Command-R 35B โ CPT + SFT
Model type: Causal Language Model
Base model: commandr-35b-cpt
License: Apache 2.0
Framework: Axolotl
Overview
commandr-35b-cpt-sft
combines both continual pretraining (CPT) and supervised fine-tuning (SFT) in a two-stage process.
The model first learns additional general-domain representations (CPT), then undergoes supervised instruction tuning (SFT) on synthetic QA data.
This combination enhances factual grounding, fluency, and instruction adherence.
Training was performed on the Leonardo EuroHPC system.
Training Setup
Stage 1 (CPT): Domain-adaptive continual pretraining
Stage 2 (SFT): Instruction fine-tuning
Adapter type: LoRA
Precision: bfloat16
Hardware: 8 nodes ร 2 ร NVIDIA A100 64GB GPUs
Framework: DeepSpeed ZeRO-1, Axolotl, PyTorch 2.5.1+cu121
Datasets
CPT Stage:
arxiv.jsonl
gov.jsonl
news.jsonl
wiki.jsonl
SFT Stage:
axolotl_deduplicated_synthetic_qa.jsonl
Hyperparameters
Parameter | Value |
---|---|
Sequence length | 2048 |
Micro batch size | 1 |
Gradient accumulation | 2 |
Epochs | 1 |
Learning rate | 0.00008 |
LR scheduler | cosine |
Optimizer | AdamW (8-bit) |
Warmup steps | 20 |
Weight decay | 0.0 |
LoRA rank (r) | 16 |
LoRA alpha | 32 |
LoRA dropout | 0.05 |
LoRA target modules | q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj |
Gradient checkpointing | โ |
Flash attention | โ |
Auto resume | โ |
Loss watchdog threshold | 8.0 |
Loss watchdog patience | 20 |
Tokenizer
Tokenizer type: AutoTokenizer
Special token: <|end_of_text|>
as pad_token
- Downloads last month
- 30