Set library_name, pipeline_tag
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,15 +1,17 @@
|
|
| 1 |
---
|
| 2 |
-
|
|
|
|
| 3 |
datasets:
|
| 4 |
- yale-nlp/MDCure-72k
|
| 5 |
language:
|
| 6 |
- en
|
| 7 |
-
|
| 8 |
-
- Qwen/Qwen2-1.5B-Instruct
|
| 9 |
tags:
|
| 10 |
- multi-document
|
| 11 |
- long-context
|
| 12 |
- Long Context
|
|
|
|
|
|
|
| 13 |
---
|
| 14 |
|
| 15 |
# MDCure-Qwen2-1.5B-Instruct
|
|
@@ -41,7 +43,9 @@ We recommend using the latest version of HF Transformers, or any `transformers>=
|
|
| 41 |
|
| 42 |
## Quickstart
|
| 43 |
|
| 44 |
-
Below we provide a code snippet demonstrating how to load the tokenizer and model and generate content in response to an input context concerning multiple source documents and a related question or instruction. We strongly recommend to separate the texts and/or instruction using
|
|
|
|
|
|
|
| 45 |
|
| 46 |
```python
|
| 47 |
model = AutoModelForCausalLM.from_pretrained("yale-nlp/MDCure-Qwen2-1.5B-Instruct", device_map='auto',torch_dtype="auto")
|
|
@@ -50,7 +54,13 @@ tokenizer = AutoTokenizer.from_pretrained("yale-nlp/MDCure-Qwen2-1.5B-Instruct")
|
|
| 50 |
source_text_1 = ...
|
| 51 |
source_text_2 = ...
|
| 52 |
source_text_3 = ...
|
| 53 |
-
prompt = f"{source_text_1}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
messages = [
|
| 56 |
{"role": "system", "content": "You are an assistant with strong multi-document processing skills."},
|
|
@@ -78,7 +88,7 @@ We open-source our custom multi-document instruction scoring model, MDCureRM, as
|
|
| 78 |
| **MDCure-Qwen2-1.5B-Instruct** | [π€ HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-1.5B-Instruct) | **Qwen2-1.5B-Instruct** fine-tuned with MDCure-72k |
|
| 79 |
| **MDCure-Qwen2-7B-Instruct** | [π€ HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-7B-Instruct) | **Qwen2-7B-Instruct** fine-tuned with MDCure-72k |
|
| 80 |
| **MDCure-LLAMA3.1-8B-Instruct** | [π€ HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-8B-Instruct) | **LLAMA3.1-8B-Instruct** fine-tuned with MDCure-72k |
|
| 81 |
-
| **MDCure-LLAMA3.1-70B-Instruct** | [π€ HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-70B-Instruct) | **LLAMA3.1-70B-Instruct** fine-tuned with MDCure-
|
| 82 |
|
| 83 |
## Citation
|
| 84 |
|
|
|
|
| 1 |
---
|
| 2 |
+
base_model:
|
| 3 |
+
- Qwen/Qwen2-1.5B-Instruct
|
| 4 |
datasets:
|
| 5 |
- yale-nlp/MDCure-72k
|
| 6 |
language:
|
| 7 |
- en
|
| 8 |
+
license: apache-2.0
|
|
|
|
| 9 |
tags:
|
| 10 |
- multi-document
|
| 11 |
- long-context
|
| 12 |
- Long Context
|
| 13 |
+
library_name: transformers
|
| 14 |
+
pipeline_tag: text-generation
|
| 15 |
---
|
| 16 |
|
| 17 |
# MDCure-Qwen2-1.5B-Instruct
|
|
|
|
| 43 |
|
| 44 |
## Quickstart
|
| 45 |
|
| 46 |
+
Below we provide a code snippet demonstrating how to load the tokenizer and model and generate content in response to an input context concerning multiple source documents and a related question or instruction. We strongly recommend to separate the texts and/or instruction using `
|
| 47 |
+
|
| 48 |
+
` or `<doc-sep>` to maintain consistency with the format of the data used during training.
|
| 49 |
|
| 50 |
```python
|
| 51 |
model = AutoModelForCausalLM.from_pretrained("yale-nlp/MDCure-Qwen2-1.5B-Instruct", device_map='auto',torch_dtype="auto")
|
|
|
|
| 54 |
source_text_1 = ...
|
| 55 |
source_text_2 = ...
|
| 56 |
source_text_3 = ...
|
| 57 |
+
prompt = f"{source_text_1}
|
| 58 |
+
|
| 59 |
+
{source_text_2}
|
| 60 |
+
|
| 61 |
+
{source_text_3}
|
| 62 |
+
|
| 63 |
+
What happened in CHAMPAIGN regarding Lovie Smith and the 2019 defense improvements? Respond with 1-2 sentences."
|
| 64 |
|
| 65 |
messages = [
|
| 66 |
{"role": "system", "content": "You are an assistant with strong multi-document processing skills."},
|
|
|
|
| 88 |
| **MDCure-Qwen2-1.5B-Instruct** | [π€ HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-1.5B-Instruct) | **Qwen2-1.5B-Instruct** fine-tuned with MDCure-72k |
|
| 89 |
| **MDCure-Qwen2-7B-Instruct** | [π€ HF Repo](https://huggingface.co/yale-nlp/MDCure-Qwen2-7B-Instruct) | **Qwen2-7B-Instruct** fine-tuned with MDCure-72k |
|
| 90 |
| **MDCure-LLAMA3.1-8B-Instruct** | [π€ HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-8B-Instruct) | **LLAMA3.1-8B-Instruct** fine-tuned with MDCure-72k |
|
| 91 |
+
| **MDCure-LLAMA3.1-70B-Instruct** | [π€ HF Repo](https://huggingface.co/yale-nlp/MDCure-LLAMA3.1-70B-Instruct) | **LLAMA3.1-70B-Instruct** fine-tuned with MDCure-72k |
|
| 92 |
|
| 93 |
## Citation
|
| 94 |
|