|
|
--- |
|
|
license: mit |
|
|
library_name: transformers |
|
|
pipeline_tag: image-text-to-text |
|
|
--- |
|
|
# Skywork-R1V2-38B-AWQ |
|
|
|
|
|
<div align="center"> |
|
|
<img src="skywork-logo.png" alt="Introduction Image" width="500" height="400"> |
|
|
</div> |
|
|
|
|
|
## 📖 [R1V2 Report](https://arxiv.org/abs/2504.16656) | 💻 [GitHub](https://github.com/SkyworkAI/Skywork-R1V) | 🌐 [ModelScope](https://modelscope.cn/models/Skywork/Skywork-R1V2-38B) |
|
|
|
|
|
<div align="center"> |
|
|
|
|
|
[](https://github.com/SkyworkAI/Skywork-R1V/stargazers)[](https://github.com/SkyworkAI/Skywork-R1V/fork) |
|
|
|
|
|
</div> |
|
|
|
|
|
|
|
|
## Evaluation |
|
|
|
|
|
<div align="center"> |
|
|
<b>Comprehensive performance comparison across text and multimodal reasoning benchmarks.</b> |
|
|
</div> |
|
|
<table align="center" border="1" style="border-collapse: collapse; width: 100%;"> |
|
|
<thead> |
|
|
<tr> |
|
|
<th>Model</th> |
|
|
<th align="center">MMMU</th> |
|
|
<th align="center">MathVista</th> |
|
|
<th align="center">MathVision</th> |
|
|
<th align="center">Olympiad Bench</th> |
|
|
<th align="center">AIME 24</th> |
|
|
<th align="center">LiveCode bench</th> |
|
|
<th align="center">Live Bench</th> |
|
|
<th align="center">IFEVAL</th> |
|
|
</tr> |
|
|
</thead> |
|
|
<tbody> |
|
|
<tr> |
|
|
<td colspan="9" align="center"><i>Proprietary Models</i></td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Claude-3.5-Sonnet</td> |
|
|
<td align="center">70.4</td> |
|
|
<td align="center">67.7</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Gemini-2-Flash</td> |
|
|
<td align="center">70.7</td> |
|
|
<td align="center">73.1</td> |
|
|
<td align="center">41.3</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Kimi-k1.5-longcot</td> |
|
|
<td align="center">70.0</td> |
|
|
<td align="center">74.9</td> |
|
|
<td align="center">53.3</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>OpenAI-o1</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">74.3</td> |
|
|
<td align="center">63.4</td> |
|
|
<td align="center">72.2</td> |
|
|
<td align="center">-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>OpenAI-o4-mini</td> |
|
|
<td align="center"><b>81.6</b></td> |
|
|
<td align="center"><b>84.3</b></td> |
|
|
<td align="center"><b>58.0</b></td> |
|
|
<td align="center">-</td> |
|
|
<td align="center"><b>93.4</b></td> |
|
|
<td align="center"><b>74.6</b></td> |
|
|
<td align="center"><b>78.1</b></td> |
|
|
<td align="center">-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td colspan="9" align="center"><i>Open-Source Models</i></td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Skywork-R1V1</td> |
|
|
<td align="center">68.0</td> |
|
|
<td align="center">67.0</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">72.0</td> |
|
|
<td align="center">57.2</td> |
|
|
<td align="center">54.6</td> |
|
|
<td align="center">72.5</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>DeepseekR1-671B</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td |
|
|
> |
|
|
<td align="center"><b>79.8</b></td> |
|
|
<td align="center"><b>65.9</b></td> |
|
|
<td align="center">71.6</td> |
|
|
<td align="center"><b>83.3</b></td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>InternVL3-38B</td> |
|
|
<td align="center">70.1</td> |
|
|
<td align="center">75.1</td> |
|
|
<td align="center">34.2</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Qwen2.5-VL-72B</td> |
|
|
<td align="center">70.2</td> |
|
|
<td align="center">74.8</td> |
|
|
<td align="center">38.1</td> |
|
|
<td align="center">40.4</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>QvQ-Preview-72B</td> |
|
|
<td align="center">70.3</td> |
|
|
<td align="center">71.4</td> |
|
|
<td align="center">35.9</td> |
|
|
<td align="center">33.2</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
<td align="center">-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Skywork-R1V2</td> |
|
|
<td align="center"><b>73.6</b></td> |
|
|
<td align="center">74.0</td> |
|
|
<td align="center"><b>49.0</b></td> |
|
|
<td align="center"><b>62.6</b></td> |
|
|
<td align="center">78.9</td> |
|
|
<td align="center">63.6</td> |
|
|
<td align="center"><b>73.2</b></td> |
|
|
<td align="center">82.9</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Skywork-R1V2-AWQ</td> |
|
|
<td align="center">64.4</td> |
|
|
<td align="center">64.8</td> |
|
|
<td align="center">42.9</td> |
|
|
<td align="center">54.8</td> |
|
|
<td align="center">77.3</td> |
|
|
<td align="center">55.7</td> |
|
|
<td align="center">64.1</td> |
|
|
<td align="center">72.5</td> |
|
|
</tr> |
|
|
</tbody> |
|
|
</table> |
|
|
|
|
|
## Usage |
|
|
You can use the quantized model with different inference frameworks: |
|
|
### Using VLLM |
|
|
|
|
|
|
|
|
#### Python API |
|
|
|
|
|
```python |
|
|
import os |
|
|
from vllm import LLM, SamplingParams |
|
|
from vllm.entrypoints.chat_utils import load_chat_template |
|
|
model_name = "Skywork/Skywork-R1V2-38B-AWQ" # or local path |
|
|
llm = LLM(model_name, |
|
|
dtype='float16', |
|
|
quantization="awq", |
|
|
gpu_memory_utilization=0.9, |
|
|
max_model_len=4096, |
|
|
trust_remote_code=True, |
|
|
) |
|
|
# Add your inference code here |
|
|
``` |
|
|
|
|
|
#### OpenAI-compatible API Server |
|
|
|
|
|
```bash |
|
|
MODEL_ID="Skywork/Skywork-R1V2-38B-AWQ" # or local path |
|
|
CUDA_VISIBLE_DEVICES=0 \ |
|
|
python -m vllm.entrypoints.openai.api_server \ |
|
|
--model $MODEL_ID \ |
|
|
--dtype float16 \ |
|
|
--quantization awq \ |
|
|
--port 23334 \ |
|
|
--max-model-len 12000 \ |
|
|
--gpu-memory-utilization 0.9 \ |
|
|
--trust-remote-code |
|
|
``` |
|
|
|
|
|
### Using LMDeploy |
|
|
|
|
|
```python |
|
|
import os |
|
|
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig |
|
|
from lmdeploy.vl import load_image |
|
|
model_path = "Skywork/Skywork-R1V2-38B-AWQ" # or local path |
|
|
engine_config = TurbomindEngineConfig(cache_max_entry_count=0.75) |
|
|
chat_template_config = ChatTemplateConfig(model_name=model_path) |
|
|
pipe = pipeline(model_path, |
|
|
backend_config=engine_config, |
|
|
chat_template_config=chat_template_config, |
|
|
) |
|
|
# Example: Multimodal inference |
|
|
image = load_image('table.jpg') |
|
|
response = pipe(('Describe this image?', image)) |
|
|
print(response.text) |
|
|
``` |
|
|
|
|
|
## Hardware Requirements |
|
|
|
|
|
The AWQ quantization reduces the memory footprint compared to the original FP16 model. We recommend: |
|
|
|
|
|
- At least one GPU with 30GB+ VRAM for inference |
|
|
- For optimal performance with longer contexts, 40GB+ VRAM is recommended |
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use this model in your research, please cite: |
|
|
|
|
|
```bibtex |
|
|
@misc{peng2025skyworkr1vpioneeringmultimodal, |
|
|
title={Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought}, |
|
|
author={Yi Peng and Chris and Xiaokun Wang and Yichen Wei and Jiangbo Pei and Weijie Qiu and Ai Jian and Yunzhuo Hao and Jiachun Pan and Tianyidan Xie and Li Ge and Rongxian Zhuang and Xuchen Song and Yang Liu and Yahui Zhou}, |
|
|
year={2025}, |
|
|
eprint={2504.05599}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CV}, |
|
|
url={https://arxiv.org/abs/2504.05599}, |
|
|
} |
|
|
``` |
|
|
|
|
|
```bibtex |
|
|
@misc{chris2025skyworkr1v2multimodalhybrid, |
|
|
title={Skywork R1V2: Multimodal Hybrid Reinforcement Learning for Reasoning}, |
|
|
author={Chris and Yichen Wei and Yi Peng and Xiaokun Wang and Weijie Qiu and Wei Shen and Tianyidan Xie and Jiangbo Pei and Jianhao Zhang and Yunzhuo Hao and Xuchen Song and Yang Liu and Yahui Zhou}, |
|
|
year={2025}, |
|
|
eprint={2504.16656}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CV}, |
|
|
url={https://arxiv.org/abs/2504.16656}, |
|
|
} |
|
|
``` |
|
|
|