KAT-V1-40B / README.md
shunxing1234's picture
Update README.md
b43baac verified
---
language:
- multilingual
license: other
license_name: kwaipilot-license
license_link: LICENSE
library_name: transformers
---
<div align="center">
<img src="https://raw.githubusercontent.com/Anditty/OASIS/refs/heads/main/Group.svg" width="60%" alt="Kwaipilot" />
</div>
<hr>
<div align="center" style="line-height: 1;">
<a href="https://huggingface.co/Kwaipilot/KAT-V1-40B" target="_blank">
<img alt="Hugging Face" src="https://img.shields.io/badge/HuggingFace-fcd022?style=for-the-badge&logo=huggingface&logoColor=000&labelColor"/>
</a>
<a href="https://arxiv.org/pdf/2507.08297" target="_blank">
<img alt="arXiv" src="https://img.shields.io/badge/arXiv-2507.08297-b31b1b.svg?style=for-the-badge"/>
</a>
</div>
# News
- Kwaipilot-AutoThink ranks first among all open-source models on [LiveCodeBench Pro](https://livecodebenchpro.com/), a challenging benchmark explicitly designed to prevent data leakage, and even surpasses strong proprietary systems such as Seed and o3-mini.
***
# Introduction
**KAT (Kwaipilot-AutoThink)** is an open-source large-language model that mitigates *over-thinking* by learning **when** to produce explicit chain-of-thought and **when** to answer directly.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61ee40a269351366e29972ad/zdnsvBmv6hWIC2Qxxy1fD.png)
Its development follows a concise two-stage training pipeline:
<table>
<thead>
<tr>
<th style="text-align:left; width:18%;">Stage</th>
<th style="text-align:left;">Core Idea</th>
<th style="text-align:left;">Key Techniques</th>
<th style="text-align:left;">Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1. Pre-training</strong></td>
<td>Inject knowledge while separating “reasoning” from “direct answering”.</td>
<td>
<em>Dual-regime data</em><br>
• <strong>Think-off</strong> queries labeled via a custom tagging system.<br>
• <strong>Think-on</strong> queries generated by a multi-agent solver.<br><br>
<em>Knowledge Distillation&nbsp;+&nbsp;Multi-Token Prediction</em> for fine-grained utility.
</td>
<td>Base model attains strong factual and reasoning skills without full-scale pre-training costs.</td>
</tr>
<tr>
<td><strong>2. Post-training</strong></td>
<td>Make reasoning optional and efficient.</td>
<td>
<em>Cold-start AutoThink</em> — majority vote sets the initial thinking mode.<br>
<em>Step-SRPO</em> — intermediate supervision rewards correct <strong>mode selection</strong> and <strong>answer accuracy</strong> under that mode.
</td>
<td>Model triggers CoT only when beneficial, reducing token use and speeding inference.</td>
</tr>
</tbody>
</table>
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61ee40a269351366e29972ad/cwFAEh7Rl3f4FU46z8gBZ.png)
***
# Data Format
KAT produces responses in a **structured template** that makes the reasoning path explicit and machine-parsable.
Two modes are supported:
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61ee40a269351366e29972ad/H8iAvQMMT02nyvlYnI5q1.jpeg)
## Special Tokens
| Token | Description |
|-------|-------------|
| `<judge>` | Analyzes the input to decide whether explicit reasoning is needed. |
| `<think_on>` / `<think_off>` | Indicates whether reasoning is **activated** (“on”) or **skipped** (“off”). |
| `<think>` | Marks the start of the chain-of-thought segment when `think_on` is chosen. |
| `<answer>` | Marks the start of the final user-facing answer. |
***
# 🔧 Quick Start
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "Kwaipilot/KAT-V1-40B"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=65536,
temperature=0.6,
top_p=0.95,
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
content = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n")
print("prompt:\n", prompt)
print("content:\n", content)
"""
prompt:
Give me a short introduction to large language model.
content:
<judge>
The user's request is to provide a concise factual introduction to large language models, which involves retrieving and summarizing basic information. This task is straightforward as it only requires recalling and presenting well-known details without deeper analysis. No complex reasoning is needed here—just a simple explanation will suffice.
</judge>
<think_off>
<answer>
A **Large Language Model (LLM)** is an advanced AI system trained on vast amounts of text data to understand, generate, and process human-like language. Here’s a concise introduction:
### Key Points:
1. **Training**: Trained on diverse text sources (books, websites, etc.) using deep learning.
2. **Capabilities**:
- Answer questions, generate text, summarize content, translate languages.
- Understand context, sentiment, and nuances in language.
3. **Architecture**: Often based on **transformer models** (e.g., BERT, GPT, LLaMA).
4. **Scale**: Billions of parameters, requiring massive computational resources.
5. **Applications**: Chatbots, content creation, coding assistance, research, and more.
### Examples:
- **OpenAI’s GPT-4**: Powers ChatGPT.
- **Google’s Gemini**: Used in Bard.
- **Meta’s LLaMA**: Open-source alternative.
### Challenges:
- **Bias**: Can reflect biases in training data.
- **Accuracy**: May hallucinate "facts" not grounded in reality.
- **Ethics**: Raises concerns about misinformation and job displacement.
LLMs represent a leap forward in natural language processing, enabling machines to interact with humans in increasingly sophisticated ways. 🌐🤖
</answer>
"""
```
***
# Future Releases
Looking ahead, we will publish a companion paper that fully documents the **AutoThink training framework**, covering:
* Cold-start initialization procedures
* Reinforcement-learning (Step-SRPO) strategies
* Data curation and reward design details
At the same time, we will open-source:
* **Training resources** – the curated dual-regime datasets and RL codebase
* **Model suite** – checkpoints at 1.5B, 7B, and 13B parameters, all trained with AutoThink gating