metadata
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:314315
- loss:AdaptiveLayerLoss
- loss:MultipleNegativesRankingLoss
base_model: microsoft/deberta-v3-small
datasets:
- stanfordnlp/snli
- sentence-transformers/stsb
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
widget:
- source_sentence: Two teenage girls conversing next to lockers.
sentences:
- Girls talking about their problems next to lockers.
- A bully tries to pop a balloon without being caught in the act.
- Two dogs standing together in the yard.
- source_sentence: >-
A young man in a heavy brown winter coat stands in front of a blue railing
with his arms spread.
sentences:
- >-
a boy holding onto the wall of an old brick house's raised foundation as
construction occurs
- The railing is in front of a frozen lake.
- A skateboarder is doing tricks for a competition.
- source_sentence: >-
A shirtless man with a white hat and no shoes sitting crisscross with his
back against the wall holding up a white plastic cup.
sentences:
- >-
A long-haired boy riding his skateboard at a fast pace over a stone wall
with graffiti.
- A man is sitting crisscross
- a child in a black ninja suit does a kick
- source_sentence: A light colored dog leaps over a hurdle.
sentences:
- Men sit on the bus going to work,
- A dog jumps over a obstacel.
- a man standing on his motorbike.
- source_sentence: people are standing near water with a boat heading their direction
sentences:
- >-
People are standing near water with a large blue boat heading their
direction.
- Two people climbing on a wooden scaffold.
- The dogs are near the toy.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on microsoft/deberta-v3-small
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.7660217567682521
name: Pearson Cosine
- type: spearman_cosine
value: 0.7681125489633884
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7917532885619117
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.794675885405013
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7860948725725584
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7895594746178918
name: Spearman Euclidean
- type: pearson_dot
value: 0.644843928972524
name: Pearson Dot
- type: spearman_dot
value: 0.6427588138459626
name: Spearman Dot
- type: pearson_max
value: 0.7917532885619117
name: Pearson Max
- type: spearman_max
value: 0.794675885405013
name: Spearman Max
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.6730608840700584
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.5814725160598755
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7170495061078964
name: Cosine F1
- type: cosine_f1_threshold
value: 0.4670722782611847
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.5977392321184954
name: Cosine Precision
- type: cosine_recall
value: 0.895866802979407
name: Cosine Recall
- type: cosine_ap
value: 0.7193483203625508
name: Cosine Ap
- type: dot_accuracy
value: 0.6444764576541057
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 71.95508575439453
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.7094262988661364
name: Dot F1
- type: dot_f1_threshold
value: 53.77289581298828
name: Dot F1 Threshold
- type: dot_precision
value: 0.5779411764705882
name: Dot Precision
- type: dot_recall
value: 0.9183584051409376
name: Dot Recall
- type: dot_ap
value: 0.6828334101602328
name: Dot Ap
- type: manhattan_accuracy
value: 0.6664644779740693
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 213.6251678466797
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.7047102517243412
name: Manhattan F1
- type: manhattan_f1_threshold
value: 245.20578002929688
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.5908461842625544
name: Manhattan Precision
- type: manhattan_recall
value: 0.8729370527238206
name: Manhattan Recall
- type: manhattan_ap
value: 0.7132026586783923
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.6621426946698006
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 10.358880996704102
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.7024081560907013
name: Euclidean F1
- type: euclidean_f1_threshold
value: 12.010871887207031
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.5864970645792563
name: Euclidean Precision
- type: euclidean_recall
value: 0.8754198919234701
name: Euclidean Recall
- type: euclidean_ap
value: 0.7101786172295015
name: Euclidean Ap
- type: max_accuracy
value: 0.6730608840700584
name: Max Accuracy
- type: max_accuracy_threshold
value: 213.6251678466797
name: Max Accuracy Threshold
- type: max_f1
value: 0.7170495061078964
name: Max F1
- type: max_f1_threshold
value: 245.20578002929688
name: Max F1 Threshold
- type: max_precision
value: 0.5977392321184954
name: Max Precision
- type: max_recall
value: 0.9183584051409376
name: Max Recall
- type: max_ap
value: 0.7193483203625508
name: Max Ap
SentenceTransformer based on microsoft/deberta-v3-small
This is a sentence-transformers model finetuned from microsoft/deberta-v3-small on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/deberta-v3-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerBaseline")
# Run inference
sentences = [
'people are standing near water with a boat heading their direction',
'People are standing near water with a large blue boat heading their direction.',
'The dogs are near the toy.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.766 |
| spearman_cosine | 0.7681 |
| pearson_manhattan | 0.7918 |
| spearman_manhattan | 0.7947 |
| pearson_euclidean | 0.7861 |
| spearman_euclidean | 0.7896 |
| pearson_dot | 0.6448 |
| spearman_dot | 0.6428 |
| pearson_max | 0.7918 |
| spearman_max | 0.7947 |
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.6731 |
| cosine_accuracy_threshold | 0.5815 |
| cosine_f1 | 0.717 |
| cosine_f1_threshold | 0.4671 |
| cosine_precision | 0.5977 |
| cosine_recall | 0.8959 |
| cosine_ap | 0.7193 |
| dot_accuracy | 0.6445 |
| dot_accuracy_threshold | 71.9551 |
| dot_f1 | 0.7094 |
| dot_f1_threshold | 53.7729 |
| dot_precision | 0.5779 |
| dot_recall | 0.9184 |
| dot_ap | 0.6828 |
| manhattan_accuracy | 0.6665 |
| manhattan_accuracy_threshold | 213.6252 |
| manhattan_f1 | 0.7047 |
| manhattan_f1_threshold | 245.2058 |
| manhattan_precision | 0.5908 |
| manhattan_recall | 0.8729 |
| manhattan_ap | 0.7132 |
| euclidean_accuracy | 0.6621 |
| euclidean_accuracy_threshold | 10.3589 |
| euclidean_f1 | 0.7024 |
| euclidean_f1_threshold | 12.0109 |
| euclidean_precision | 0.5865 |
| euclidean_recall | 0.8754 |
| euclidean_ap | 0.7102 |
| max_accuracy | 0.6731 |
| max_accuracy_threshold | 213.6252 |
| max_f1 | 0.717 |
| max_f1_threshold | 245.2058 |
| max_precision | 0.5977 |
| max_recall | 0.9184 |
| max_ap | 0.7193 |
Training Details
Training Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 314,315 training samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 5 tokens
- mean: 16.62 tokens
- max: 62 tokens
- min: 4 tokens
- mean: 9.46 tokens
- max: 29 tokens
- 0: 100.00%
- Samples:
sentence1 sentence2 label A person on a horse jumps over a broken down airplane.A person is outdoors, on a horse.0Children smiling and waving at cameraThere are children present0A boy is jumping on skateboard in the middle of a red bridge.The boy does a skateboarding trick.0 - Loss:
AdaptiveLayerLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1, "prior_layers_weight": 1, "kl_div_weight": 1.2, "kl_temperature": 1.2 }
Evaluation Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 14.77 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 14.74 tokens
- max: 49 tokens
- min: 0.0
- mean: 0.47
- max: 1.0
- Samples:
sentence1 sentence2 score A man with a hard hat is dancing.A man wearing a hard hat is dancing.1.0A young child is riding a horse.A child is riding a horse.0.95A man is feeding a mouse to a snake.The man is feeding a mouse to the snake.1.0 - Loss:
AdaptiveLayerLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1, "prior_layers_weight": 1, "kl_div_weight": 1.2, "kl_temperature": 1.2 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 16learning_rate: 5e-06weight_decay: 1e-07num_train_epochs: 2warmup_ratio: 0.5save_safetensors: Falsefp16: Truepush_to_hub: Truehub_model_id: bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerBaselinenhub_strategy: checkpointbatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-06weight_decay: 1e-07adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.5warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Falsesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerBaselinenhub_strategy: checkpointhub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | max_ap | spearman_cosine |
|---|---|---|---|---|---|
| None | 0 | - | 4.1425 | - | 0.4276 |
| 0.1001 | 983 | 4.7699 | 3.8387 | 0.6364 | - |
| 0.2001 | 1966 | 3.5997 | 2.7649 | 0.6722 | - |
| 0.3002 | 2949 | 2.811 | 2.3520 | 0.6838 | - |
| 0.4003 | 3932 | 2.414 | 2.0700 | 0.6883 | - |
| 0.5004 | 4915 | 2.186 | 1.8993 | 0.6913 | - |
| 0.6004 | 5898 | 1.8523 | 1.5632 | 0.7045 | - |
| 0.7005 | 6881 | 0.6415 | 1.4902 | 0.7082 | - |
| 0.8006 | 7864 | 0.5016 | 1.4636 | 0.7108 | - |
| 0.9006 | 8847 | 0.4194 | 1.3875 | 0.7121 | - |
| 1.0007 | 9830 | 0.3737 | 1.3077 | 0.7117 | - |
| 1.1008 | 10813 | 1.8087 | 1.0903 | 0.7172 | - |
| 1.2009 | 11796 | 1.6631 | 1.0388 | 0.7180 | - |
| 1.3009 | 12779 | 1.6161 | 1.0177 | 0.7169 | - |
| 1.4010 | 13762 | 1.5378 | 1.0136 | 0.7148 | - |
| 1.5011 | 14745 | 1.5215 | 1.0053 | 0.7159 | - |
| 1.6011 | 15728 | 1.2887 | 0.9600 | 0.7166 | - |
| 1.7012 | 16711 | 0.3058 | 0.9949 | 0.7180 | - |
| 1.8013 | 17694 | 0.2897 | 0.9792 | 0.7186 | - |
| 1.9014 | 18677 | 0.275 | 0.9598 | 0.7192 | - |
| 2.0 | 19646 | - | 0.9796 | 0.7193 | - |
| None | 0 | - | 2.4594 | 0.7193 | 0.7681 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AdaptiveLayerLoss
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}