YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

AureusERP Fine-Tuned Gemma-3 Model

This is a fine-tuned version of the Gemma-3 open-source LLM, specialized for answering questions based on AureusERP developer documentation.


πŸ”§ Model Details

  • Base Model: gemma-3b
  • Fine-tuned On: Internal AureusERP Developer Docs
  • Precision: Float16 (merged & optimized for deployment)
  • Tokenizer: Same as base model
  • Training Objective: Supervised fine-tuning with synthetically generated QA pairs for LLM alignment

🧠 Use Case

This model is optimized for answering technical questions related to AureusERP, such as:

  • Filament integration and actions
  • Module architecture (e.g., FollowerAction, notifications, dev hooks)
  • Deployment/configuration steps
  • Developer-specific usage patterns

πŸ“ Data Source

Training data was automatically generated using Gemini 2.5-flash and then curated.

  • πŸ“„ Source: Internal AureusDevDocs (markdown)
  • πŸ€– Process: QA pairs extracted from docs using Gemini
  • πŸ”’ Format: JSON list of question-answer pairs

πŸ”Œ How to Use

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("webkul/Aureus-gemma-finetuned", torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("webkul/Aureus-gemma-finetuned")

prompt = "How can I add followers using AureusERP FollowerAction?"
inputs = tokenizer(prompt, return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

πŸ‘₯ Maintained By

Webkul AI Research Team https://webkul.com

Downloads last month
8
Safetensors
Model size
4.3B params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for webkul/Aureus-gemma-finetuned

Quantizations
1 model