ik_llama.cpp
imatrix Quantizations of Qwen/Qwen3-Coder-480B-A35B-Instruct
This quant collection REQUIRES ik_llama.cpp fork to support the ik's latest SOTA quants and optimizations! Do not download these big files and expect them to run on mainline vanilla llama.cpp, ollama, LM Studio, KoboldCpp, etc!
NOTE ik_llama.cpp
can also run your existing GGUFs from bartowski, unsloth, mradermacher, etc if you want to try it out before downloading my quants.
Some of ik's new quants are supported with Nexesenex/croco.cpp fork of KoboldCPP. Precompiled binaries compatible with windows available on CUDA 12.9.
These quants provide best in class perplexity for the given memory footprint.
Big Thanks
Shout out to Wendell and the Level1Techs crew, the community Forums, YouTube Channel! BIG thanks for providing BIG hardware expertise and access to run these experiments and make these great quants available to the community!!!
Also thanks to all the folks in the quanting and inferencing community on BeaverAI Club Discord and on r/LocalLLaMA for tips and tricks helping each other run, test, and benchmark all the fun new models!
Quant Collection
Perplexity computed against wiki.test.raw. These first two are just test quants for baseline perplexity comparison:
bf16
TODO- Final estimate: PPL = TODO
Q8_0
475.297 GiB (8.503 BPW)- Final estimate: PPL = 5.0975 +/- 0.03261
IQ5_K
329.804 GiB (5.900 BPW)
Final estimate: PPL = 5.1073 +/- 0.03268
๐ Secret Recipe
#!/usr/bin/env bash
# Repeating Layers [0-61]
custom="
# Attention
blk\..*\.attn_q.*=iq6_k
blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0
blk\..*\.attn_output.*=iq6_k
# Routed Experts
blk\..*\.ffn_down_exps\.weight=iq6_k
blk\..*\.ffn_(gate|up)_exps\.weight=iq5_k
# Non-Repeating Layers
token_embd\.weight=iq6_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 0 -m 0 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/imatrix-Qwen3-Coder-480B-A35B-Instruct-Q8_0.dat \
/mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/Qwen3-Coder-480B-A35B-Instruct-BF16-00001-of-00021.gguf \
/mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/Qwen3-Coder-480B-A35B-Instruct-IQ5_K.gguf \
IQ5_K \
192
IQ4_K
273.041 GiB (4.885 BPW)
Final estimate: PPL = 5.1257 +/- 0.03285
๐ Secret Recipe
#!/usr/bin/env bash
# Repeating Layers [0-61]
custom="
# Attention
blk\..*\.attn_q.*=iq6_k
blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0
blk\..*\.attn_output.*=iq6_k
# Routed Experts
blk\..*\.ffn_down_exps\.weight=iq5_k
blk\..*\.ffn_(gate|up)_exps\.weight=iq4_k
# Non-Repeating Layers
token_embd\.weight=iq6_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 0 -m 0 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/imatrix-Qwen3-Coder-480B-A35B-Instruct-Q8_0.dat \
/mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/Qwen3-Coder-480B-A35B-Instruct-BF16-00001-of-00021.gguf \
/mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/Qwen3-Coder-480B-A35B-Instruct-IQ4_K.gguf \
IQ4_K \
192
IQ3_K
216.047 GiB (3.865 BPW)
Final estimate: PPL = 5.1808 +/- 0.03319
๐ Secret Recipe
#!/usr/bin/env bash
# Repeating Layers [0-61]
custom="
# Attention
blk\..*\.attn_q.*=iq6_k
blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0
blk\..*\.attn_output.*=iq6_k
# Routed Experts
blk\..*\.ffn_down_exps\.weight=iq4_k
blk\..*\.ffn_(gate|up)_exps\.weight=iq3_k
# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 0 -m 0 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/imatrix-Qwen3-Coder-480B-A35B-Instruct-Q8_0.dat \
/mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/Qwen3-Coder-480B-A35B-Instruct-BF16-00001-of-00021.gguf \
/mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/Qwen3-Coder-480B-A35B-Instruct-IQ3_K.gguf \
IQ3_K \
192
IQ2_K
144.640 GiB (2.588 BPW)
Final estimate: PPL = 5.6578 +/- 0.03697
Not uploading just yet, want to sweep-bench compaire this with IQ2_KS given they seem almost identical and the KS might be faster TG.
๐ Secret Recipe
#!/usr/bin/env bash
# Repeating Layers [0-61]
custom="
# Attention
blk\..*\.attn_q.*=iq6_k
blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0
blk\..*\.attn_output.*=iq6_k
# Routed Experts
blk\..*\.ffn_down_exps\.weight=iq2_kl
blk\..*\.ffn_(gate|up)_exps\.weight=iq2_k
# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 0 -m 0 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/imatrix-Qwen3-Coder-480B-A35B-Instruct-Q8_0.dat \
/mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/Qwen3-Coder-480B-A35B-Instruct-BF16-00001-of-00021.gguf \
/mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/Qwen3-Coder-480B-A35B-Instruct-IQ2_K.gguf \
IQ2_K \
192
IQ2_KS
144.126 GiB (2.578 BPW)
Final estimate: PPL = 5.6658 +/- 0.03716
๐ Secret Recipe
#!/usr/bin/env bash
# Repeating Layers [0-61]
custom="
# Attention
blk\..*\.attn_q.*=iq4_ks
blk\..*\.attn_k.*=iq5_ks
blk\..*\.attn_v.*=iq5_ks
blk\..*\.attn_output.*=iq4_ks
# Routed Experts
blk\..*\.ffn_down_exps\.weight=iq3_ks
blk\..*\.ffn_(gate|up)_exps\.weight=iq2_ks
# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 0 -m 0 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/imatrix-Qwen3-Coder-480B-A35B-Instruct-Q8_0.dat \
/mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/Qwen3-Coder-480B-A35B-Instruct-BF16-00001-of-00021.gguf \
/mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/Qwen3-Coder-480B-A35B-Instruct-IQ2_KS.gguf \
IQ2_KS \
192
IQ1_KT
108.702 GiB (1.945 BPW)
Final estimate: PPL = 6.3370 +/- 0.04289
This is mostly for full GPU offload as the KT quants tend to be CPU-bound for TG while calculating Trellis. However, PP is very good.
๐ Secret Recipe
blk\..*\.attn_q.*=iq4_kt
blk\..*\.attn_k.*=iq4_kt
blk\..*\.attn_v.*=iq4_kt
blk\..*\.attn_output.*=iq4_kt
# Routed Experts
blk\..*\.ffn_down_exps\.weight=iq2_kt
blk\..*\.ffn_(gate|up)_exps\.weight=iq1_kt
# Non-Repeating Layers
token_embd\.weight=iq4_kt
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 0 -m 0 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/imatrix-Qwen3-Coder-480B-A35B-Instruct-Q8_0.dat \
/mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/Qwen3-Coder-480B-A35B-Instruct-BF16-00001-of-00021.gguf \
/mnt/raid/models/ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF/Qwen3-Coder-480B-A35B-Instruct-IQ1_KT.gguf \
IQ1_KT \
192
Quick Start
This example is for a single CUDA GPU hybrid infrencing with CPU/RAM. Check ik_llama.cpp discussions or my other quants for more examples for multi-GPU etc.
./build/bin/llama-server \
--model /models/IQ2_KS/Qwen3-Coder-480B-A35B-Instruct-IQ2_KS.gguf \
--alias ubergarm/Qwen3-Coder-480B-A35B-Instruct \
-fa -fmoe \
-ctk q8_0 -ctv q8_0 \
-c 32768 \
-ngl 99 \
-ot "blk\.[0-9]\.ffn.*=CUDA0" \
-ot "blk.*\.ffn.*=CPU \
--threads 16 \
-ub 4096 -b 4096 \
--host 127.0.0.1 \
--port 8080
References
- Downloads last month
- 1,459
2-bit
Model tree for ubergarm/Qwen3-Coder-480B-A35B-Instruct-GGUF
Base model
Qwen/Qwen3-Coder-480B-A35B-Instruct