File size: 18,500 Bytes
b70ff39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
---
tags:
- sentence-transformers
- cross-encoder
- reranker
- generated_from_trainer
- dataset_size:890
- loss:BinaryCrossEntropyLoss
base_model: BAAI/bge-reranker-v2-m3
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: CrossEncoder based on BAAI/bge-reranker-v2-m3
  results:
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: train eval
      type: train-eval
    metrics:
    - type: map
      value: 0.9176616915422886
      name: Map
    - type: mrr@10
      value: 0.9176616915422886
      name: Mrr@10
    - type: ndcg@10
      value: 0.9377252954601817
      name: Ndcg@10
---

# CrossEncoder based on BAAI/bge-reranker-v2-m3

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) <!-- at revision 953dc6f6f85a1b2dbfca4c34a2796e7dde08d41e -->
- **Maximum Sequence Length:** 8192 tokens
- **Number of Output Labels:** 1 label
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("cross_encoder_model_id")
# Get scores for pairs of texts
pairs = [
    ["What is the significance of Samsung Electronics as a Korean brand in the list of the world's top 100 trademarks?", '由于其正处于产品开发与验证投入阶段,影响了公司的投资收益。\n\n\u3000\u3000设备企业:\n\n\n\u3000\u3000业绩翻倍增长\n\n\u3000\u3000虽然整体半导体板块尚未走出低谷,但国产替代需求推动下,设备环节企业保持逆周期高速增长,龙头设备厂商上半年业绩翻倍增长。国家统计局最新披露,围绕着克服“卡脖子”工程,今年上半年半导体相关行业制造业增长较快,半导体器件专用设备制造业增加值增长30.9%。'],
    ['根据文中提到的上游、中游和下游的不同环节,请简要描述半导体产业链的整体结构。', 'DRAM市场由三星、美光、海力士垄断了95%的份额,目前国产厂商合肥长鑫已经开始量产并在官网上架了相关产品,紫光集团也已建立DRAM事业部准备建厂。\n\nNAND Flash的市场由三星、西数、铠侠等6家企业垄断。目前NAND Flash的发展方向是3D堆叠,国外先进企业均已纷纷开发出100层以上堆叠的NAND Flash。国产厂商长江存储已宣布128层产品研发成功,与国外先进企业的差距越来越小,已成为存储国产自主化的中坚力量。'],
    ['根据上下文信息,提出一个问题。', '半导体材料是制作晶体管、集成电路、光电子器件的重要材料。\n\n按照化学组成不同,半导体材料可以分为元素半导体和化合物半导体两大类。'],
    ['What is the projected annual growth rate of the automotive semiconductor market from 2013 to 2018 according to IHS data?', '长电科技作为A股半导体封装测试龙头,第二季度业绩也环比大幅增长。业绩预告显示,今年上半年公司实现归母净利润为4.46亿元到5.46亿元,同比减少64.65%到71.08%。公司一季度实现归母净利润约1.1亿元,第二季度或实现盈利3.36亿至4.36亿元,环比一季度增长约两倍以上,公司不断投入汽车电子、工业电子及高性能计算等领域,为新一轮应用需求增长做好准备。此前,长电科技介绍,面向高算力芯片公司推出了Chiplet高性能封装技术平台XDFOI。'],
    ['你认为人工智能未来可能在哪些领域发挥作用?', '98亿元,其中,当期汇兑损失造成净利润减少约2.03亿元,剔除该因素,上半年公司净利润为正。通富微电介绍,全球半导体市场疲软,下游需求复苏不及预期,导致封测环节业务承压,公司传统业务亦受到较大影响。作为应对,公司调整产品布局,在高性能计算、新能源、汽车电子、存储、显示驱动等领域实现营收增长,积极推动Chiplet(芯粒)市场化应用,实现了规模性量产。'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    "What is the significance of Samsung Electronics as a Korean brand in the list of the world's top 100 trademarks?",
    [
        '由于其正处于产品开发与验证投入阶段,影响了公司的投资收益。\n\n\u3000\u3000设备企业:\n\n\n\u3000\u3000业绩翻倍增长\n\n\u3000\u3000虽然整体半导体板块尚未走出低谷,但国产替代需求推动下,设备环节企业保持逆周期高速增长,龙头设备厂商上半年业绩翻倍增长。国家统计局最新披露,围绕着克服“卡脖子”工程,今年上半年半导体相关行业制造业增长较快,半导体器件专用设备制造业增加值增长30.9%。',
        'DRAM市场由三星、美光、海力士垄断了95%的份额,目前国产厂商合肥长鑫已经开始量产并在官网上架了相关产品,紫光集团也已建立DRAM事业部准备建厂。\n\nNAND Flash的市场由三星、西数、铠侠等6家企业垄断。目前NAND Flash的发展方向是3D堆叠,国外先进企业均已纷纷开发出100层以上堆叠的NAND Flash。国产厂商长江存储已宣布128层产品研发成功,与国外先进企业的差距越来越小,已成为存储国产自主化的中坚力量。',
        '半导体材料是制作晶体管、集成电路、光电子器件的重要材料。\n\n按照化学组成不同,半导体材料可以分为元素半导体和化合物半导体两大类。',
        '长电科技作为A股半导体封装测试龙头,第二季度业绩也环比大幅增长。业绩预告显示,今年上半年公司实现归母净利润为4.46亿元到5.46亿元,同比减少64.65%到71.08%。公司一季度实现归母净利润约1.1亿元,第二季度或实现盈利3.36亿至4.36亿元,环比一季度增长约两倍以上,公司不断投入汽车电子、工业电子及高性能计算等领域,为新一轮应用需求增长做好准备。此前,长电科技介绍,面向高算力芯片公司推出了Chiplet高性能封装技术平台XDFOI。',
        '98亿元,其中,当期汇兑损失造成净利润减少约2.03亿元,剔除该因素,上半年公司净利润为正。通富微电介绍,全球半导体市场疲软,下游需求复苏不及预期,导致封测环节业务承压,公司传统业务亦受到较大影响。作为应对,公司调整产品布局,在高性能计算、新能源、汽车电子、存储、显示驱动等领域实现营收增长,积极推动Chiplet(芯粒)市场化应用,实现了规模性量产。',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Reranking

* Dataset: `train-eval`
* Evaluated with [<code>CERerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CERerankingEvaluator) with these parameters:
  ```json
  {
      "at_k": 10
  }
  ```

| Metric      | Value      |
|:------------|:-----------|
| map         | 0.9177     |
| mrr@10      | 0.9177     |
| **ndcg@10** | **0.9377** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 890 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 890 samples:
  |         | sentence_0                                                                                      | sentence_1                                                                                       | label                                           |
  |:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                                          | string                                                                                           | int                                             |
  | details | <ul><li>min: 13 characters</li><li>mean: 55.08 characters</li><li>max: 237 characters</li></ul> | <ul><li>min: 64 characters</li><li>mean: 179.63 characters</li><li>max: 249 characters</li></ul> | <ul><li>0: ~80.00%</li><li>1: ~20.00%</li></ul> |
* Samples:
  | sentence_0                                                                                                                    | sentence_1                                                                                                                                                                                                                                 | label          |
  |:------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>What is the significance of Samsung Electronics as a Korean brand in the list of the world's top 100 trademarks?</code> | <code>由于其正处于产品开发与验证投入阶段,影响了公司的投资收益。<br><br>  设备企业:<br><br><br>  业绩翻倍增长<br><br>  虽然整体半导体板块尚未走出低谷,但国产替代需求推动下,设备环节企业保持逆周期高速增长,龙头设备厂商上半年业绩翻倍增长。国家统计局最新披露,围绕着克服“卡脖子”工程,今年上半年半导体相关行业制造业增长较快,半导体器件专用设备制造业增加值增长30.9%。</code>                       | <code>0</code> |
  | <code>根据文中提到的上游、中游和下游的不同环节,请简要描述半导体产业链的整体结构。</code>                                                                           | <code>DRAM市场由三星、美光、海力士垄断了95%的份额,目前国产厂商合肥长鑫已经开始量产并在官网上架了相关产品,紫光集团也已建立DRAM事业部准备建厂。<br><br>NAND Flash的市场由三星、西数、铠侠等6家企业垄断。目前NAND Flash的发展方向是3D堆叠,国外先进企业均已纷纷开发出100层以上堆叠的NAND Flash。国产厂商长江存储已宣布128层产品研发成功,与国外先进企业的差距越来越小,已成为存储国产自主化的中坚力量。</code> | <code>0</code> |
  | <code>根据上下文信息,提出一个问题。</code>                                                                                                  | <code>半导体材料是制作晶体管、集成电路、光电子器件的重要材料。<br><br>按照化学组成不同,半导体材料可以分为元素半导体和化合物半导体两大类。</code>                                                                                                                                                        | <code>0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
  ```json
  {
      "activation_fn": "torch.nn.modules.linear.Identity",
      "pos_weight": null
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `num_train_epochs`: 2
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch  | Step | train-eval_ndcg@10 |
|:------:|:----:|:------------------:|
| 0.8929 | 100  | 0.9377             |


### Framework Versions
- Python: 3.9.20
- Sentence Transformers: 5.0.0
- Transformers: 4.53.1
- PyTorch: 2.4.1
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->