See axolotl config
axolotl version: 0.10.0.dev0
base_model: Qwen/Qwen3-14B-Base
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
chat_template: qwen3
datasets:
- path: axolotl-ai-internal/gpumode-py2triton-reasoning-v2
type: chat_template
split: train
split_thinking: true
eot_tokens: ["<|im_end|>"]
dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: ./outputs/out
save_only_model: true
sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true
wandb_project: qwen3-14b-grpo-triton
wandb_entity: axolotl-ai
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch_fused
max_grad_norm: 0.1
neftune_noise_alpha: 10
lr_scheduler: cosine
learning_rate: 3e-6
bf16: true
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
logging_steps: 1
flash_attention: true
warmup_steps: 100
evals_per_epoch: 5
saves_per_epoch: 1
weight_decay: 0.01
deepspeed: deepspeed_configs/zero1.json
outputs/out
This model is a fine-tuned version of Qwen/Qwen3-14B-Base on the axolotl-ai-internal/gpumode-py2triton-reasoning-v2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2053
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4288 | 0.0039 | 1 | 0.5326 |
0.289 | 0.2 | 51 | 0.3414 |
0.2091 | 0.4 | 102 | 0.2622 |
0.2009 | 0.6 | 153 | 0.2362 |
0.1848 | 0.8 | 204 | 0.2248 |
0.1654 | 1.0 | 255 | 0.2186 |
0.1803 | 1.2 | 306 | 0.2165 |
0.1642 | 1.4 | 357 | 0.2116 |
0.1714 | 1.6 | 408 | 0.2094 |
0.164 | 1.8 | 459 | 0.2074 |
0.1488 | 2.0 | 510 | 0.2069 |
0.1676 | 2.2 | 561 | 0.2069 |
0.153 | 2.4 | 612 | 0.2059 |
0.1621 | 2.6 | 663 | 0.2056 |
0.1568 | 2.8 | 714 | 0.2055 |
0.1433 | 3.0 | 765 | 0.2053 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 475
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support