This model is finetuned with unsloth using Qlora.
- Model:unsloth/Qwen3-4B-unsloth-bnb-4bit
- Parameters: 4,088,528,384
- Dataset: 0.65 0f "unsloth/OpenmathReasoning-mini and 0.35 of "mlabonne/FineTome-100k". combination of reasoning and nonreasoning dataset.
Comparision to Qwen3-4B.
- Eval on datasets:gpqa,arc,competition_math.gsm8k.
- Qwen3-4B:
+---------+------------------+-----------------+---------------+-------+---------+---------+ | Model | Dataset | Metric | Subset | Num | Score | Cat.0 | +=========+==================+=================+===============+=======+=========+=========+ | Qwen3-4B| arc | AverageAccuracy | ARC-Easy | 30 | 0.9 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ | Qwen3-4B| arc | AverageAccuracy | ARC-Challenge | 30 | 0.8 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ | Qwen3-4B| arc | AverageAccuracy | OVERALL | 60 | 0.85 | - | +---------+------------------+-----------------+---------------+-------+---------+---------+ | Qwen3-4B| competition_math | AveragePass@1 | Level 1 | 30 | 0.3 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ | Qwen3-4B| competition_math | AveragePass@1 | Level 2 | 30 | 0.2667 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ | Qwen3-4B| competition_math | AveragePass@1 | Level 3 | 30 | 0.1333 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ | Qwen3-4B| competition_math | AveragePass@1 | Level 4 | 30 | 0.2 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ | Qwen3-4B| competition_math | AveragePass@1 | Level 5 | 30 | 0 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ | Qwen3-4B| competition_math | AveragePass@1 | OVERALL | 150 | 0.18 | - | +---------+------------------+-----------------+---------------+-------+---------+---------+ | Qwen3-4B| gpqa | AveragePass@1 | gpqa_extended | 30 | 0.3 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ | Qwen3-4B| gpqa | AveragePass@1 | gpqa_main | 30 | 0.2667 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ | Qwen3-4B| gpqa | AveragePass@1 | gpqa_diamond | 30 | 0.2333 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ | Qwen3-4B| gpqa | AveragePass@1 | OVERALL | 90 | 0.2667 | - | +---------+------------------+-----------------+---------------+-------+---------+---------+ | Qwen3-4B| gsm8k | AverageAccuracy | main | 30 | 0.4667 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+
- This model:
+---------+------------------+-----------------+---------------+-------+---------+---------+ | Model | Dataset | Metric | Subset | Num | Score | Cat.0 | +=========+==================+=================+===============+=======+=========+=========+ |ThisModel| arc | AverageAccuracy | ARC-Easy | 30 | 0.9 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ |ThisModel| arc | AverageAccuracy | ARC-Challenge | 30 | 0.8 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ |ThisModel| arc | AverageAccuracy | OVERALL | 60 | 0.85 | - | +---------+------------------+-----------------+---------------+-------+---------+---------+ |ThisModel| competition_math | AveragePass@1 | Level 1 | 30 | 0.9 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ |ThisModel| competition_math | AveragePass@1 | Level 2 | 30 | 0.9 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ |ThisModel| competition_math | AveragePass@1 | Level 3 | 30 | 0.8 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ |ThisModel| competition_math | AveragePass@1 | Level 4 | 30 | 0.7333 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ |ThisModel| competition_math | AveragePass@1 | Level 5 | 30 | 0.4667 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ |ThisModel| competition_math | AveragePass@1 | OVERALL | 150 | 0.76 | - | +---------+------------------+-----------------+---------------+-------+---------+---------+ |ThisModel| gpqa | AveragePass@1 | gpqa_extended | 30 | 0.3333 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ |ThisModel| gpqa | AveragePass@1 | gpqa_main | 30 | 0.3 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ |ThisModel| gpqa | AveragePass@1 | gpqa_diamond | 30 | 0.3333 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+ |ThisModel| gpqa | AveragePass@1 | OVERALL | 90 | 0.3222 | - | +---------+------------------+-----------------+---------------+-------+---------+---------+ |ThisModel| gsm8k | AverageAccuracy | main | 30 | 0.8 | default | +---------+------------------+-----------------+---------------+-------+---------+---------+
- You could see that this model have better performence at math and inference.
Use This Model:
from transformers import AutoModelForCausalLM, AutoTokenizer,TextStreamer model_name = "wesjos/Qwen3-4B-math" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) prompt = "设 f(x) 是一个定义在实数集上的可微函数,满足以下条件:f(0)=1对于所有实数 x有 f′(x)=2f(x)+3。求 f(x)的显式表达式。" messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) text_streamer = TextStreamer(tokenizer) _ = model.generate(**model_inputs, streamer = text_streamer, max_new_tokens = 2048)
- Downloads last month
- 39
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support