YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
See axolotl config
axolotl version: 0.9.1.post1
base_model: meta-llama/Llama-3.1-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 4
learning_rate: 0.0001
optimizer: adamw_torch_fused
lr_scheduler: cosine
load_in_8bit: false
load_in_4bit: false
adapter: lora
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- k_proj
- v_proj
datasets:
- path: /workspace/FinLoRA/data/train/financebench_train.jsonl
type:
field_instruction: context
field_output: target
format: '[INST] {instruction} [/INST]'
no_input_format: '[INST] {instruction} [/INST]'
val_set_size: 0.02
output_dir: /workspace/FinLoRA/lora/axolotl-output/financebench_llama_3_1_8b_fp16_r8
sequence_len: 4096
gradient_checkpointing: true
logging_steps: 500
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
deepspeed: deepspeed_configs/zero1.json
bf16: auto
tf32: false
chat_template: llama3
wandb_name: financebench_llama_3_1_8b_fp16_r8
workspace/FinLoRA/lora/axolotl-output/financebench_llama_3_1_8b_fp16_r8
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the /workspace/FinLoRA/data/train/financebench_train.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 2.2962
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- total_eval_batch_size: 3
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4.0
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| No log | 0.0714 | 1 | 4.7562 |
| No log | 0.2857 | 4 | 4.7251 |
| No log | 0.5714 | 8 | 4.4087 |
| No log | 0.8571 | 12 | 3.9440 |
| No log | 1.1429 | 16 | 3.3303 |
| No log | 1.4286 | 20 | 2.8647 |
| No log | 1.7143 | 24 | 2.6231 |
| No log | 2.0 | 28 | 2.4685 |
| No log | 2.2857 | 32 | 2.4041 |
| No log | 2.5714 | 36 | 2.3627 |
| No log | 2.8571 | 40 | 2.3343 |
| No log | 3.1429 | 44 | 2.3287 |
| No log | 3.4286 | 48 | 2.3136 |
| No log | 3.7143 | 52 | 2.3032 |
| No log | 4.0 | 56 | 2.2962 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0.dev20250319+cu128
- Datasets 3.5.1
- Tokenizers 0.21.1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support