LLaMA‑3.1 8B Instruct (Ultrachat SFT)
Fine-tuned on: Ultrachat 200k (train_sft)
Model size: 8 B parameters
Format: [safetensors]
🚀 Model Description
This is LLaMA‑3.1 8 B, instruction‑tuned on the Ultrachat dataset for more human‑like chat. It excels at back‑and‑forth dialogues, follows system/user/assistant markers, and has been lightly profanity‑filtered.
Use cases:
- Chatbots
- Instruction following
- Dialogue generation
📦 Technical Specifications
- Architecture: LLaMA‑3 (8 B)
- Rope scaling: dynamic, factor=2.0
- Precision: bf16
- Hardware used for SFT: 8×A100 GPUs
- Training epochs: 3
- Batch size: 1 × 16 accumulated
- Learning rate: 2 × 10⁻⁵ (cosine schedule, 100 warmup steps)
🔧 Usage
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("yuvrajpant56/llama3-ultrachat-sft")
model = AutoModelForCausalLM.from_pretrained("yuvrajpant56/llama3-ultrachat-sft", device_map="auto")
chat = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
)
prompt = "<|begin_of_sentence|>\nUser: Hello, how are you?\n<|end_of_sentence|>"
print(chat(prompt))
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for yuvrajpant56/Llama-3.1-8B-ultrachat-sft
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct