indicbert1_sharetask-finetuned_on_codemixed
This model is a fine-tuned version of ai4bharat/indic-bert on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0463
- F1: 0.7367
- Precision: 0.7367
- Recall: 0.7367
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall |
---|---|---|---|---|---|---|
0.6843 | 1.0 | 689 | 0.6832 | 0.5398 | 0.5543 | 0.5445 |
0.6747 | 2.0 | 1378 | 0.6709 | 0.5912 | 0.6007 | 0.6062 |
0.6445 | 3.0 | 2067 | 0.6643 | 0.6173 | 0.6206 | 0.6274 |
0.5504 | 4.0 | 2756 | 0.6598 | 0.6019 | 0.6493 | 0.6442 |
0.3982 | 5.0 | 3445 | 0.7515 | 0.6860 | 0.6867 | 0.6855 |
0.5623 | 6.0 | 4134 | 0.8920 | 0.7259 | 0.7235 | 0.7312 |
0.4428 | 7.0 | 4823 | 1.0463 | 0.7367 | 0.7367 | 0.7367 |
0.2107 | 8.0 | 5512 | 1.1534 | 0.7239 | 0.7219 | 0.7319 |
0.1596 | 9.0 | 6201 | 1.3643 | 0.7339 | 0.7321 | 0.7363 |
0.0869 | 10.0 | 6890 | 1.3752 | 0.7353 | 0.7343 | 0.7365 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for usyk/indicbert1_sharetask-finetuned_on_codemixed
Base model
ai4bharat/indic-bert