SentenceTransformer based on microsoft/deberta-v3-small
This is a sentence-transformers model finetuned from microsoft/deberta-v3-small on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/deberta-v3-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerBaseline")
sentences = [
'people are standing near water with a boat heading their direction',
'People are standing near water with a large blue boat heading their direction.',
'The dogs are near the toy.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.766 |
| spearman_cosine |
0.7681 |
| pearson_manhattan |
0.7918 |
| spearman_manhattan |
0.7947 |
| pearson_euclidean |
0.7861 |
| spearman_euclidean |
0.7896 |
| pearson_dot |
0.6448 |
| spearman_dot |
0.6428 |
| pearson_max |
0.7918 |
| spearman_max |
0.7947 |
Binary Classification
| Metric |
Value |
| cosine_accuracy |
0.6731 |
| cosine_accuracy_threshold |
0.5815 |
| cosine_f1 |
0.717 |
| cosine_f1_threshold |
0.4671 |
| cosine_precision |
0.5977 |
| cosine_recall |
0.8959 |
| cosine_ap |
0.7193 |
| dot_accuracy |
0.6445 |
| dot_accuracy_threshold |
71.9551 |
| dot_f1 |
0.7094 |
| dot_f1_threshold |
53.7729 |
| dot_precision |
0.5779 |
| dot_recall |
0.9184 |
| dot_ap |
0.6828 |
| manhattan_accuracy |
0.6665 |
| manhattan_accuracy_threshold |
213.6252 |
| manhattan_f1 |
0.7047 |
| manhattan_f1_threshold |
245.2058 |
| manhattan_precision |
0.5908 |
| manhattan_recall |
0.8729 |
| manhattan_ap |
0.7132 |
| euclidean_accuracy |
0.6621 |
| euclidean_accuracy_threshold |
10.3589 |
| euclidean_f1 |
0.7024 |
| euclidean_f1_threshold |
12.0109 |
| euclidean_precision |
0.5865 |
| euclidean_recall |
0.8754 |
| euclidean_ap |
0.7102 |
| max_accuracy |
0.6731 |
| max_accuracy_threshold |
213.6252 |
| max_f1 |
0.717 |
| max_f1_threshold |
245.2058 |
| max_precision |
0.5977 |
| max_recall |
0.9184 |
| max_ap |
0.7193 |
Training Details
Training Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 314,315 training samples
- Columns:
sentence1, sentence2, and label
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
label |
| type |
string |
string |
int |
| details |
- min: 5 tokens
- mean: 16.62 tokens
- max: 62 tokens
|
- min: 4 tokens
- mean: 9.46 tokens
- max: 29 tokens
|
|
- Samples:
| sentence1 |
sentence2 |
label |
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
0 |
Children smiling and waving at camera |
There are children present |
0 |
A boy is jumping on skateboard in the middle of a red bridge. |
The boy does a skateboarding trick. |
0 |
- Loss:
AdaptiveLayerLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1,
"prior_layers_weight": 1,
"kl_div_weight": 1.2,
"kl_temperature": 1.2
}
Evaluation Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1, sentence2, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
| type |
string |
string |
float |
| details |
- min: 5 tokens
- mean: 14.77 tokens
- max: 45 tokens
|
- min: 6 tokens
- mean: 14.74 tokens
- max: 49 tokens
|
- min: 0.0
- mean: 0.47
- max: 1.0
|
- Samples:
| sentence1 |
sentence2 |
score |
A man with a hard hat is dancing. |
A man wearing a hard hat is dancing. |
1.0 |
A young child is riding a horse. |
A child is riding a horse. |
0.95 |
A man is feeding a mouse to a snake. |
The man is feeding a mouse to the snake. |
1.0 |
- Loss:
AdaptiveLayerLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1,
"prior_layers_weight": 1,
"kl_div_weight": 1.2,
"kl_temperature": 1.2
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
learning_rate: 5e-06
weight_decay: 1e-07
num_train_epochs: 2
warmup_ratio: 0.5
save_safetensors: False
fp16: True
push_to_hub: True
hub_model_id: bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerBaselinen
hub_strategy: checkpoint
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
learning_rate: 5e-06
weight_decay: 1e-07
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 2
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.5
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: False
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: True
resume_from_checkpoint: None
hub_model_id: bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerBaselinen
hub_strategy: checkpoint
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
loss |
max_ap |
spearman_cosine |
| None |
0 |
- |
4.1425 |
- |
0.4276 |
| 0.1001 |
983 |
4.7699 |
3.8387 |
0.6364 |
- |
| 0.2001 |
1966 |
3.5997 |
2.7649 |
0.6722 |
- |
| 0.3002 |
2949 |
2.811 |
2.3520 |
0.6838 |
- |
| 0.4003 |
3932 |
2.414 |
2.0700 |
0.6883 |
- |
| 0.5004 |
4915 |
2.186 |
1.8993 |
0.6913 |
- |
| 0.6004 |
5898 |
1.8523 |
1.5632 |
0.7045 |
- |
| 0.7005 |
6881 |
0.6415 |
1.4902 |
0.7082 |
- |
| 0.8006 |
7864 |
0.5016 |
1.4636 |
0.7108 |
- |
| 0.9006 |
8847 |
0.4194 |
1.3875 |
0.7121 |
- |
| 1.0007 |
9830 |
0.3737 |
1.3077 |
0.7117 |
- |
| 1.1008 |
10813 |
1.8087 |
1.0903 |
0.7172 |
- |
| 1.2009 |
11796 |
1.6631 |
1.0388 |
0.7180 |
- |
| 1.3009 |
12779 |
1.6161 |
1.0177 |
0.7169 |
- |
| 1.4010 |
13762 |
1.5378 |
1.0136 |
0.7148 |
- |
| 1.5011 |
14745 |
1.5215 |
1.0053 |
0.7159 |
- |
| 1.6011 |
15728 |
1.2887 |
0.9600 |
0.7166 |
- |
| 1.7012 |
16711 |
0.3058 |
0.9949 |
0.7180 |
- |
| 1.8013 |
17694 |
0.2897 |
0.9792 |
0.7186 |
- |
| 1.9014 |
18677 |
0.275 |
0.9598 |
0.7192 |
- |
| 2.0 |
19646 |
- |
0.9796 |
0.7193 |
- |
| None |
0 |
- |
2.4594 |
0.7193 |
0.7681 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AdaptiveLayerLoss
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}