| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						license: llama3.2 | 
					
					
						
						| 
							 | 
						language: | 
					
					
						
						| 
							 | 
						- en | 
					
					
						
						| 
							 | 
						- zh | 
					
					
						
						| 
							 | 
						base_model: | 
					
					
						
						| 
							 | 
						- meta-llama/Llama-3.2-3B | 
					
					
						
						| 
							 | 
						- lianghsun/Llama-3.2-3B-F1-Base | 
					
					
						
						| 
							 | 
						library_name: transformers | 
					
					
						
						| 
							 | 
						tags: | 
					
					
						
						| 
							 | 
						- Taiwan | 
					
					
						
						| 
							 | 
						- R.O.C | 
					
					
						
						| 
							 | 
						- zhtw | 
					
					
						
						| 
							 | 
						- SLM | 
					
					
						
						| 
							 | 
						- Llama-32 | 
					
					
						
						| 
							 | 
						datasets: | 
					
					
						
						| 
							 | 
						- lianghsun/tw-reasoning-instruct | 
					
					
						
						| 
							 | 
						- minyichen/tw-instruct-R1-200k | 
					
					
						
						| 
							 | 
						- minyichen/tw_mm_R1 | 
					
					
						
						| 
							 | 
						model-index: | 
					
					
						
						| 
							 | 
						- name: Llama-3.2-3B-F1-Reasoning-Instruct | 
					
					
						
						| 
							 | 
						  results: | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: question-answering | 
					
					
						
						| 
							 | 
						      name: Single Choice Question | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: ikala/tmmluplus | 
					
					
						
						| 
							 | 
						      name: tmmlu+ | 
					
					
						
						| 
							 | 
						      config: all | 
					
					
						
						| 
							 | 
						      split: test | 
					
					
						
						| 
							 | 
						      revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - name: single choice | 
					
					
						
						| 
							 | 
						      type: accuracy | 
					
					
						
						| 
							 | 
						      value: 46.16 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: question-answering | 
					
					
						
						| 
							 | 
						      name: Single Choice Question | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: cais/mmlu | 
					
					
						
						| 
							 | 
						      name: mmlu | 
					
					
						
						| 
							 | 
						      config: all | 
					
					
						
						| 
							 | 
						      split: test | 
					
					
						
						| 
							 | 
						      revision: c30699e | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - name: single choice | 
					
					
						
						| 
							 | 
						      type: accuracy | 
					
					
						
						| 
							 | 
						      value: 51.22 | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: question-answering | 
					
					
						
						| 
							 | 
						      name: Single Choice Question | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      type: lianghsun/tw-legal-benchmark-v1 | 
					
					
						
						| 
							 | 
						      name: tw-legal-benchmark-v1 | 
					
					
						
						| 
							 | 
						      config: all | 
					
					
						
						| 
							 | 
						      split: test | 
					
					
						
						| 
							 | 
						      revision: 66c3a5f | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - name: single choice | 
					
					
						
						| 
							 | 
						      type: accuracy | 
					
					
						
						| 
							 | 
						      value: 34.92 | 
					
					
						
						| 
							 | 
						metrics: | 
					
					
						
						| 
							 | 
						- accuracy | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# Model Card for Llama-3.2-3B-F1-Reasoning-Instruct (a.k.a __Formosa-1-Reasoning__ or __F1-Reasoning__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						<div align="center" style="line-height: 1;"> | 
					
					
						
						| 
							 | 
						  <a href="https://discord.gg/Cx737yw4ed" target="_blank" style="margin: 2px;"> | 
					
					
						
						| 
							 | 
						    <img alt="Discord" src="https://img.shields.io/badge/Discord-Twinkle%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/> | 
					
					
						
						| 
							 | 
						  </a> | 
					
					
						
						| 
							 | 
						  <a href="https://huggingface.co/twinkle-ai" target="_blank" style="margin: 2px;"> | 
					
					
						
						| 
							 | 
						    <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Twinkle%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> | 
					
					
						
						| 
							 | 
						  </a> | 
					
					
						
						| 
							 | 
						</div> | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						<div align="center" style="line-height: 1;"> | 
					
					
						
						| 
							 | 
						  <a href="https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt" style="margin: 2px;"> | 
					
					
						
						| 
							 | 
						    <img alt="License" src="https://img.shields.io/badge/License-llama3.2-f5de53?&color=0081fb" style="display: inline-block; vertical-align: middle;"/> | 
					
					
						
						| 
							 | 
						  </a> | 
					
					
						
						| 
							 | 
						</div> | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						<!-- Provide a quick summary of what the model is/does. --> | 
					
					
						
						| 
							 | 
						**Llama-3.2-3B-F1-Reasoning-Instruct**(a.k.a **Formosa-1-Reasoning** or **F1-Reasoning**) 是由 **[Twinkle AI](https://huggingface.co/twinkle-ai)** 與 **[APMIC](https://www.apmic.ai/)** 合作開發,並在[國家高速網路與計算中心](https://www.nchc.org.tw/)技術指導之下,針對中華民國台灣語境與任務需求所微調之繁體中文語言模型,涵蓋法律、教育、生活應用等多元場景,並以高指令跟隨能力為目標進行強化。 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Model Details | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### Model Description | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						<!-- Provide a longer summary of what this model is. --> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- **Developed by:** [Liang Hsun Huang](https://huggingface.co/lianghsun)、[Min Yi Chen](https://huggingface.co/minyichen)、[Wen Bin Lin](https://huggingface.co/tedslin)、[Chao Chun Chuang](https://huggingface.co/c00cjz00) & [Dave Sung](https://huggingface.co/k1dave6412) (All authors have contributed equally to this work.) | 
					
					
						
						| 
							 | 
						- **Funded by:** [APMIC](https://www.apmic.ai/) | 
					
					
						
						| 
							 | 
						- **Model type:** LlamaForCausalLM | 
					
					
						
						| 
							 | 
						- **Language(s) (NLP):** Tranditional Chinese & English | 
					
					
						
						| 
							 | 
						- **License:** [llama3.2](https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### Model Sources | 
					
					
						
						| 
							 | 
						<!-- Provide the basic links for the model. --> | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- **Repository:** [twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct](https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct) | 
					
					
						
						| 
							 | 
						- **Paper:** (TBA) | 
					
					
						
						| 
							 | 
						- **Demo:** [Playground](https://3b02.coolify.apmic.ai/) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Evaluation | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### Results | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						下表採用 [🌟 Twinkle Eval](https://github.com/ai-twinkle/Eval) 評測框架 | 
					
					
						
						| 
							 | 
						| 模型                               | 評測模式 | TMMLU+(%)       | 台灣法律(%)      | MMLU(%)         | 測試次數 | 選項排序 | | 
					
					
						
						| 
							 | 
						|------------------------------------|---------|----------------|----------------|----------------|---------|---------| | 
					
					
						
						| 
							 | 
						| [mistralai/Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501) | box     | 56.15 (±0.0172) | 37.48 (±0.0098) | 74.61 (±0.0154) | 3       | 隨機    | | 
					
					
						
						| 
							 | 
						| [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)   | box     | 15.49 (±0.0104) | 25.68 (±0.0200) | 6.90 (±0.0096) | 3       | 隨機    | | 
					
					
						
						| 
							 | 
						| [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)   | pattern | 35.85 (±0.0174) | 32.22 (±0.0023) | 59.33 (±0.0168) | 3       | 隨機    | | 
					
					
						
						| 
							 | 
						| [MediaTek-Research/Llama-Breeze2-3B-Instruct](https://huggingface.co/MediaTek-Research/Llama-Breeze2-3B-Instruct) | pattern | 40.32 (±0.0181) | 38.92 (±0.0193) | 55.37 (±0.0180) | 3       | 隨機    | | 
					
					
						
						| 
							 | 
						| [twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct](https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct) (ours) | box | 46.16 (±0.0198) | 34.92 (±0.0243) | 51.22 (±0.0206) | 3       | 隨機    | | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						下表用 lighteval 評測框架 | 
					
					
						
						| 
							 | 
						| 模型                                       | MATH-500 | GPQA Diamond | | 
					
					
						
						| 
							 | 
						|--------------------------------------------|----------|--------------| | 
					
					
						
						| 
							 | 
						| [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)                       | 44.40    | 27.78        | | 
					
					
						
						| 
							 | 
						| [twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct](https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct) (ours)   | **51.40**| **33.84**    | | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## 🔧 Tool Calling | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						本模型使用 Hermes 格式訓練,並支援平行呼叫(Parallel calling),以下為完整範例流程。 | 
					
					
						
						| 
							 | 
						Tool call 模板已經為大家寫好放進 chat-template 了,Enjoy it! | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### 1️⃣ 啟動 vLLM 後端 | 
					
					
						
						| 
							 | 
						> **⚠️ 注意:需要 vLLM 版本 >= 0.8.3,否則 `enable-reasoning`、`enable-auto-tool-choice` 無法同時開啟** | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```bash | 
					
					
						
						| 
							 | 
						vllm serve twinkle-ai/Llama-3.2-3B-F1-Reasoning-Instruct \ | 
					
					
						
						| 
							 | 
						  --port 8001 \ | 
					
					
						
						| 
							 | 
						  --enable-reasoning \ | 
					
					
						
						| 
							 | 
						  --reasoning-parser deepseek_r1 \ | 
					
					
						
						| 
							 | 
						  --enable-auto-tool-choice \ | 
					
					
						
						| 
							 | 
						  --tool-call-parser hermes | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### 2️⃣ 定義工具(Functions) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						def get_weather(location: str, unit: str): | 
					
					
						
						| 
							 | 
						    return f"{location}的氣溫是{unit}26度,晴朗無風" | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def search(query: str): | 
					
					
						
						| 
							 | 
						    return "川普終於宣布對等關稅政策,針對 18 個經濟體課徵一半的對等關稅,並從 4/5 起對所有進口產品徵收10%的基準關稅!美國將針對被認定為不當貿易行為(不公平貿易) 的國家,於 4/9 起課徵報復型對等關稅 (Discounted Reciprocal Tariff),例如:日本將被課徵 24% 的關稅,歐盟則為 20%,以取代普遍性的 10% 關稅。\n針對中國則開啟新一波 34% 關稅,並疊加於先前已實施的關稅上,這將使中國進口商品的基本關稅稅率達到 54%,而且這尚未包含拜登總統任內或川普第一任期所施加的額外關稅。加拿大與墨西哥則不適用這套對等關稅制度,但川普認為這些國家在芬太尼危機與非法移民問題尚未完全解決,因此計畫對這兩國的大多數進口商品施加 25% 關稅。另外原本針對汽車與多數其他商品的關稅豁免將於 4/2 到期。\n台灣的部分,美國擬向台灣課徵32%的對等關稅,雖然並未針對晶片特別課徵關稅,但仍在記者會中提到台灣搶奪所有的電腦與半導體晶片,最終促成台積電對美國投資計劃額外加碼 1,000 億美元的歷史性投資;歐盟則課徵20%的對等關稅。最後是汽車關稅將於 4/2 起,對所有外國製造的汽車課徵25% 關稅。" | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						tools = [ | 
					
					
						
						| 
							 | 
						    { | 
					
					
						
						| 
							 | 
						        "type": "function", | 
					
					
						
						| 
							 | 
						        "function": { | 
					
					
						
						| 
							 | 
						            "name": "get_weather", | 
					
					
						
						| 
							 | 
						            "description": "Get the current weather in a given location", | 
					
					
						
						| 
							 | 
						            "parameters": { | 
					
					
						
						| 
							 | 
						                "type": "object", | 
					
					
						
						| 
							 | 
						                "properties": { | 
					
					
						
						| 
							 | 
						                    "location": {"type": "string", "description": "國家或城市名, e.g., 'Taipei'、'Jaipei'"}, | 
					
					
						
						| 
							 | 
						                    "unit": {"type": "string", "description": "氣溫單位,亞洲城市使用攝氏;歐美城市使用華氏", "enum": ["celsius", "fahrenheit"]} | 
					
					
						
						| 
							 | 
						                }, | 
					
					
						
						| 
							 | 
						                "required": ["location", "unit"] | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						    }, | 
					
					
						
						| 
							 | 
						    { | 
					
					
						
						| 
							 | 
						        "type": "function", | 
					
					
						
						| 
							 | 
						        "function": { | 
					
					
						
						| 
							 | 
						            "name": "search", | 
					
					
						
						| 
							 | 
						            "description": "這是一個類似 Google 的搜尋引擎,關於知識、天氣、股票、電影、小說、百科等等問題,如果你不確定答案就搜尋一下。", | 
					
					
						
						| 
							 | 
						            "parameters": { | 
					
					
						
						| 
							 | 
						                "type": "object", | 
					
					
						
						| 
							 | 
						                "properties": { | 
					
					
						
						| 
							 | 
						                    "query": {"type": "string", "description": "should be a search query, e.g., '2024 南韓 戒嚴'"} | 
					
					
						
						| 
							 | 
						                }, | 
					
					
						
						| 
							 | 
						                "required": ["query"] | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						] | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### 3️⃣ 執行工具調用(Tool Calls) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						> **⚠️ 注意:system_prompt 可以不用帶,除非是需要時間基準的工具。** | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						response = client.chat.completions.create( | 
					
					
						
						| 
							 | 
						    model=client.models.list().data[0].id, | 
					
					
						
						| 
							 | 
						    messages=[ | 
					
					
						
						| 
							 | 
						        {"role": "system", "content": "記住你的知識截止於 2024/12,今天是 2025/4/7"}, | 
					
					
						
						| 
							 | 
						        {"role": "user", "content": "台北氣溫如何? 另外,告訴我川普最新關稅政策"}, | 
					
					
						
						| 
							 | 
						    ], | 
					
					
						
						| 
							 | 
						    max_tokens=1500, | 
					
					
						
						| 
							 | 
						    temperature=0.6, | 
					
					
						
						| 
							 | 
						    top_p=0.95, | 
					
					
						
						| 
							 | 
						    tools=tools, | 
					
					
						
						| 
							 | 
						    tool_choice="auto" | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						print(response.choices[0].message.reasoning_content) | 
					
					
						
						| 
							 | 
						print(response.choices[0].message.tool_calls) | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						#### 🧠 推理內容輸出(僅顯示部分) | 
					
					
						
						| 
							 | 
						> 好的,我需要幫助這個使用者解決他們的問題。他們問了兩件事:首先,臺北市的天氣情況,以及第二,關於川普最近的關稅政策。   | 
					
					
						
						| 
							 | 
						> 對於第一部分,他們提到了“臺北”,所以應該呼叫 get_weather 函式…   | 
					
					
						
						| 
							 | 
						> 接下來是關於川普的新關稅政策…   | 
					
					
						
						| 
							 | 
						> 總結一下,我需要分別進行兩次 API 呼叫,每次都有各自正確填寫的參數… | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						#### ⚙️ Tool Calls List | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						```json | 
					
					
						
						| 
							 | 
						[ChatCompletionMessageToolCall(id='chatcmpl-tool-35e74420119349999913a10133b84bd3', function=Function(arguments='{"location": "Taipei", "unit": "celsius"}', name='get_weather'), type='function'), ChatCompletionMessageToolCall(id='chatcmpl-tool-7ffdcb98e59f4134a6171defe7f2e31b', function=Function(arguments='{"query": "Donald Trump latest tariffs policy"}', name='search'), type='function')] | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						### 4️⃣ 產生最終回答 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						response = client.chat.completions.create( | 
					
					
						
						| 
							 | 
						    model=client.models.list().data[0].id, | 
					
					
						
						| 
							 | 
						    messages=[ | 
					
					
						
						| 
							 | 
						        {"role": "system", "content": "記住你的知識截止於 2024/12,今天是 2025/4/7"}, | 
					
					
						
						| 
							 | 
						        {"role": "user", "content": "台北氣溫如何? 另外,告訴我川普最新關稅政策"}, | 
					
					
						
						| 
							 | 
						        { | 
					
					
						
						| 
							 | 
						            "role": "assistant", | 
					
					
						
						| 
							 | 
						            "content": "", | 
					
					
						
						| 
							 | 
						            "tool_calls": [ | 
					
					
						
						| 
							 | 
						                { | 
					
					
						
						| 
							 | 
						                    "id": response.choices[0].message.tool_calls[0].id, | 
					
					
						
						| 
							 | 
						                    "type": "function", | 
					
					
						
						| 
							 | 
						                    "function": { | 
					
					
						
						| 
							 | 
						                        "name": response.choices[0].message.tool_calls[0].function.name, | 
					
					
						
						| 
							 | 
						                        "arguments": response.choices[0].message.tool_calls[0].function.arguments | 
					
					
						
						| 
							 | 
						                    } | 
					
					
						
						| 
							 | 
						                }, | 
					
					
						
						| 
							 | 
						                { | 
					
					
						
						| 
							 | 
						                    "id": response.choices[0].message.tool_calls[1].id, | 
					
					
						
						| 
							 | 
						                    "type": "function", | 
					
					
						
						| 
							 | 
						                    "function": { | 
					
					
						
						| 
							 | 
						                        "name": response.choices[0].message.tool_calls[1].function.name, | 
					
					
						
						| 
							 | 
						                        "arguments": response.choices[0].message.tool_calls[1].function.arguments | 
					
					
						
						| 
							 | 
						                    } | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						        { | 
					
					
						
						| 
							 | 
						            "role": "tool", | 
					
					
						
						| 
							 | 
						            "content": search(**json.loads(response.choices[0].message.tool_calls[0].function.arguments)), | 
					
					
						
						| 
							 | 
						            "tool_call_id": response.choices[0].message.tool_calls[0].id # tool_call_id 必須要帶,才能正確配對 工具 及 tool_call | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						        { | 
					
					
						
						| 
							 | 
						            "role": "tool", | 
					
					
						
						| 
							 | 
						            "content": get_weather(**json.loads(response.choices[0].message.tool_calls[1].function.arguments)), | 
					
					
						
						| 
							 | 
						            "tool_call_id": response.choices[0].message.tool_calls[1].id # tool_call_id 必須要帶,才能正確配對 工具 及 tool_call | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						    ], | 
					
					
						
						| 
							 | 
						    max_tokens=1500, | 
					
					
						
						| 
							 | 
						    temperature=0.6, | 
					
					
						
						| 
							 | 
						    top_p=0.95, | 
					
					
						
						| 
							 | 
						    tools=tools, | 
					
					
						
						| 
							 | 
						    tool_choice="auto" | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						print(response.choices[0].message.reasoning_content) | 
					
					
						
						| 
							 | 
						print(response.choices[0].message.content) | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						#### 🧠 推理內容輸出(僅顯示部分) | 
					
					
						
						| 
							 | 
						> 首先,我需要處理使用者的查詢,他們要求了解臺北市的當下氣溫以及川普最近的關稅政策…   | 
					
					
						
						| 
							 | 
						> 在呼叫了 `get_weather` 後得到了臺北市氣溫為 26 度(攝氏)…   | 
					
					
						
						| 
							 | 
						> 接著,使用 `search` 搜尋「川普最新關稅政策 2025」…   | 
					
					
						
						| 
							 | 
						> 整合後,我提供如下摘要: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						#### 📋 最終輸出內容 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						```text | 
					
					
						
						| 
							 | 
						以下是您請求的資訊: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						**臺北市氣溫** | 
					
					
						
						| 
							 | 
						- 目前的氣溫為 **26°C**(攝氏) | 
					
					
						
						| 
							 | 
						- 天候狀況:晴朗無風 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						**川普最新關稅政策概述** | 
					
					
						
						| 
							 | 
						1. **對等關稅政策**   | 
					
					
						
						| 
							 | 
						   - 對 18 個經濟體課徵 50% 的對等關稅   | 
					
					
						
						| 
							 | 
						   - 自 4 月 5 日起,所有進口產品全面徵收 10% 基本關稅   | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						2. **報復型對等關稅**   | 
					
					
						
						| 
							 | 
						   - 日本 24%、歐盟 20%   | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						3. **對中國的高額關稅**   | 
					
					
						
						| 
							 | 
						   - 增加至 54%(原有關稅 + 新增 34%)   | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						4. **特殊案例**   | 
					
					
						
						| 
							 | 
						   - 加拿大與墨西哥不適用,但其他商品課徵 25%   | 
					
					
						
						| 
							 | 
						   - 汽車與部分商品的免稅即將到期   | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						5. **對台灣的影響**   | 
					
					
						
						| 
							 | 
						   - 美國計畫對台灣課徵 32% 關稅,但晶片暫無額外課稅   | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						6. **全球視角**   | 
					
					
						
						| 
							 | 
						   - 歐盟與日本關稅比例相對較高 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## Citation | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> | 
					
					
						
						| 
							 | 
						```yaml | 
					
					
						
						| 
							 | 
						@misc{twinkleai2025llama3.2f1, | 
					
					
						
						| 
							 | 
						  title        = {Llama-3.2-3B-F1-Reasoning-Instruct: A Traditional Chinese Instruction-Tuned Reasoning Language Model for Taiwan}, | 
					
					
						
						| 
							 | 
						  author       = {Huang, Liang Hsun and Chen, Min Yi and Lin, Wen Bin and Chuang, Chao Chun and Sung, Dave}, | 
					
					
						
						| 
							 | 
						  year         = {2025}, | 
					
					
						
						| 
							 | 
						  howpublished = {\url{https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Instruct}}, | 
					
					
						
						| 
							 | 
						  note         = {Twinkle AI and APMIC. All authors contributed equally.} | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## Acknowledge | 
					
					
						
						| 
							 | 
						- 特此感謝[國家高速網路與計算中心](https://www.nchc.org.tw/)的指導與 [APMIC](https://www.apmic.ai/) 的算力支援,才得以讓本專案訓利完成。 | 
					
					
						
						| 
							 | 
						- 特此致謝黃啟聖老師、許武龍(哈爸)、臺北市立第一女子高級中學物理科陳姿燁老師、[奈視科技](https://nanoseex.com/) CTO Howard、[AIPLUX Technology](https://aiplux.com/)、郭家嘉老師以及所有在資料集製作過程中提供寶貴協助的夥伴。 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## Model Card Authors | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						[Twinkle AI](https://huggingface.co/twinkle-ai) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## Model Card Contact | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						[Twinkle AI](https://huggingface.co/twinkle-ai) |