yoriis's picture
Add new CrossEncoder model
79365d8 verified
metadata
tags:
  - sentence-transformers
  - cross-encoder
  - generated_from_trainer
  - dataset_size:14805
  - loss:BinaryCrossEntropyLoss
  - dataset_size:10780
  - dataset_size:7756
base_model: aubmindlab/bert-base-arabertv2
pipeline_tag: text-ranking
library_name: sentence-transformers

CrossEncoder based on aubmindlab/bert-base-arabertv2

This is a Cross Encoder model finetuned from aubmindlab/bert-base-arabertv2 using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the ๐Ÿค— Hub
model = CrossEncoder("yoriis/arabert-tydi-quqa-task-ar")
# Get scores for pairs of texts
pairs = [
    ['ุงุชู‡ู… ุงู„ู‚ุฑุขู† ุจุฃู†ู‡ ุงู„ุณุจุจ ููŠ ุงู„ุฏูƒุชุงุชูˆุฑูŠุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ู„ูƒูˆู†ู‡ ุฃุจุงุญ ุถุฑุจ  ุงู„ู†ุณุงุก ููŠ ุญุงู„ุฉ ุงู„ู†ุดูˆุฒุŒ ูƒูŠู ู†ุฑุฏ ุนู„ู‰ ุฐู„ูƒุŸ', 'ู…ู† ุฃุฌู„ ุฐู„ูƒ ูƒุชุจู†ุง ุนู„ู‰ ุจู†ูŠ ุฅุณุฑุงุฆูŠู„ ุฃู†ู‡ ู…ู† ู‚ุชู„ ู†ูุณุง ุจุบูŠุฑ ู†ูุณ ุฃูˆ ูุณุงุฏ ููŠ ุงู„ุฃุฑุถ ููƒุฃู†ู…ุง ู‚ุชู„ ุงู„ู†ุงุณ ุฌู…ูŠุนุง ูˆู…ู† ุฃุญูŠุงู‡ุง ููƒุฃู†ู…ุง ุฃุญูŠุง ุงู„ู†ุงุณ ุฌู…ูŠุนุง ูˆู„ู‚ุฏ ุฌุงุกุชู‡ู… ุฑุณู„ู†ุง ุจุงู„ุจูŠู†ุงุช ุซู… ุฅู† ูƒุซูŠุฑุง ู…ู†ู‡ู… ุจุนุฏ ุฐู„ูƒ ููŠ ุงู„ุฃุฑุถ ู„ู…ุณุฑููˆู†. ุฅู†ู…ุง ุฌุฒุงุก ุงู„ุฐูŠู† ูŠุญุงุฑุจูˆู† ุงู„ู„ู‡ ูˆุฑุณูˆู„ู‡ ูˆูŠุณุนูˆู† ููŠ ุงู„ุฃุฑุถ ูุณุงุฏุง ุฃู† ูŠู‚ุชู„ูˆุง ุฃูˆ ูŠุตู„ุจูˆุง ุฃูˆ ุชู‚ุทุน ุฃูŠุฏูŠู‡ู… ูˆุฃุฑุฌู„ู‡ู… ู…ู† ุฎู„ุงู ุฃูˆ ูŠู†ููˆุง ู…ู† ุงู„ุฃุฑุถ ุฐู„ูƒ ู„ู‡ู… ุฎุฒูŠ ููŠ ุงู„ุฏู†ูŠุง ูˆู„ู‡ู… ููŠ ุงู„ุขุฎุฑุฉ ุนุฐุงุจ ุนุธูŠู…. ุฅู„ุง ุงู„ุฐูŠู† ุชุงุจูˆุง ู…ู† ู‚ุจู„ ุฃู† ุชู‚ุฏุฑูˆุง ุนู„ูŠู‡ู… ูุงุนู„ู…ูˆุง ุฃู† ุงู„ู„ู‡ ุบููˆุฑ ุฑุญูŠู….'],
    ['ู‡ู„ ุณูŠุฏู†ุง ู…ุญู…ุฏ ู‡ูˆ ุฃูุถู„ ุงู„ุฃู†ุจูŠุงุกุŸ', 'ูˆู„ู‚ุฏ ุขุชูŠู†ุง ู…ูˆุณู‰ ูˆู‡ุงุฑูˆู† ุงู„ูุฑู‚ุงู† ูˆุถูŠุงุก ูˆุฐูƒุฑุง ู„ู„ู…ุชู‚ูŠู†. ุงู„ุฐูŠู† ูŠุฎุดูˆู† ุฑุจู‡ู… ุจุงู„ุบูŠุจ ูˆู‡ู… ู…ู† ุงู„ุณุงุนุฉ ู…ุดูู‚ูˆู†. ูˆู‡ุฐุง ุฐูƒุฑ ู…ุจุงุฑูƒ ุฃู†ุฒู„ู†ุงู‡ ุฃูุฃู†ุชู… ู„ู‡ ู…ู†ูƒุฑูˆู†.'],
    ['ูƒู… ุงุณุชุบุฑู‚ ุณูŠุฏู†ุง ู†ูˆุญ ุนู„ูŠู‡ ุงู„ุณู„ุงู… ููŠ ุจู†ุงุก ุงู„ุณููŠู†ุฉุŸ', 'ูุฅุฐุง ู…ุณ ุงู„ุฅู†ุณุงู† ุถุฑ ุฏุนุงู†ุง ุซู… ุฅุฐุง ุฎูˆู„ู†ุงู‡ ู†ุนู…ุฉ ู…ู†ุง ู‚ุงู„ ุฅู†ู…ุง ุฃูˆุชูŠุชู‡ ุนู„ู‰ ุนู„ู… ุจู„ ู‡ูŠ ูุชู†ุฉ ูˆู„ูƒู† ุฃูƒุซุฑู‡ู… ู„ุง ูŠุนู„ู…ูˆู†. ู‚ุฏ ู‚ุงู„ู‡ุง ุงู„ุฐูŠู† ู…ู† ู‚ุจู„ู‡ู… ูู…ุง ุฃุบู†ู‰ ุนู†ู‡ู… ู…ุง ูƒุงู†ูˆุง ูŠูƒุณุจูˆู†. ูุฃุตุงุจู‡ู… ุณูŠุฆุงุช ู…ุง ูƒุณุจูˆุง ูˆุงู„ุฐูŠู† ุธู„ู…ูˆุง ู…ู† ู‡ุคู„ุงุก ุณูŠุตูŠุจู‡ู… ุณูŠุฆุงุช ู…ุง ูƒุณุจูˆุง ูˆู…ุง ู‡ู… ุจู…ุนุฌุฒูŠู†. ุฃูˆู„ู… ูŠุนู„ู…ูˆุง ุฃู† ุงู„ู„ู‡ ูŠุจุณุท ุงู„ุฑุฒู‚ ู„ู…ู† ูŠุดุงุก ูˆูŠู‚ุฏุฑ ุฅู† ููŠ ุฐู„ูƒ ู„ุขูŠุงุช ู„ู‚ูˆู… ูŠุคู…ู†ูˆู†.'],
    ['ู‡ู„ ูŠุคุซู… ุงู„ุญุงูƒู… ุงู„ุฐูŠ ู„ุง ูŠุญูƒู… ุจู…ุง ุฃู†ุฒู„ ุงู„ู„ู‡ ูˆุดุฑู‘ุนุŸ', 'ุฅู†ุง ุฃู†ุฒู„ู†ุง ุฅู„ูŠูƒ ุงู„ูƒุชุงุจ ุจุงู„ุญู‚ ู„ุชุญูƒู… ุจูŠู† ุงู„ู†ุงุณ ุจู…ุง ุฃุฑุงูƒ ุงู„ู„ู‡ ูˆู„ุง ุชูƒู† ู„ู„ุฎุงุฆู†ูŠู† ุฎุตูŠู…ุง.'],
    ['ู…ุง ู‡ูŠ ุงุณู…ุงุก ุงู„ู…ุฏู† ุงู„ู…ุฐูƒูˆุฑุฉ ููŠ ุงู„ู‚ุฑุขู†ุŸ', 'ุญู…. ูˆุงู„ูƒุชุงุจ ุงู„ู…ุจูŠู†. ุฅู†ุง ุฃู†ุฒู„ู†ุงู‡ ููŠ ู„ูŠู„ุฉ ู…ุจุงุฑูƒุฉ ุฅู†ุง ูƒู†ุง ู…ู†ุฐุฑูŠู†. ููŠู‡ุง ูŠูุฑู‚ ูƒู„ ุฃู…ุฑ ุญูƒูŠู…. ุฃู…ุฑุง ู…ู† ุนู†ุฏู†ุง ุฅู†ุง ูƒู†ุง ู…ุฑุณู„ูŠู†. ุฑุญู…ุฉ ู…ู† ุฑุจูƒ ุฅู†ู‡ ู‡ูˆ ุงู„ุณู…ูŠุน ุงู„ุนู„ูŠู…. ุฑุจ ุงู„ุณู…ุงูˆุงุช ูˆุงู„ุฃุฑุถ ูˆู…ุง ุจูŠู†ู‡ู…ุง ุฅู† ูƒู†ุชู… ู…ูˆู‚ู†ูŠู†. ู„ุง ุฅู„ู‡ ุฅู„ุง ู‡ูˆ ูŠุญูŠูŠ ูˆูŠู…ูŠุช ุฑุจูƒู… ูˆุฑุจ ุขุจุงุฆูƒู… ุงู„ุฃูˆู„ูŠู†.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'ุงุชู‡ู… ุงู„ู‚ุฑุขู† ุจุฃู†ู‡ ุงู„ุณุจุจ ููŠ ุงู„ุฏูƒุชุงุชูˆุฑูŠุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ู„ูƒูˆู†ู‡ ุฃุจุงุญ ุถุฑุจ  ุงู„ู†ุณุงุก ููŠ ุญุงู„ุฉ ุงู„ู†ุดูˆุฒุŒ ูƒูŠู ู†ุฑุฏ ุนู„ู‰ ุฐู„ูƒุŸ',
    [
        'ู…ู† ุฃุฌู„ ุฐู„ูƒ ูƒุชุจู†ุง ุนู„ู‰ ุจู†ูŠ ุฅุณุฑุงุฆูŠู„ ุฃู†ู‡ ู…ู† ู‚ุชู„ ู†ูุณุง ุจุบูŠุฑ ู†ูุณ ุฃูˆ ูุณุงุฏ ููŠ ุงู„ุฃุฑุถ ููƒุฃู†ู…ุง ู‚ุชู„ ุงู„ู†ุงุณ ุฌู…ูŠุนุง ูˆู…ู† ุฃุญูŠุงู‡ุง ููƒุฃู†ู…ุง ุฃุญูŠุง ุงู„ู†ุงุณ ุฌู…ูŠุนุง ูˆู„ู‚ุฏ ุฌุงุกุชู‡ู… ุฑุณู„ู†ุง ุจุงู„ุจูŠู†ุงุช ุซู… ุฅู† ูƒุซูŠุฑุง ู…ู†ู‡ู… ุจุนุฏ ุฐู„ูƒ ููŠ ุงู„ุฃุฑุถ ู„ู…ุณุฑููˆู†. ุฅู†ู…ุง ุฌุฒุงุก ุงู„ุฐูŠู† ูŠุญุงุฑุจูˆู† ุงู„ู„ู‡ ูˆุฑุณูˆู„ู‡ ูˆูŠุณุนูˆู† ููŠ ุงู„ุฃุฑุถ ูุณุงุฏุง ุฃู† ูŠู‚ุชู„ูˆุง ุฃูˆ ูŠุตู„ุจูˆุง ุฃูˆ ุชู‚ุทุน ุฃูŠุฏูŠู‡ู… ูˆุฃุฑุฌู„ู‡ู… ู…ู† ุฎู„ุงู ุฃูˆ ูŠู†ููˆุง ู…ู† ุงู„ุฃุฑุถ ุฐู„ูƒ ู„ู‡ู… ุฎุฒูŠ ููŠ ุงู„ุฏู†ูŠุง ูˆู„ู‡ู… ููŠ ุงู„ุขุฎุฑุฉ ุนุฐุงุจ ุนุธูŠู…. ุฅู„ุง ุงู„ุฐูŠู† ุชุงุจูˆุง ู…ู† ู‚ุจู„ ุฃู† ุชู‚ุฏุฑูˆุง ุนู„ูŠู‡ู… ูุงุนู„ู…ูˆุง ุฃู† ุงู„ู„ู‡ ุบููˆุฑ ุฑุญูŠู….',
        'ูˆู„ู‚ุฏ ุขุชูŠู†ุง ู…ูˆุณู‰ ูˆู‡ุงุฑูˆู† ุงู„ูุฑู‚ุงู† ูˆุถูŠุงุก ูˆุฐูƒุฑุง ู„ู„ู…ุชู‚ูŠู†. ุงู„ุฐูŠู† ูŠุฎุดูˆู† ุฑุจู‡ู… ุจุงู„ุบูŠุจ ูˆู‡ู… ู…ู† ุงู„ุณุงุนุฉ ู…ุดูู‚ูˆู†. ูˆู‡ุฐุง ุฐูƒุฑ ู…ุจุงุฑูƒ ุฃู†ุฒู„ู†ุงู‡ ุฃูุฃู†ุชู… ู„ู‡ ู…ู†ูƒุฑูˆู†.',
        'ูุฅุฐุง ู…ุณ ุงู„ุฅู†ุณุงู† ุถุฑ ุฏุนุงู†ุง ุซู… ุฅุฐุง ุฎูˆู„ู†ุงู‡ ู†ุนู…ุฉ ู…ู†ุง ู‚ุงู„ ุฅู†ู…ุง ุฃูˆุชูŠุชู‡ ุนู„ู‰ ุนู„ู… ุจู„ ู‡ูŠ ูุชู†ุฉ ูˆู„ูƒู† ุฃูƒุซุฑู‡ู… ู„ุง ูŠุนู„ู…ูˆู†. ู‚ุฏ ู‚ุงู„ู‡ุง ุงู„ุฐูŠู† ู…ู† ู‚ุจู„ู‡ู… ูู…ุง ุฃุบู†ู‰ ุนู†ู‡ู… ู…ุง ูƒุงู†ูˆุง ูŠูƒุณุจูˆู†. ูุฃุตุงุจู‡ู… ุณูŠุฆุงุช ู…ุง ูƒุณุจูˆุง ูˆุงู„ุฐูŠู† ุธู„ู…ูˆุง ู…ู† ู‡ุคู„ุงุก ุณูŠุตูŠุจู‡ู… ุณูŠุฆุงุช ู…ุง ูƒุณุจูˆุง ูˆู…ุง ู‡ู… ุจู…ุนุฌุฒูŠู†. ุฃูˆู„ู… ูŠุนู„ู…ูˆุง ุฃู† ุงู„ู„ู‡ ูŠุจุณุท ุงู„ุฑุฒู‚ ู„ู…ู† ูŠุดุงุก ูˆูŠู‚ุฏุฑ ุฅู† ููŠ ุฐู„ูƒ ู„ุขูŠุงุช ู„ู‚ูˆู… ูŠุคู…ู†ูˆู†.',
        'ุฅู†ุง ุฃู†ุฒู„ู†ุง ุฅู„ูŠูƒ ุงู„ูƒุชุงุจ ุจุงู„ุญู‚ ู„ุชุญูƒู… ุจูŠู† ุงู„ู†ุงุณ ุจู…ุง ุฃุฑุงูƒ ุงู„ู„ู‡ ูˆู„ุง ุชูƒู† ู„ู„ุฎุงุฆู†ูŠู† ุฎุตูŠู…ุง.',
        'ุญู…. ูˆุงู„ูƒุชุงุจ ุงู„ู…ุจูŠู†. ุฅู†ุง ุฃู†ุฒู„ู†ุงู‡ ููŠ ู„ูŠู„ุฉ ู…ุจุงุฑูƒุฉ ุฅู†ุง ูƒู†ุง ู…ู†ุฐุฑูŠู†. ููŠู‡ุง ูŠูุฑู‚ ูƒู„ ุฃู…ุฑ ุญูƒูŠู…. ุฃู…ุฑุง ู…ู† ุนู†ุฏู†ุง ุฅู†ุง ูƒู†ุง ู…ุฑุณู„ูŠู†. ุฑุญู…ุฉ ู…ู† ุฑุจูƒ ุฅู†ู‡ ู‡ูˆ ุงู„ุณู…ูŠุน ุงู„ุนู„ูŠู…. ุฑุจ ุงู„ุณู…ุงูˆุงุช ูˆุงู„ุฃุฑุถ ูˆู…ุง ุจูŠู†ู‡ู…ุง ุฅู† ูƒู†ุชู… ู…ูˆู‚ู†ูŠู†. ู„ุง ุฅู„ู‡ ุฅู„ุง ู‡ูˆ ูŠุญูŠูŠ ูˆูŠู…ูŠุช ุฑุจูƒู… ูˆุฑุจ ุขุจุงุฆูƒู… ุงู„ุฃูˆู„ูŠู†.',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 7,756 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 11 characters
    • mean: 41.75 characters
    • max: 201 characters
    • min: 47 characters
    • mean: 346.67 characters
    • max: 1086 characters
    • min: 0.0
    • mean: 0.13
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    ุงุชู‡ู… ุงู„ู‚ุฑุขู† ุจุฃู†ู‡ ุงู„ุณุจุจ ููŠ ุงู„ุฏูƒุชุงุชูˆุฑูŠุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ู„ูƒูˆู†ู‡ ุฃุจุงุญ ุถุฑุจ ุงู„ู†ุณุงุก ููŠ ุญุงู„ุฉ ุงู„ู†ุดูˆุฒุŒ ูƒูŠู ู†ุฑุฏ ุนู„ู‰ ุฐู„ูƒุŸ ู…ู† ุฃุฌู„ ุฐู„ูƒ ูƒุชุจู†ุง ุนู„ู‰ ุจู†ูŠ ุฅุณุฑุงุฆูŠู„ ุฃู†ู‡ ู…ู† ู‚ุชู„ ู†ูุณุง ุจุบูŠุฑ ู†ูุณ ุฃูˆ ูุณุงุฏ ููŠ ุงู„ุฃุฑุถ ููƒุฃู†ู…ุง ู‚ุชู„ ุงู„ู†ุงุณ ุฌู…ูŠุนุง ูˆู…ู† ุฃุญูŠุงู‡ุง ููƒุฃู†ู…ุง ุฃุญูŠุง ุงู„ู†ุงุณ ุฌู…ูŠุนุง ูˆู„ู‚ุฏ ุฌุงุกุชู‡ู… ุฑุณู„ู†ุง ุจุงู„ุจูŠู†ุงุช ุซู… ุฅู† ูƒุซูŠุฑุง ู…ู†ู‡ู… ุจุนุฏ ุฐู„ูƒ ููŠ ุงู„ุฃุฑุถ ู„ู…ุณุฑููˆู†. ุฅู†ู…ุง ุฌุฒุงุก ุงู„ุฐูŠู† ูŠุญุงุฑุจูˆู† ุงู„ู„ู‡ ูˆุฑุณูˆู„ู‡ ูˆูŠุณุนูˆู† ููŠ ุงู„ุฃุฑุถ ูุณุงุฏุง ุฃู† ูŠู‚ุชู„ูˆุง ุฃูˆ ูŠุตู„ุจูˆุง ุฃูˆ ุชู‚ุทุน ุฃูŠุฏูŠู‡ู… ูˆุฃุฑุฌู„ู‡ู… ู…ู† ุฎู„ุงู ุฃูˆ ูŠู†ููˆุง ู…ู† ุงู„ุฃุฑุถ ุฐู„ูƒ ู„ู‡ู… ุฎุฒูŠ ููŠ ุงู„ุฏู†ูŠุง ูˆู„ู‡ู… ููŠ ุงู„ุขุฎุฑุฉ ุนุฐุงุจ ุนุธูŠู…. ุฅู„ุง ุงู„ุฐูŠู† ุชุงุจูˆุง ู…ู† ู‚ุจู„ ุฃู† ุชู‚ุฏุฑูˆุง ุนู„ูŠู‡ู… ูุงุนู„ู…ูˆุง ุฃู† ุงู„ู„ู‡ ุบููˆุฑ ุฑุญูŠู…. 0.0
    ู‡ู„ ุณูŠุฏู†ุง ู…ุญู…ุฏ ู‡ูˆ ุฃูุถู„ ุงู„ุฃู†ุจูŠุงุกุŸ ูˆู„ู‚ุฏ ุขุชูŠู†ุง ู…ูˆุณู‰ ูˆู‡ุงุฑูˆู† ุงู„ูุฑู‚ุงู† ูˆุถูŠุงุก ูˆุฐูƒุฑุง ู„ู„ู…ุชู‚ูŠู†. ุงู„ุฐูŠู† ูŠุฎุดูˆู† ุฑุจู‡ู… ุจุงู„ุบูŠุจ ูˆู‡ู… ู…ู† ุงู„ุณุงุนุฉ ู…ุดูู‚ูˆู†. ูˆู‡ุฐุง ุฐูƒุฑ ู…ุจุงุฑูƒ ุฃู†ุฒู„ู†ุงู‡ ุฃูุฃู†ุชู… ู„ู‡ ู…ู†ูƒุฑูˆู†. 0.0
    ูƒู… ุงุณุชุบุฑู‚ ุณูŠุฏู†ุง ู†ูˆุญ ุนู„ูŠู‡ ุงู„ุณู„ุงู… ููŠ ุจู†ุงุก ุงู„ุณููŠู†ุฉุŸ ูุฅุฐุง ู…ุณ ุงู„ุฅู†ุณุงู† ุถุฑ ุฏุนุงู†ุง ุซู… ุฅุฐุง ุฎูˆู„ู†ุงู‡ ู†ุนู…ุฉ ู…ู†ุง ู‚ุงู„ ุฅู†ู…ุง ุฃูˆุชูŠุชู‡ ุนู„ู‰ ุนู„ู… ุจู„ ู‡ูŠ ูุชู†ุฉ ูˆู„ูƒู† ุฃูƒุซุฑู‡ู… ู„ุง ูŠุนู„ู…ูˆู†. ู‚ุฏ ู‚ุงู„ู‡ุง ุงู„ุฐูŠู† ู…ู† ู‚ุจู„ู‡ู… ูู…ุง ุฃุบู†ู‰ ุนู†ู‡ู… ู…ุง ูƒุงู†ูˆุง ูŠูƒุณุจูˆู†. ูุฃุตุงุจู‡ู… ุณูŠุฆุงุช ู…ุง ูƒุณุจูˆุง ูˆุงู„ุฐูŠู† ุธู„ู…ูˆุง ู…ู† ู‡ุคู„ุงุก ุณูŠุตูŠุจู‡ู… ุณูŠุฆุงุช ู…ุง ูƒุณุจูˆุง ูˆู…ุง ู‡ู… ุจู…ุนุฌุฒูŠู†. ุฃูˆู„ู… ูŠุนู„ู…ูˆุง ุฃู† ุงู„ู„ู‡ ูŠุจุณุท ุงู„ุฑุฒู‚ ู„ู…ู† ูŠุดุงุก ูˆูŠู‚ุฏุฑ ุฅู† ููŠ ุฐู„ูƒ ู„ุขูŠุงุช ู„ู‚ูˆู… ูŠุคู…ู†ูˆู†. 0.0
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": null
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss
0.5400 500 0.0274
1.0799 1000 0.0003
1.6199 1500 0.0001
2.1598 2000 0.0001
2.6998 2500 0.0001
0.7418 500 0.9666
1.4837 1000 0.3318
2.2255 1500 0.2711
2.9674 2000 0.2051
1.0309 500 0.3163
2.0619 1000 0.2196

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.53.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.9.0
  • Datasets: 2.14.4
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}