File size: 14,839 Bytes
b7bcd41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abf2f91
b7bcd41
 
 
 
f9fd488
b7bcd41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d43a0ce
 
 
b7bcd41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d43a0ce
b7bcd41
 
 
 
 
 
 
d43a0ce
 
 
b7bcd41
d43a0ce
 
b7bcd41
 
 
 
 
d43a0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7bcd41
d43a0ce
 
 
 
 
 
b7bcd41
 
d43a0ce
 
 
b7bcd41
 
 
 
 
 
 
 
 
 
 
d43a0ce
 
b7bcd41
 
d43a0ce
b7bcd41
d43a0ce
 
 
 
b7bcd41
 
 
 
 
d43a0ce
b7bcd41
d43a0ce
 
 
 
 
b7bcd41
d43a0ce
b7bcd41
 
 
d43a0ce
b7bcd41
 
 
d43a0ce
 
 
 
 
 
 
 
 
 
 
 
 
b7bcd41
d43a0ce
b7bcd41
d43a0ce
b7bcd41
 
d43a0ce
b7bcd41
 
 
 
d43a0ce
b7bcd41
d43a0ce
b7bcd41
 
 
 
 
 
 
d43a0ce
b7bcd41
 
 
 
 
 
 
 
 
258a4b0
 
 
b7bcd41
 
 
 
 
258a4b0
 
 
 
b7bcd41
 
258a4b0
 
 
 
b7bcd41
 
258a4b0
 
 
 
b7bcd41
 
258a4b0
 
 
 
b7bcd41
 
258a4b0
 
 
 
b7bcd41
 
258a4b0
 
 
 
b7bcd41
 
258a4b0
 
 
 
b7bcd41
 
 
258a4b0
 
 
b7bcd41
 
 
258a4b0
 
 
 
b7bcd41
 
258a4b0
b7bcd41
258a4b0
 
b7bcd41
 
258a4b0
 
 
 
b7bcd41
 
258a4b0
 
 
 
b7bcd41
 
258a4b0
 
 
 
b7bcd41
 
258a4b0
 
 
 
b7bcd41
 
 
258a4b0
 
 
b7bcd41
 
258a4b0
 
 
 
 
b7bcd41
 
 
 
 
258a4b0
b7bcd41
 
 
 
d43a0ce
 
 
b7bcd41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d43a0ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
---
tags:
- fp4
- vllm
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
license: llama3.1
base_model: meta-llama/Llama-4-Scout-17B-16E-Instruct
---

# Llama-4-Scout-17B-16E-Instruct-NVFP4

## Model Overview
- **Model Architecture:** Meta-Llama-3.1
  - **Input:** Text / Image
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** FP4
  - **Activation quantization:** FP4
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. 
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 7/15/25
- **Version:** 1.0
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
- **Model Developers:** RedHatAI

This model is a quantized version of [Llama-4-Scout-17B-16E-Instruct](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct).
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model.

### Model Optimizations

This model was obtained by quantizing the weights and activations of [Llama-4-Scout-17B-16E-Instruct](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct) to FP4 data type, ready for inference with vLLM>=0.9.1
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.

Only the weights of the linear operators within transformers blocks are quantized using [LLM Compressor](https://github.com/vllm-project/llm-compressor).

## Deployment

### Use with vLLM

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
<details>
<summary>Model Usage Code</summary>
  
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4"
number_gpus = 2

sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

llm = LLM(model=model_id, tensor_parallel_size=number_gpus)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)
```
</details>

vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

## Creation

This model was created by applying [LLM Compressor with calibration samples from neuralmagic/calibration dataset](https://github.com/vllm-project/llm-compressor/blob/main/examples/multimodal_vision/llama4_example.py), as presented in the code snipet below.

<details>
<summary>Model Creation Code</summary>
  
```python
from transformers import Llama4ForConditionalGeneration, Llama4Processor
from transformers.quantizers.quantizers_utils import get_module_from_name
import torch
from datasets import load_dataset

from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.utils.dev import skip_weights_initialize
from transformers.models.llama4.modeling_llama4 import Llama4TextMLP
from llmcompressor.modifiers.quantization import QuantizationModifier
import gc
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier

def convert_model_for_quantization(model):
    to_delete = []
    for name, module in model.named_modules():
        module_class_name = module.__class__.__name__
        if module_class_name == "Llama4TextMoe":
            parent_module, module_name = get_module_from_name(model, name)
            parent_module._modules[module_name] = SequentialLlama4TextMoe(
                model.config.get_text_config(),
                module,
            )
            to_delete.append(module)
            print(f"Patched {name} with SequentialLlama4TextMoe", flush=True)

    for module in to_delete:
        del module
        gc.collect()
        torch.cuda.empty_cache()


class SequentialLlama4TextMoe(torch.nn.Module):
    def __init__(self, config, original_moe):
        super().__init__()
        self.top_k = config.num_experts_per_tok
        self.hidden_dim = config.hidden_size
        self.num_experts = config.num_local_experts
        self.experts = SequentialLlama4TextExperts(config, original_moe.experts)
        self.router = original_moe.router
        self.shared_expert = original_moe.shared_expert

    def forward(self, hidden_states):
        hidden_states = hidden_states.reshape(-1, self.hidden_dim)
        router_logits = self.router(hidden_states)

        router_top_value, router_indices = torch.topk(router_logits, self.top_k, dim=1)

        router_scores = (
            torch.full_like(router_logits, float("-inf")).scatter_(1, router_indices, router_top_value).transpose(0, 1)
        )
        router_scores = torch.sigmoid(router_scores.float()).to(hidden_states.dtype)

        out = self.shared_expert(hidden_states)
        for i in range(self.num_experts):
            out += self.experts[i](hidden_states) * router_scores[i].reshape(-1, 1)

        return out, router_scores


class SequentialLlama4TextExperts(torch.nn.ModuleList):
    def __init__(self, config, original_experts):
        self.num_experts = original_experts.gate_up_proj.shape[0]
        with skip_weights_initialize():
            super().__init__([Llama4TextMLP(config) for _ in range(self.num_experts)])

        intermediate_size = original_experts.down_proj.shape[1]

        for i in range(self.num_experts):
            gate_up = original_experts.gate_up_proj[i]
            down = original_experts.down_proj[i]

            gate_proj = gate_up[:, :intermediate_size]
            up_proj = gate_up[:, intermediate_size:]

            self[i].gate_proj.weight.data = gate_proj.t().clone().contiguous()
            self[i].up_proj.weight.data = up_proj.t().clone().contiguous()
            self[i].down_proj.weight.data = down.t().clone().contiguous()

        original_experts.gate_up_proj = None
        original_experts.down_proj = None
        gc.collect()
        torch.cuda.empty_cache()


model_id = "meta-llama/Llama-4-Scout-17B-16E"

model = Llama4ForConditionalGeneration.from_pretrained(
    model_id, torch_dtype=torch.bfloat16  # load on cpu
)
processor = Llama4Processor.from_pretrained(model_id)

convert_model_for_quantization(model)

# Oneshot arguments
DATASET_ID = "neuralmagic/calibration"
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 8192

ds = load_dataset(DATASET_ID, name="LLM", split=f"train[:{NUM_CALIBRATION_SAMPLES}]")

def preprocess_function(example):
    messgages = []
    for message in example["messages"]:
        messgages.append(
            {
                "role": message["role"], 
                "content": [{"type": "text", "text": message["content"]}]
            }
        )
    
    return processor.apply_chat_template(
        messgages, 
        return_tensors="pt", 
        padding=False, 
        truncation=True, 
        max_length=MAX_SEQUENCE_LENGTH,
        tokenize=True,
        add_special_tokens=False,
        return_dict=True,
        add_generation_prompt=False,
    ).to("cuda:0")

ds = ds.map(
    preprocess_function,
    batched=False,
    remove_columns=ds.column_names
)

# Define a oneshot data collator for multimodal inputs.
def data_collator(batch):
    assert len(batch) == 1
    return {
        key: torch.tensor(value) if key != "pixel_values" else torch.tensor(value, dtype=torch.bfloat16).squeeze(0)
        for key, value in batch[0].items()
    }

# Recipe
recipe = QuantizationModifier(targets="Linear", scheme="NVFP4", 
            ignore=[
                're:.*lm_head',
                're:.*self_attn',
                're:.*router',
                're:.*vision_model',
                're:.*multi_modal_projector',
                're:.*multi_modal_projector',
                "Llama4TextAttention",
            ],
            sequential_targets=["Llama4TextMLP"],
        )

SAVE_DIR = f"{model_id.split('/')[1]}-{recipe.scheme}"

# Perform oneshot
oneshot(
    model=model,
    tokenizer=model_id,
    dataset=ds,
    recipe=recipe,
    max_seq_length=MAX_SEQUENCE_LENGTH,
    num_calibration_samples=NUM_CALIBRATION_SAMPLES,
    trust_remote_code_model=True,
    data_collator=data_collator,
    output_dir=SAVE_DIR
)

# Save to disk compressed.
model.save_pretrained(SAVE_DIR, save_compressed=True)
processor.save_pretrained(SAVE_DIR)

```
</details>

## Evaluation

This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval_64 benchmarks. All evaluations were conducted using [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness).
<table>
  <thead>
    <tr>
      <th>Category</th>
      <th>Metric</th>
      <th>Llama-4-Scout-17B-16E-Instruct</th>
      <th>Llama-4-Scout-17B-16E-Instruct-NVFP4 (this model)</th>
      <th>Recovery</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td rowspan="8"><b>OpenLLM V1</b></td>
      <td>mmlu_llama</td>
      <td>81.06</td>
      <td>79.11</td>
      <td>97.59</td>
    </tr>
    <tr>
      <td>mmlu_cot_llama (0-shot)</td>
      <td>85.86</td>
      <td>84.07</td>
      <td>97.92</td>
    </tr>
    <tr>
      <td>arc_challenge_llama (0-shot)</td>
      <td>93.39</td>
      <td>92.02</td>
      <td>98.53</td>
    </tr>
    <tr>
      <td>gsm8k_llama (8-shot, strict-match)</td>
      <td>93.78</td>
      <td>93.78</td>
      <td>100.00</td>
    </tr>
    <tr>
      <td>hellaswag (10-shot)</td>
      <td>79.06</td>
      <td>78.63</td>
      <td>99.46</td>
    </tr>
    <tr>
      <td>winogrande (5-shot)</td>
      <td>74.43</td>
      <td>73.48</td>
      <td>98.72</td>
    </tr>
    <tr>
      <td>truthfulQA (0-shot, mc2)</td>
      <td>62.15</td>
      <td>60.63</td>
      <td>97.55</td>
    </tr>
    <tr>
      <td><b>Average</b></td>
      <td><b>81.39</b></td>
      <td><b>80.25</b></td>
      <td><b>98.59</b></td>
    </tr>
    <tr>
      <td rowspan="7"><b>OpenLLM V2</b></td>
      <td>MMLU-Pro (5-shot)</td>
      <td>55.68</td>
      <td>53.05</td>
      <td>95.28</td>
    </tr>
    <tr>
      <td>IFEval (0-shot)</td>
      <td>89.09</td>
      <td>89.57</td>
      <td>100.54</td>
    </tr>
    <tr>
      <td>BBH (3-shot)</td>
      <td>65.11</td>
      <td>63.53</td>
      <td>97.57</td>
    </tr>
    <tr>
      <td>Math-|v|-5 (4-shot)</td>
      <td>57.70</td>
      <td>55.06</td>
      <td>95.42</td>
    </tr>
    <tr>
      <td>GPQA (0-shot)</td>
      <td>30.70</td>
      <td>31.04</td>
      <td>101.11</td>
    </tr>
    <tr>
      <td>MuSR (0-shot)</td>
      <td>42.59</td>
      <td>43.52</td>
      <td>102.18</td>
    </tr>
    <tr>
      <td><b>Average</b></td>
      <td><b>57.04</b></td>
      <td><b>56.54</b></td>
      <td><b>99.13</b></td>
    </tr>
    <tr>
      <td rowspan="1"><b>Coding</b></td>
      <td>HumanEval_64 pass@2</td>
      <td>83.83</td>
      <td>84.81</td>
      <td>101.17</td>
    </tr>
  </tbody>
</table>



### Reproduction

The results were obtained using the following commands:

<details>
<summary>Model Evaluation Commands</summary>

#### MMLU_LLAMA
```
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
  --tasks mmlu_llama \
  --apply_chat_template \
  --fewshot_as_multiturn \
  --batch_size auto
```

#### MMLU_COT_LLAMA
```
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
  --tasks mmlu_cot_llama \
  --apply_chat_template \
  --fewshot_as_multiturn \
  --batch_size auto
```

#### ARC-Challenge
```
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
  --tasks arc_challenge_llama \
  --apply_chat_template \
  --batch_size auto
```

#### GSM-8K
```
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
  --tasks gsm8k_llama \
  --apply_chat_template \
  --fewshot_as_multiturn \
  --batch_size auto
```

#### Hellaswag
```
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
  --tasks hellaswag \
  --apply_chat_template \
  --fewshot_as_multiturn \
  --batch_size auto
```

#### Winogrande
```
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
  --tasks winogrande \
  --apply_chat_template \
  --fewshot_as_multiturn \
  --batch_size auto
```

#### TruthfulQA
```
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True \
  --tasks truthfulqa \
  --apply_chat_template \
  --fewshot_as_multiturn \
  --batch_size auto
```

#### OpenLLM v2
```
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks leaderboard \
  --batch_size auto
```

#### HumanEval and HumanEval_64
```
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks humaneval_instruct \
  --batch_size auto


lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks humaneval_64_instruct \
  --batch_size auto
```
</details>