paligemma2-3b-lora-vqa-d1000-r16

This is a LoRA adapter for PaliGemma-2 3B trained on VQA tasks.

Usage

from transformers import AutoProcessor, AutoModelForCausalLM
from peft import PeftModel
import torch

# Base model
base_model_id = "google/paligemma2-3b-mix-224"
adapter_id = "yu3733/paligemma2-3b-lora-vqa-d1000-r16"

# Load processor
processor = AutoProcessor.from_pretrained(base_model_id)

# Load base model
model = AutoModelForCausalLM.from_pretrained(
    base_model_id,
    torch_dtype=torch.float16,
    device_map="auto"
)

# Load LoRA adapter
model = PeftModel.from_pretrained(model, adapter_id)

# Inference
prompt = "<image>\nQuestion: What is in this image?\nAnswer:"
inputs = processor(text=prompt, images=image, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20)
print(processor.decode(outputs[0], skip_special_tokens=True))

Training Details

  • Base Model: google/paligemma2-3b-mix-224
  • Training Data: VizWiz VQA Dataset
  • LoRA Rank: 16
  • Training Framework: PEFT + Transformers

License

Same as the base model (see google/paligemma2-3b-mix-224)

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for yu3733/paligemma2-3b-lora-vqa-d1000-r16

Adapter
(13)
this model