_creator.prompt_type) |
|
|
|
def infer_example(self, example, temperature=0.7, max_tokens=1024, prompt_type=None, stream=False): |
|
"""Inference on a single example for visualization/demonstration""" |
|
# Allow temporary override of prompt type |
|
original_prompt_type = None |
|
if prompt_type is not None: |
|
original_prompt_type = self.prompt_creator.prompt_type |
|
self.prompt_creator.set_prompt_type(prompt_type) |
|
self.response_parser = ResponseParser.from_prompt_type(prompt_type) |
|
|
|
# Prepare data |
|
question = example["question"] |
|
|
|
# Handle different formats of choices |
|
if isinstance(example["choices"], list): |
|
choices = example["choices"] |
|
elif isinstance(example["choices"], str) and example["choices"].startswith("["): |
|
import ast |
|
choices = ast.literal_eval(example["choices"]) if "[" in example["choices"] else example["choices"].split(",") |
|
else: |
|
choices = str(example["choices"]).split(",") |
|
|
|
# Generate the prompt using prompt creator |
|
prompt = self.prompt_creator.create_inference_prompt(question, choices) |
|
|
|
# Start timing |
|
start_time = time.time() |
|
|
|
if stream: |
|
# Use streaming generation |
|
streamer = self.model_handler.generate_with_streaming( |
|
prompt=prompt, |
|
temperature=temperature, |
|
max_tokens=max_tokens, |
|
stream=True |
|
) |
|
|
|
# Collect output from streamer |
|
raw_response = "" |
|
print("Model response:") |
|
for text_chunk in streamer: |
|
print(text_chunk, end="", flush=True) |
|
raw_response += text_chunk |
|
print("\n") |
|
else: |
|
# Generate without streaming |
|
raw_response = self.model_handler.generate_with_streaming( |
|
prompt=prompt, |
|
temperature=temperature, |
|
max_tokens=max_tokens, |
|
stream=False |
|
) |
|
|
|
response_time = time.time() - start_time |
|
|
|
# Parse the response using the response parser |
|
predicted_answer, reasoning = self.response_parser.parse(raw_response) |
|
|
|
# Prepare results |
|
result = { |
|
"question": question, |
|
"choices": choices, |
|
"predicted_answer": predicted_answer, |
|
"reasoning": reasoning, |
|
"response_time": response_time, |
|
"raw_response": raw_response, |
|
"prompt_type": self.prompt_creator.prompt_type, |
|
} |
|
|
|
# Add task_id if available |
|
if "task_id" in example: |
|
result["task_id"] = example["task_id"] |
|
|
|
# Calculate metrics if label is provided |
|
if "answer" in example: |
|
label = example["answer"] |
|
result["correct_answer"] = label |
|
result["is_correct"] = predicted_answer == label |
|
|
|
# Calculate perplexity if requested |
|
if hasattr(self.model_handler, "calculate_perplexity"): |
|
perplexity = self.model_handler.calculate_perplexity(prompt, raw_response) |
|
result["perplexity"] = perplexity |
|
|
|
# Restore original prompt type if it was overridden |
|
if original_prompt_type is not None: |
|
self.prompt_creator.set_prompt_type(original_prompt_type) |
|
self.response_parser = ResponseParser.from_prompt_type(original_prompt_type) |
|
|
|
return result |
|
|
|
def infer_batch(self, examples, temperature=0.7, max_tokens=1024, prompt_type=None, batch_size=4): |
|
"""Inference on a batch of examples""" |
|
# Allow temporary override of prompt type |
|
original_prompt_type = None |
|
if prompt_type is not None: |
|
original_prompt_type = self.prompt_creator.prompt_type |
|
self.prompt_creator.set_prompt_type(prompt_type) |
|
self.response_parser = ResponseParser.from_prompt_type(prompt_type) |
|
|
|
# Prepare all prompts |
|
prompts = [] |
|
metadata = [] |
|
|
|
for i, example in enumerate(examples): |
|
# Extract data |
|
question = example["question"] |
|
|
|
# Handle different formats of choices |
|
if isinstance(example["choices"], list): |
|
choices = example["choices"] |
|
elif isinstance(example["choices"], str) and example["choices"].startswith("["): |
|
import ast |
|
choices = ast.literal_eval(example["choices"]) if "[" in example["choices"] else example["choices"].split(",") |
|
else: |
|
choices = str(example["choices"]).split(",") |
|
|
|
# Generate the prompt using prompt creator |
|
prompt = self.prompt_creator.create_inference_prompt(question, choices) |
|
prompts.append(prompt) |
|
|
|
# Store metadata for later |
|
meta = { |
|
"question": question, |
|
"choices": choices, |
|
"index": i, |
|
} |
|
|
|
# Add label if available |
|
if "answer" in example: |
|
meta["label"] = example["answer"] |
|
|
|
if "task_id" in example: |
|
meta["task_id"] = example["task_id"] |
|
|
|
metadata.append(meta) |
|
|
|
# Process in batches |
|
results = [] |
|
correct_count = 0 |
|
total_count = 0 |
|
perplexities = [] |
|
|
|
for i in range(0, len(prompts), batch_size): |
|
batch_prompts = prompts[i:i+batch_size] |
|
batch_meta = metadata[i:i+batch_size] |
|
|
|
# Process batch |
|
start_time = time.time() |
|
batch_responses = [] |
|
|
|
for prompt in batch_prompts: |
|
response = self.model_handler.generate_with_streaming( |
|
prompt=prompt, |
|
temperature=temperature, |
|
max_tokens=max_tokens, |
|
stream=False |
|
) |
|
batch_responses.append(response) |
|
|
|
batch_time = time.time() - start_time |
|
|
|
# Process each response in the batch |
|
for j, (response, meta) in enumerate(zip(batch_responses, batch_meta)): |
|
# Parse response |
|
predicted_answer, reasoning = self.response_parser.parse(response) |
|
|
|
# Create result |
|
result = { |
|
"question": meta["question"], |
|
"choices": meta["choices"], |
|
"predicted_answer": predicted_answer, |
|
"reasoning": reasoning, |
|
"raw_response": response, |
|
"prompt_type": self.prompt_creator.prompt_type, |
|
"response_time": batch_time / len(batch_prompts), |
|
} |
|
|
|
# Add task_id if available |
|
if "task_id" in meta: |
|
result["task_id"] = meta["task_id"] |
|
|
|
# Add metrics if label available |
|
if "label" in meta: |
|
label = meta["label"] |
|
result["correct_answer"] = label |
|
result["is_correct"] = predicted_answer == label |
|
|
|
# Update counts for accuracy |
|
total_count += 1 |
|
if result["is_correct"]: |
|
correct_count += 1 |
|
|
|
# Calculate perplexity if possible |
|
if hasattr(self.model_handler, "calculate_perplexity"): |
|
prompt = batch_prompts[j] |
|
perplexity = self.model_handler.calculate_perplexity(prompt, response) |
|
result["perplexity"] = perplexity |
|
perplexities.append(perplexity) |
|
|
|
results.append(result) |
|
|
|
# Calculate aggregate metrics |
|
summary_metrics = {} |
|
if total_count > 0: |
|
summary_metrics["accuracy"] = correct_count / total_count |
|
summary_metrics["correct_count"] = correct_count |
|
summary_metrics["total_count"] = total_count |
|
|
|
if perplexities: |
|
summary_metrics["avg_perplexity"] = sum(perplexities) / len(perplexities) |
|
summary_metrics["min_perplexity"] = min(perplexities) |
|
summary_metrics["max_perplexity"] = max(perplexities) |
|
|
|
# Restore original prompt type if it was overridden |
|
if original_prompt_type is not None: |
|
self.prompt_creator.set_prompt_type(original_prompt_type) |
|
self.response_parser = ResponseParser.from_prompt_type(original_prompt_type) |
|
|
|
return results, summary_metrics |
|
|
|
def evaluate_dataset(self, dataset, temperature=0.7, max_tokens=1024, num_examples=None, |
|
verbose=True, prompt_type=None, batch_size=4, log_to_wandb=False): |
|
"""Inference on a whole dataset with metrics calculation""" |
|
# Allow overriding the prompt type for this evaluation |
|
original_prompt_type = self.prompt_creator.prompt_type |
|
if prompt_type is not None: |
|
self.prompt_creator.set_prompt_type(prompt_type) |
|
self.response_parser = ResponseParser.from_prompt_type(prompt_type) |
|
|
|
# Select subset if specified |
|
if num_examples is not None: |
|
dataset = dataset.select(range(min(num_examples, len(dataset)))) |
|
|
|
results = [] |
|
correct_count = 0 |
|
total_count = 0 |
|
perplexities = [] |
|
|
|
# Process examples in batches |
|
for i in range(0, len(dataset), batch_size): |
|
batch_examples = dataset[i:i+batch_size] |
|
|
|
if verbose: |
|
batch_desc = f"Batch {i//batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}" |
|
print(f"\nProcessing {batch_desc} with {len(batch_examples)} examples...") |
|
|
|
# Infer batch |
|
batch_results, batch_metrics = self.infer_batch( |
|
examples=batch_examples, |
|
temperature=temperature, |
|
max_tokens=max_tokens, |
|
batch_size=batch_size |
|
) |
|
|
|
# Update metrics |
|
results.extend(batch_results) |
|
if "correct_count" in batch_metrics: |
|
correct_count += batch_metrics["correct_count"] |
|
total_count += batch_metrics["total_count"] |
|
|
|
if verbose: |
|
batch_accuracy = batch_metrics["accuracy"] |
|
overall_accuracy = correct_count / total_count |
|
print(f"Batch accuracy: {batch_accuracy:.2%}, Overall: {overall_accuracy:.2%} ({correct_count}/{total_count})") |
|
|
|
# Collect perplexities |
|
if "avg_perplexity" in batch_metrics: |
|
for result in batch_results: |
|
if "perplexity" in result: |
|
perplexities.append(result["perplexity"]) |
|
|
|
# Calculate final accuracy |
|
accuracy = correct_count / total_count if total_count > 0 else 0.0 |
|
|
|
if verbose: |
|
prompt_type_str = self.prompt_creator.prompt_type |
|
print(f"\nFinal accuracy with {prompt_type_str} prompts: {accuracy:.2%} ({correct_count}/{total_count})") |
|
if perplexities: |
|
avg_perplexity = sum(perplexities) / len(perplexities) |
|
print(f"Average perplexity: {avg_perplexity:.4f}") |
|
|
|
# Prepare comprehensive summary |
|
summary = { |
|
"accuracy": accuracy, |
|
"correct_count": correct_count, |
|
"total_count": total_count, |
|
"prompt_type": self.prompt_creator.prompt_type, |
|
"results": results, |
|
} |
|
|
|
# Add perplexity metrics if available |
|
if perplexities: |
|
summary["avg_perplexity"] = sum(perplexities) / len(perplexities) |
|
summary["min_perplexity"] = min(perplexities) |
|
summary["max_perplexity"] = max(perplexities) |
|
|
|
# Log results to wandb if requested |
|
if log_to_wandb and wandb.run is not None: |
|
metrics = { |
|
"test/accuracy": accuracy, |
|
"test/correct_count": correct_count, |
|
"test/total_count": total_count, |
|
} |
|
if perplexities: |
|
metrics["test/avg_perplexity"] = summary["avg_perplexity"] |
|
metrics["test/min_perplexity"] = summary["min_perplexity"] |
|
metrics["test/max_perplexity"] = summary["max_perplexity"] |
|
|
|
wandb.log(metrics) |
|
|
|
# Create a table of results for visualization if task_id exists |
|
if "task_id" in dataset.features: |
|
columns = ["task_id", "question", "correct_answer", "predicted_answer", "is_correct"] |
|
table = wandb.Table(columns=columns) |
|
|
|
for res in results[:min(100, len(results))]: |
|
table.add_data( |
|
res.get("task_id", "unknown"), |
|
res["question"][:100] + "...", |
|
res.get("correct_answer", ""), |
|
res.get("predicted_answer", ""), |
|
res.get("is_correct", False) |
|
) |
|
|
|
wandb.log({"test_samples": table}) |
|
|
|
# Restore original prompt type |
|
self.prompt_creator.set_prompt_type(original_prompt_type) |
|
self.response_parser = ResponseParser.from_prompt_type(original_prompt_type) |
|
|
|
return summary |
|
|
|
def save_results(self, results, output_dir="./results"): |
|
"""Save evaluation results to file""" |
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") |
|
results_file = os.path.join(output_dir, f"results_{timestamp}.json") |
|
|
|
# Create serializable results |
|
serializable_results = { |
|
"accuracy": results.get("accuracy", 0.0), |
|
"correct_count": results.get("correct_count", 0), |
|
"total_count": results.get("total_count", 0), |
|
"timestamp": timestamp, |
|
"prompt_type": results.get("prompt_type", "unknown"), |
|
} |
|
|
|
# Add perplexity metrics if available |
|
if "avg_perplexity" in results: |
|
serializable_results["avg_perplexity"] = results["avg_perplexity"] |
|
serializable_results["min_perplexity"] = results["min_perplexity"] |
|
serializable_results["max_perplexity"] = results["max_perplexity"] |
|
|
|
# Process individual results |
|
serializable_results["individual_results"] = [] |
|
for result in results["results"]: |
|
# Skip perplexity in individual results to save space |
|
result_copy = result.copy() |
|
if "perplexity" in result_copy: |
|
del result_copy["perplexity"] |
|
|
|
# Convert choices if needed |
|
choices = result_copy["choices"] |
|
if not isinstance(choices, list): |
|
try: |
|
import ast |
|
result_copy["choices"] = ast.literal_eval(choices) |
|
except (SyntaxError, ValueError): |
|
pass |
|
|
|
serializable_results["individual_results"].append(result_copy) |
|
|
|
# Save to file |
|
with open(results_file, "w") as f: |
|
import json |
|
json.dump(serializable_results, f, indent=2) |
|
|
|
print(f"Results saved to {results_file}") |
|
return results_file |
|
``` |
|
|
|
</details> |
|
|
|
## Quick Start |
|
|
|
Here's a simple example of how to use the model: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
# Load the model and tokenizer |
|
model_id = "tuandunghcmut/Qwen25_Coder_MultipleChoice" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
trust_remote_code=True |
|
) |
|
|
|
# Example question |
|
question = "What is the correct way to open a file in Python for reading?" |
|
choices = [ |
|
"open('file.txt', 'r')", |
|
"file.open('file.txt', 'read')", |
|
"read('file.txt')", |
|
"File.open('file.txt')" |
|
] |
|
|
|
# Format the prompt |
|
prompt = f""" |
|
QUESTION: |
|
{question} |
|
|
|
CHOICES: |
|
{chr(65 + i)}. {choice} |
|
for i, choice in enumerate(choices)} |
|
|
|
Answer with a single letter from A through {chr(65 + len(choices) - 1)} without any additional explanation or commentary. |
|
""" |
|
|
|
# Generate response |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, max_new_tokens=10) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
print(f"Model's answer: {response}") |
|
``` |
|
|
|
## Advanced Usage |
|
|
|
### Using the MultipleChoiceTester Framework |
|
|
|
For more advanced usage, you can use the provided `MultipleChoiceTester` framework: |
|
|
|
```python |
|
from save import QwenModelHandler, MultipleChoiceTester, PromptCreator |
|
|
|
# Initialize the model handler |
|
model_handler = QwenModelHandler( |
|
model_name="tuandunghcmut/Qwen25_Coder_MultipleChoice", |
|
max_seq_length=2048, |
|
quantization="4bit", |
|
device_map="auto" |
|
) |
|
|
|
# Create a prompt creator with YAML reasoning format |
|
prompt_creator = PromptCreator(PromptCreator.YAML_REASONING) |
|
|
|
# Initialize the tester |
|
tester = MultipleChoiceTester(model_handler, prompt_creator=prompt_creator) |
|
|
|
# Example question |
|
example = { |
|
"question": "What is the correct way to open a file in Python for reading?", |
|
"choices": [ |
|
"open('file.txt', 'r')", |
|
"file.open('file.txt', 'read')", |
|
"read('file.txt')", |
|
"File.open('file.txt')" |
|
], |
|
"answer": "A" # Optional ground truth |
|
} |
|
|
|
# Get prediction with reasoning |
|
result = tester.infer_example(example, temperature=0.0001, stream=True) |
|
print(f"Predicted answer: {result['predicted_answer']}") |
|
print("Reasoning:") |
|
print(result['reasoning']) |
|
``` |
|
|
|
### Batch Processing |
|
|
|
You can also process multiple questions in batches: |
|
|
|
```python |
|
# List of examples |
|
examples = [ |
|
{ |
|
"question": "What is the correct way to open a file in Python for reading?", |
|
"choices": ["open('file.txt', 'r')", "file.open('file.txt', 'read')", "read('file.txt')", "File.open('file.txt')"], |
|
"answer": "A" |
|
}, |
|
# Add more examples... |
|
] |
|
|
|
# Process batch |
|
results, metrics = tester.infer_batch(examples, batch_size=4) |
|
print(f"Batch accuracy: {metrics['accuracy']:.2%}") |
|
``` |
|
|
|
### Streaming Inference |
|
|
|
The model supports streaming inference, which provides real-time output as the model generates its response. This is particularly useful for interactive applications and when you want to see the reasoning process in real-time. |
|
|
|
#### Basic Streaming Usage |
|
|
|
Here's how to use streaming inference: |
|
|
|
```python |
|
# Initialize model handler and tester as before |
|
model_handler = QwenModelHandler( |
|
model_name="tuandunghcmut/Qwen25_Coder_MultipleChoice", |
|
max_seq_length=2048 |
|
) |
|
tester = MultipleChoiceTester(model_handler) |
|
|
|
# Example with streaming |
|
example = { |
|
"question": "Which Python method is used to remove whitespace from both ends of a string?", |
|
"choices": [ |
|
"strip()", |
|
"trim()", |
|
"clean()", |
|
"remove_whitespace()" |
|
], |
|
"answer": "A" |
|
} |
|
|
|
# Enable streaming with stream=True |
|
result = tester.infer_example( |
|
example, |
|
temperature=0.0001, |
|
max_tokens=1024, |
|
stream=True # Enable streaming |
|
) |
|
|
|
# The output will be printed in real-time as the model generates it |
|
# You can also access the complete response after generation |
|
print("\nFinal result:") |
|
print(f"Predicted answer: {result['predicted_answer']}") |
|
print("Complete reasoning:") |
|
print(result['reasoning']) |
|
``` |
|
|
|
#### Advanced Streaming Patterns |
|
|
|
##### 1. Custom Stream Processing |
|
|
|
You can process the streamed output in custom ways: |
|
|
|
```python |
|
def process_stream(streamer): |
|
"""Custom stream processing function""" |
|
collected_text = "" |
|
for chunk in streamer: |
|
# Process each chunk as it arrives |
|
collected_text += chunk |
|
# You can do custom processing here |
|
# For example, parse partial YAML, update UI, etc. |
|
yield chunk, collected_text |
|
|
|
# Use custom stream processing |
|
result = tester.infer_example( |
|
example, |
|
temperature=0.0001, |
|
stream=True |
|
) |
|
|
|
# Process the stream with custom logic |
|
for chunk, full_text in process_stream(result['stream']): |
|
# Do something with each chunk |
|
print(f"Chunk: {chunk}") |
|
print(f"Full text so far: {full_text}") |
|
``` |
|
|
|
##### 2. YAML Streaming with Real-time Parsing |
|
|
|
When using YAML reasoning format, you can parse the output as it streams: |
|
|
|
```python |
|
import yaml |
|
from io import StringIO |
|
|
|
def parse_yaml_stream(streamer): |
|
"""Parse YAML content as it streams""" |
|
buffer = StringIO() |
|
for chunk in streamer: |
|
buffer.write(chunk) |
|
try: |
|
# Try to parse the current buffer as YAML |
|
yaml_content = yaml.safe_load(buffer.getvalue()) |
|
if yaml_content: |
|
yield chunk, yaml_content |
|
except yaml.YAMLError: |
|
# Not enough content for valid YAML yet |
|
continue |
|
|
|
# Use YAML streaming with parsing |
|
result = tester.infer_example( |
|
example, |
|
temperature=0.0001, |
|
prompt_type=PromptCreator.YAML_REASONING, |
|
stream=True |
|
) |
|
|
|
# Process YAML content as it streams |
|
for chunk, yaml_content in parse_yaml_stream(result['stream']): |
|
if isinstance(yaml_content, dict): |
|
# Access YAML fields as they become available |
|
if 'understanding' in yaml_content: |
|
print(f"Understanding: {yaml_content['understanding']}") |
|
if 'reasoning' in yaml_content: |
|
print(f"Reasoning: {yaml_content['reasoning']}") |
|
if 'answer' in yaml_content: |
|
print(f"Answer: {yaml_content['answer']}") |
|
``` |
|
|
|
##### 3. Streaming with Progress Tracking |
|
|
|
You can track generation progress and timing: |
|
|
|
```python |
|
import time |
|
|
|
def stream_with_progress(streamer): |
|
"""Stream with progress tracking""" |
|
start_time = time.time() |
|
tokens_generated = 0 |
|
|
|
for chunk in streamer: |
|
tokens_generated += len(chunk.split()) |
|
elapsed = time.time() - start_time |
|
tokens_per_second = tokens_generated / elapsed if elapsed > 0 else 0 |
|
|
|
yield { |
|
'chunk': chunk, |
|
'tokens': tokens_generated, |
|
'tokens_per_second': tokens_per_second, |
|
'elapsed': elapsed |
|
} |
|
|
|
# Use streaming with progress tracking |
|
result = tester.infer_example( |
|
example, |
|
temperature=0.0001, |
|
stream=True |
|
) |
|
|
|
for progress in stream_with_progress(result['stream']): |
|
print(f"Generated {progress['tokens']} tokens " |
|
f"({progress['tokens_per_second']:.2f} tokens/sec)") |
|
print(f"Chunk: {progress['chunk']}") |
|
``` |
|
|
|
#### Implementation Details |
|
|
|
The streaming implementation uses Unsloth's optimized inference with the following key features: |
|
|
|
1. **Efficient Token Generation** |
|
- Uses Unsloth's `FastLanguageModel` for optimized inference |
|
- Implements streaming using `TextIteratorStreamer` |
|
- Supports both greedy and temperature-based sampling |
|
|
|
2. **Memory Management** |
|
- Streams tokens without storing the entire response in memory |
|
- Efficiently handles long responses |
|
- Supports batch processing with streaming |
|
|
|
3. **Performance Optimizations** |
|
- Uses `use_cache=True` for faster generation |
|
- Implements `min_p` sampling for better quality |
|
- Supports 4-bit quantization for reduced memory usage |
|
|
|
4. **Error Handling** |
|
- Gracefully handles streaming interruptions |
|
- Provides partial results if generation is interrupted |
|
- Maintains context for resumed generation |
|
|
|
The streaming output will show the model's reasoning process in real-time, including: |
|
- Understanding of the question |
|
- Analysis of each option |
|
- Step-by-step reasoning |
|
- Final conclusion |
|
- Answer selection |
|
|
|
This is particularly useful for: |
|
- Debugging model behavior |
|
- Creating interactive demos |
|
- Understanding the model's reasoning process |
|
- Providing immediate feedback to users |
|
- Building real-time applications |
|
|
|
## Model Features |
|
|
|
- **YAML-Based Reasoning**: The model provides structured reasoning in YAML format |
|
- **Multiple Prompt Types**: Supports both basic and YAML-formatted reasoning prompts |
|
- **Batch Processing**: Efficiently process multiple questions at once |
|
- **Performance Metrics**: Tracks accuracy, perplexity, and response times |
|
- **Streaming Support**: Real-time output streaming for interactive use |
|
|
|
## License |
|
|
|
This project is licensed under the MIT License - see the LICENSE file for details. |