metadata
language:
- en
- ar
tags:
- automatic-speech-recognition
- whisper
- medical
- asr
- fp16
license: apache-2.0
datasets:
- yashtiwari/PaulMooney-Medical-ASR-Data
model-index:
- name: Whisper Large-v3 Medical
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Medical ASR
type: yashtiwari/PaulMooney-Medical-ASR-Data
metrics:
- type: wer
value: 4.12
metrics:
- wer
base_model:
- openai/whisper-large-v3
pipeline_tag: automatic-speech-recognition
Whisper Large-v3 Medical
This model is a fine-tuned version of openai/whisper-large-v3 on medical speech data. It is trained for Automatic Speech Recognition (ASR) of doctor-patient dialogues and medical narratives, with support for English and Arabic.
π©Ί Use Cases
- Transcribing clinical interviews.
- Building medical dictation tools.
- Precision: float16 (better for inference), float32 (better for fine-tuning)
π Performance
- **WER (Word Error Rate): 4.12% **
- Optimized for clean and domain-specific spoken medical data.
π§ Model Details
- Base model:
openai/whisper-large-v3
- Fine-tuned on:
yashtiwari/PaulMooney-Medical-ASR-Data
- Languages: Multilingual
- Framework: π€ Transformers
π§ͺ How to Use
from transformers import WhisperProcessor, WhisperForConditionalGeneration
model_id = "yehiazak/whisper-largev3-medical"
# Load FP16 model
model = WhisperForConditionalGeneration.from_pretrained(model_id, revision="fp16")
# Load FP32 model
model = WhisperForConditionalGeneration.from_pretrained(model_id)
processor = WhisperProcessor.from_pretrained(model_id)