Tiny dummy models
Collection
Randomly initialized tiny models for debugging/testing purpose
•
99 items
•
Updated
•
6
This tiny model is for debugging. It is randomly initialized with the config adapted from mistralai/Voxtral-Small-24B-2507.
vllm serve yujiepan/voxtral-tiny-random --trust-remote-code
import torch
from transformers import AutoProcessor, VoxtralForConditionalGeneration
model_id = "yujiepan/voxtral-tiny-random"
device = "cuda"
processor = AutoProcessor.from_pretrained(model_id)
model = VoxtralForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map=device)
conversation = [
{
"role": "user",
"content": [
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/mary_had_lamb.mp3",
},
{
"type": "audio",
"path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
},
{"type": "text", "text": "What sport and what nursery rhyme are referenced?"},
],
}
]
inputs = processor.apply_chat_template(conversation)
inputs = inputs.to(device, dtype=torch.bfloat16)
outputs = model.generate(**inputs, max_new_tokens=32)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("\nGenerated response:")
print("=" * 80)
print(decoded_outputs[0])
print("=" * 80)
import json
from pathlib import Path
import accelerate
import torch
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoProcessor,
GenerationConfig,
set_seed,
)
source_model_id = "mistralai/Voxtral-Small-24B-2507"
save_folder = "/tmp/yujiepan/voxtral-tiny-random"
processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True)
processor.save_pretrained(save_folder)
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
config_json = json.load(f)
config_json['audio_config'].update(
{
"head_dim": 32,
"hidden_size": 64,
"intermediate_size": 256,
"num_attention_heads": 2,
"num_key_value_heads": 2,
"num_hidden_layers": 2,
}
)
config_json['hidden_size'] = 64
config_json['text_config'].update(
{
"head_dim": 32,
"hidden_size": 64,
"intermediate_size": 128,
"num_attention_heads": 2,
"num_key_value_heads": 1,
"num_hidden_layers": 2,
'tie_word_embeddings': True,
}
)
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config_json, f, indent=2)
config = AutoConfig.from_pretrained(
save_folder,
trust_remote_code=True,
)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModel.from_config(config)
torch.set_default_dtype(torch.float32)
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
model.generation_config = GenerationConfig.from_pretrained(
source_model_id, trust_remote_code=True,
)
set_seed(42)
model = model.cpu() # cpu is more stable for random initialization across machines
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
torch.nn.init.normal_(p, 0, 0.2)
print(name, p.shape)
model.save_pretrained(save_folder)
print(model)
VoxtralForConditionalGeneration(
(audio_tower): VoxtralEncoder(
(conv1): Conv1d(128, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(conv2): Conv1d(64, 64, kernel_size=(3,), stride=(2,), padding=(1,))
(embed_positions): Embedding(1500, 64)
(layers): ModuleList(
(0-1): 2 x VoxtralEncoderLayer(
(self_attn): VoxtralAttention(
(k_proj): Linear(in_features=64, out_features=64, bias=False)
(v_proj): Linear(in_features=64, out_features=64, bias=True)
(q_proj): Linear(in_features=64, out_features=64, bias=True)
(out_proj): Linear(in_features=64, out_features=64, bias=True)
)
(self_attn_layer_norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(activation_fn): GELUActivation()
(fc1): Linear(in_features=64, out_features=256, bias=True)
(fc2): Linear(in_features=256, out_features=64, bias=True)
(final_layer_norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
)
)
(layer_norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(avg_pooler): AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))
)
(language_model): LlamaForCausalLM(
(model): LlamaModel(
(embed_tokens): Embedding(131072, 64)
(layers): ModuleList(
(0-1): 2 x LlamaDecoderLayer(
(self_attn): LlamaAttention(
(q_proj): Linear(in_features=64, out_features=64, bias=False)
(k_proj): Linear(in_features=64, out_features=32, bias=False)
(v_proj): Linear(in_features=64, out_features=32, bias=False)
(o_proj): Linear(in_features=64, out_features=64, bias=False)
)
(mlp): LlamaMLP(
(gate_proj): Linear(in_features=64, out_features=128, bias=False)
(up_proj): Linear(in_features=64, out_features=128, bias=False)
(down_proj): Linear(in_features=128, out_features=64, bias=False)
(act_fn): SiLU()
)
(input_layernorm): LlamaRMSNorm((64,), eps=1e-05)
(post_attention_layernorm): LlamaRMSNorm((64,), eps=1e-05)
)
)
(norm): LlamaRMSNorm((64,), eps=1e-05)
(rotary_emb): LlamaRotaryEmbedding()
)
(lm_head): Linear(in_features=64, out_features=131072, bias=False)
)
(multi_modal_projector): VoxtralMultiModalProjector(
(linear_1): Linear(in_features=256, out_features=64, bias=False)
(act): GELUActivation()
(linear_2): Linear(in_features=64, out_features=64, bias=False)
)
)
Base model
mistralai/Mistral-Small-24B-Base-2501