Command-R 35B โ€” CPT + SFT

Model type: Causal Language Model
Base model: commandr-35b-cpt
License: Apache 2.0
Framework: Axolotl


Overview

commandr-35b-cpt-sft combines both continual pretraining (CPT) and supervised fine-tuning (SFT) in a two-stage process. The model first learns additional general-domain representations (CPT), then undergoes supervised instruction tuning (SFT) on synthetic QA data.
This combination enhances factual grounding, fluency, and instruction adherence.

Training was performed on the Leonardo EuroHPC system.


Training Setup

Stage 1 (CPT): Domain-adaptive continual pretraining
Stage 2 (SFT): Instruction fine-tuning
Adapter type: LoRA
Precision: bfloat16
Hardware: 8 nodes ร— 2 ร— NVIDIA A100 64GB GPUs
Framework: DeepSpeed ZeRO-1, Axolotl, PyTorch 2.5.1+cu121


Datasets

CPT Stage:

  • arxiv.jsonl
  • gov.jsonl
  • news.jsonl
  • wiki.jsonl

SFT Stage:

  • axolotl_deduplicated_synthetic_qa.jsonl

Hyperparameters

Parameter Value
Sequence length 2048
Micro batch size 1
Gradient accumulation 2
Epochs 1
Learning rate 0.00008
LR scheduler cosine
Optimizer AdamW (8-bit)
Warmup steps 20
Weight decay 0.0
LoRA rank (r) 16
LoRA alpha 32
LoRA dropout 0.05
LoRA target modules q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
Gradient checkpointing โœ…
Flash attention โœ…
Auto resume โœ…
Loss watchdog threshold 8.0
Loss watchdog patience 20

Tokenizer

Tokenizer type: AutoTokenizer
Special token: <|end_of_text|> as pad_token

Downloads last month
30
Safetensors
Model size
35B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ubitech-edg/commandr-35b-cpt-sft

Adapter
(1)
this model
Adapters
2 models

Dataset used to train ubitech-edg/commandr-35b-cpt-sft