YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Built with Axolotl

See axolotl config

axolotl version: 0.9.1.post1

base_model: meta-llama/Llama-3.1-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 4
learning_rate: 0.0001
optimizer: adamw_torch_fused
lr_scheduler: cosine
load_in_8bit: false
load_in_4bit: false
adapter: lora
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- k_proj
- v_proj
datasets:
- path: /workspace/FinLoRA/data/train/financebench_train.jsonl
  type:
    field_instruction: context
    field_output: target
    format: '[INST] {instruction} [/INST]'
    no_input_format: '[INST] {instruction} [/INST]'
val_set_size: 0.02
output_dir: /workspace/FinLoRA/lora/axolotl-output/financebench_llama_3_1_8b_fp16_r8
sequence_len: 4096
gradient_checkpointing: true
logging_steps: 500
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
  pad_token: <|end_of_text|>
deepspeed: deepspeed_configs/zero1.json
bf16: auto
tf32: false
chat_template: llama3
wandb_name: financebench_llama_3_1_8b_fp16_r8

workspace/FinLoRA/lora/axolotl-output/financebench_llama_3_1_8b_fp16_r8

This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the /workspace/FinLoRA/data/train/financebench_train.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2962

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 6
  • total_eval_batch_size: 3
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4.0

Training results

Training Loss Epoch Step Validation Loss
No log 0.0714 1 4.7562
No log 0.2857 4 4.7251
No log 0.5714 8 4.4087
No log 0.8571 12 3.9440
No log 1.1429 16 3.3303
No log 1.4286 20 2.8647
No log 1.7143 24 2.6231
No log 2.0 28 2.4685
No log 2.2857 32 2.4041
No log 2.5714 36 2.3627
No log 2.8571 40 2.3343
No log 3.1429 44 2.3287
No log 3.4286 48 2.3136
No log 3.7143 52 2.3032
No log 4.0 56 2.2962

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0.dev20250319+cu128
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support