SentenceTransformer based on indobenchmark/indobert-base-p2
This is a sentence-transformers model finetuned from indobenchmark/indobert-base-p2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: indobenchmark/indobert-base-p2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("yosriku/Indobert-Base-p2-Trash-Large-EXP2")
# Run inference
sentences = [
'Penjelasan Pasal 37 36',
'Ayat (4) Cukup jelas. Pasal 37 Cukup jelas.',
'kawasan wisata yang banyak dikunjungi oleh wisatawan. Jumlah wisatawan yang berkunjung pada saat liburan tahun 2018 mencapai 9.870 orang dalam satu hari. Setiap aktifitas wisatawan akan mengasilkan sampah di kawasan wisata tersebut, terutama sampah organik',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7491, 0.1104],
# [0.7491, 1.0000, 0.1569],
# [0.1104, 0.1569, 1.0000]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 7,314 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 3 tokens
- mean: 9.37 tokens
- max: 29 tokens
- min: 11 tokens
- mean: 45.59 tokens
- max: 131 tokens
- min: 5 tokens
- mean: 40.23 tokens
- max: 94 tokens
- Samples:
anchor positive negative kedua Masuk ke Bagian Kedua Bagian Pertamaan administratifphrasing administratifPasal 75 Ketentuan lebih lanjut mengenai tata cara pengangkatan pejabat pengawas lingkungan hidup dan tata cara pelaksanaan pengawasan sebagaimana dimaksud dalam Pasal 71 ayat (3), Pasal 73, dan Pasal 74 diatur dalam Peraturan Pemerintah. Bagian Kedua - 50 - Bagian Kedua Sanksi Administratif Pasal 76 (1) Menteri, gubernur, atau bupati/walikota menerapkan sanksi administratif kepada penanggung jawab usaha dan/atau kegiatan jika dalam pengawasan ditemukan pelanggaran terhadap izin lingkungan.udara rata-rata adalah 300C. Desa ini berjarak 4 km dari pusat Kecamatan Kretek dan 13 km dari ibukota kabupaten Bantul. Di lingkup wilayah Desa Parangtritis ini daya tarik wisata utama yangApa pidana bagi mereka yang melepaskan produk rekayasa genetik? Kalimat Apa(2) Tindak pidana sebagaimana dimaksud pada ayat (1) hanya dapat dikenakan apabila sanksi administratif yang telah dijatuhkan tidak dipatuhi atau pelanggaran dilakukan lebih dari satu kali. Pasal 101 Setiap orang yang melepaskan dan/atau mengedarkan produk rekayasa genetik ke media lingkungan hidup yang bertentangan dengan peraturan perundang-undangan atau izin lingkungan sebagaimana dimaksud dalam Pasal 69 ayat (1) huruf g, dipidana dengan pidana penjara paling singkat 1 (satu) tahun dan paling lama 3 (tiga) tahun dan denda palingWisata Pantai di D.I. Yogyakarta sangat banyak, dan selalu bertambah lokasi wisata pantai baru di Yogyakarta. Hal ini, dikarenakan Kelompok Sadar Wisata (Pokdarwis) di Yogyakarta sangat aktif.Wewenang penyidik lanjutanmelakukan pemeriksaan di tempat tertentu yang diduga terdapat bahan bukti, pembukuan, pencatatan, dan dokumen lain serta melakukan penyitaan terhadap bahan dan barang hasil kejahatan yang dapat dijadikan bukti dalam perkara tindak pidana di bidang pengelolaan sampah; dan f. meminta bantuan ahli dalam pelaksanaan tugas penyidikan tindak pidana di bidang pengelolaan sampah.udara rata-rata adalah 300C. Desa ini berjarak 4 km dari pusat Kecamatan Kretek dan 13 km dari ibukota kabupaten Bantul. Di lingkup wilayah Desa Parangtritis ini daya tarik wisata utama yang - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 64learning_rate: 2e-05fp16: Truepush_to_hub: Truehub_model_id: yosriku/Indobert-Base-p2-Trash-Large-EXP2hub_strategy: endhub_private_repo: False
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: yosriku/Indobert-Base-p2-Trash-Large-EXP2hub_strategy: endhub_private_repo: Falsehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0870 | 10 | 2.5963 |
| 0.1739 | 20 | 1.6547 |
| 0.2609 | 30 | 1.4108 |
| 0.3478 | 40 | 1.1778 |
| 0.4348 | 50 | 0.9675 |
| 0.5217 | 60 | 0.9071 |
| 0.6087 | 70 | 0.7577 |
| 0.6957 | 80 | 0.794 |
| 0.7826 | 90 | 0.7271 |
| 0.8696 | 100 | 0.6572 |
| 0.9565 | 110 | 0.7096 |
| 1.0435 | 120 | 0.6268 |
| 1.1304 | 130 | 0.4045 |
| 1.2174 | 140 | 0.495 |
| 1.3043 | 150 | 0.5085 |
| 1.3913 | 160 | 0.3841 |
| 1.4783 | 170 | 0.4795 |
| 1.5652 | 180 | 0.4172 |
| 1.6522 | 190 | 0.4576 |
| 1.7391 | 200 | 0.3846 |
| 1.8261 | 210 | 0.4809 |
| 1.9130 | 220 | 0.3625 |
| 2.0 | 230 | 0.4327 |
| 2.0870 | 240 | 0.348 |
| 2.1739 | 250 | 0.3248 |
| 2.2609 | 260 | 0.3245 |
| 2.3478 | 270 | 0.3752 |
| 2.4348 | 280 | 0.3184 |
| 2.5217 | 290 | 0.3321 |
| 2.6087 | 300 | 0.3317 |
| 2.6957 | 310 | 0.3084 |
| 2.7826 | 320 | 0.3074 |
| 2.8696 | 330 | 0.2833 |
| 2.9565 | 340 | 0.2959 |
Framework Versions
- Python: 3.12.12
- Sentence Transformers: 5.1.2
- Transformers: 4.57.2
- PyTorch: 2.9.0+cu126
- Accelerate: 1.12.0
- Datasets: 4.0.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 12
Model tree for yosriku/Indobert-Base-p2-Trash-Large-EXP2
Base model
indobenchmark/indobert-base-p2