Llama 3.2 3B DART LLM - GGUF Quantized Models

This repository contains GGUF quantized versions of the Llama 3.2 3B DART LLM model, fine-tuned for robot task planning in construction environments.

Model Details

  • Base Model: meta-llama/Llama-3.2-3B
  • Fine-tuned Version: Based on QLoRA fine-tuned model for robotics task planning
  • Format: GGUF (GPT-Generated Unified Format)
  • Use Case: Optimized for inference with llama.cpp and compatible frameworks

Available Files

  • M: llama_3.2_3b-lora-qlora-dart-llm_q4_k_m.gguf - m quantization

Usage with llama.cpp

# Clone llama.cpp repository
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp

# Build llama.cpp
make

# Download a quantized model (example with q4_k_m)
wget https://huggingface.co/YongdongWang/llama-3.2-3b-lora-qlora-dart-llm-gguf/resolve/main/{model_filename}_q4_k_m.gguf

# Run inference
./main -m {model_filename}_q4_k_m.gguf -p "### Instruction:\nDeploy Excavator 1 to Soil Area 1 for excavation\n\n### Response:\n" -n 512

Usage with Python (llama-cpp-python)

from llama_cpp import Llama

# Load model
llm = Llama(model_path="{model_filename}_q4_k_m.gguf", n_ctx=2048)

# Generate response
prompt = "### Instruction:\nDeploy Excavator 1 to Soil Area 1 for excavation\n\n### Response:\n"
output = llm(prompt, max_tokens=512, stop=["</s>"], echo=False)

print(output['choices'][0]['text'])

Quantization Details

Different quantization levels offer trade-offs between model size, inference speed, and quality:

  • f16: Full 16-bit precision (largest, highest quality)
  • q8_0: 8-bit quantization (good balance of size and quality)
  • q5_k_m: 5-bit quantization with mixed precision (recommended)
  • q4_k_m: 4-bit quantization (good for most use cases)
  • q3_k_m: 3-bit quantization (smaller, some quality loss)
  • q2_k: 2-bit quantization (smallest, significant quality loss)

Performance

The model generates structured JSON task sequences for construction robotics:

{
  "tasks": [
    {
      "instruction_function": {
        "dependencies": [],
        "name": "target_area_for_specific_robots", 
        "object_keywords": ["soil_area_1"],
        "robot_ids": ["robot_excavator_01"],
        "robot_type": null
      },
      "task": "target_area_for_specific_robots_1"
    }
  ]
}

Original Model

This GGUF model is converted from: YongdongWang/llama-3.2-3b-lora-qlora-dart-llm

License

This model inherits the license from the base model (meta-llama/Llama-3.2-3B).

Citation

@misc{llama_3.2_3b_lora_qlora_dart_llm_gguf,
  title={Llama 3.2 3B DART LLM - GGUF Quantized Models},
  author={YongdongWang},
  year={2024},
  publisher={Hugging Face},
  url={https://huggingface.co/YongdongWang/llama-3.2-3b-lora-qlora-dart-llm-gguf}
}
Downloads last month
6
GGUF
Model size
3.21B params
Architecture
llama
Hardware compatibility
Log In to view the estimation

4-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for YongdongWang/llama-3.2-3b-lora-qlora-dart-llm-gguf

Quantized
(91)
this model

Spaces using YongdongWang/llama-3.2-3b-lora-qlora-dart-llm-gguf 2