id
stringlengths 14
16
| text
stringlengths 29
2.31k
| source
stringlengths 57
122
|
---|---|---|
ac14f79d9545-0
|
Source code for langchain.agents.tools
"""Interface for tools."""
from inspect import signature
from typing import Any, Awaitable, Callable, Optional, Union
from langchain.tools.base import BaseTool
[docs]class Tool(BaseTool):
"""Tool that takes in function or coroutine directly."""
description: str = ""
func: Callable[[str], str]
coroutine: Optional[Callable[[str], Awaitable[str]]] = None
def _run(self, tool_input: str) -> str:
"""Use the tool."""
return self.func(tool_input)
async def _arun(self, tool_input: str) -> str:
"""Use the tool asynchronously."""
if self.coroutine:
return await self.coroutine(tool_input)
raise NotImplementedError("Tool does not support async")
# TODO: this is for backwards compatibility, remove in future
def __init__(
self, name: str, func: Callable[[str], str], description: str, **kwargs: Any
) -> None:
"""Initialize tool."""
super(Tool, self).__init__(
name=name, func=func, description=description, **kwargs
)
class InvalidTool(BaseTool):
"""Tool that is run when invalid tool name is encountered by agent."""
name = "invalid_tool"
description = "Called when tool name is invalid."
def _run(self, tool_name: str) -> str:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/tools.html
|
ac14f79d9545-1
|
name is invalid."
def _run(self, tool_name: str) -> str:
"""Use the tool."""
return f"{tool_name} is not a valid tool, try another one."
async def _arun(self, tool_name: str) -> str:
"""Use the tool asynchronously."""
return f"{tool_name} is not a valid tool, try another one."
[docs]def tool(*args: Union[str, Callable], return_direct: bool = False) -> Callable:
"""Make tools out of functions, can be used with or without arguments.
Requires:
- Function must be of type (str) -> str
- Function must have a docstring
Examples:
.. code-block:: python
@tool
def search_api(query: str) -> str:
# Searches the API for the query.
return
@tool("search", return_direct=True)
def search_api(query: str) -> str:
# Searches the API for the query.
return
"""
def _make_with_name(tool_name: str) -> Callable:
def _make_tool(func: Callable[[str],
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/tools.html
|
ac14f79d9545-2
|
-> Callable:
def _make_tool(func: Callable[[str], str]) -> Tool:
assert func.__doc__, "Function must have a docstring"
# Description example:
# search_api(query: str) - Searches the API for the query.
description = f"{tool_name}{signature(func)} - {func.__doc__.strip()}"
tool_ = Tool(
name=tool_name,
func=func,
description=description,
return_direct=return_direct,
)
return tool_
return _make_tool
if len(args) == 1 and isinstance(args[0], str):
# if the argument is a string, then we use the string as the tool name
# Example usage: @tool("search", return_direct=True)
return _make_with_name(args[0])
elif len(args) == 1 and callable(args[0]):
# if the argument is a function, then we use the function name as the tool name
# Example usage: @tool
return
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/tools.html
|
ac14f79d9545-3
|
# Example usage: @tool
return _make_with_name(args[0].__name__)(args[0])
elif len(args) == 0:
# if there are no arguments, then we use the function name as the tool name
# Example usage: @tool(return_direct=True)
def _partial(func: Callable[[str], str]) -> BaseTool:
return _make_with_name(func.__name__)(func)
return _partial
else:
raise ValueError("Too many arguments for tool decorator")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/tools.html
|
33e5cdcc62a3-0
|
Source code for langchain.agents.loading
"""Functionality for loading agents."""
import json
from pathlib import Path
from typing import Any, List, Optional, Union
import yaml
from langchain.agents.agent import BaseSingleActionAgent
from langchain.agents.agent_types import AgentType
from langchain.agents.chat.base import ChatAgent
from langchain.agents.chat_v2.base import ChatAgentV2
from langchain.agents.conversational.base import ConversationalAgent
from langchain.agents.conversational_chat.base import ConversationalChatAgent
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.react.base import ReActDocstoreAgent
from langchain.agents.self_ask_with_search.base import SelfAskWithSearchAgent
from langchain.agents.tools import Tool
from langchain.chains.loading import load_chain, load_chain_from_config
from langchain.llms.base import BaseLLM
from langchain.utilities.loading import try_load_from_hub
AGENT_TO_CLASS = {
AgentType.ZERO_SHOT_REACT_DESCRIPTION: ZeroShotAgent,
AgentType.REACT_DOCSTORE: ReActDocstoreAgent,
AgentType.SELF_ASK_WITH_SEARCH: SelfAskWithSearchAgent,
AgentType.CONVERSATIONAL_REACT_DESCRIPTION: ConversationalAgent,
AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION: ChatAgent,
AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION: ConversationalChatAgent,
AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION_V2: ChatAgentV2,
}
URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/agents/"
def _load_agent_from_tools(
config: dict, llm: BaseLLM, tools: List[Tool], **kwargs: Any
) -> BaseSingleActionAgent:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/loading.html
|
33e5cdcc62a3-1
|
tools: List[Tool], **kwargs: Any
) -> BaseSingleActionAgent:
config_type = config.pop("_type")
if config_type not in AGENT_TO_CLASS:
raise ValueError(f"Loading {config_type} agent not supported")
if config_type not in AGENT_TO_CLASS:
raise ValueError(f"Loading {config_type} agent not supported")
agent_cls = AGENT_TO_CLASS[config_type]
combined_config = {**config, **kwargs}
return agent_cls.from_llm_and_tools(llm, tools, **combined_config)
def load_agent_from_config(
config: dict,
llm: Optional[BaseLLM] = None,
tools: Optional[List[Tool]] = None,
**kwargs: Any,
) -> BaseSingleActionAgent:
"""Load agent from Config Dict."""
if "_type" not in config:
raise ValueError("Must specify an agent Type in config")
load_from_tools = config.pop("load_from_llm_and_tools", False)
if load_from_tools:
if llm is None:
raise ValueError(
"If `load_from_llm_and_tools` is set to True, "
"then LLM must be provided"
)
if tools is None:
raise ValueError(
"If
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/loading.html
|
33e5cdcc62a3-2
|
raise ValueError(
"If `load_from_llm_and_tools` is set to True, "
"then tools must be provided"
)
return _load_agent_from_tools(config, llm, tools, **kwargs)
config_type = config.pop("_type")
if config_type not in AGENT_TO_CLASS:
raise ValueError(f"Loading {config_type} agent not supported")
agent_cls = AGENT_TO_CLASS[config_type]
if "llm_chain" in config:
config["llm_chain"] = load_chain_from_config(config.pop("llm_chain"))
elif "llm_chain_path" in config:
config["llm_chain"] = load_chain(config.pop("llm_chain_path"))
else:
raise ValueError("One of `llm_chain` and `llm_chain_path` should be specified.")
combined_config = {**config, **kwargs}
return agent_cls(**combined_config) # type: ignore
[docs]def load_agent(path: Union[str, Path], **kwargs: Any) -> BaseSingleActionAgent:
"""Unified method for loading a agent from LangChainHub or local fs."""
if hub_result := try_load_from_hub(
path, _load_agent_from_file, "agents", {"json", "yaml"}
):
return hub_result
else:
return _load_agent_from_file(path,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/loading.html
|
33e5cdcc62a3-3
|
else:
return _load_agent_from_file(path, **kwargs)
def _load_agent_from_file(
file: Union[str, Path], **kwargs: Any
) -> BaseSingleActionAgent:
"""Load agent from file."""
# Convert file to Path object.
if isinstance(file, str):
file_path = Path(file)
else:
file_path = file
# Load from either json or yaml.
if file_path.suffix == ".json":
with open(file_path) as f:
config = json.load(f)
elif file_path.suffix == ".yaml":
with open(file_path, "r") as f:
config = yaml.safe_load(f)
else:
raise ValueError("File type must be json or yaml")
# Load the agent from the config now.
return load_agent_from_config(config, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/loading.html
|
5a8f5fd4dbc9-0
|
Source code for langchain.agents.load_tools
# flake8: noqa
"""Load tools."""
import warnings
from typing import Any, List, Optional
from langchain.agents.tools import Tool
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.api import news_docs, open_meteo_docs, podcast_docs, tmdb_docs
from langchain.chains.api.base import APIChain
from langchain.chains.llm_math.base import LLMMathChain
from langchain.chains.pal.base import PALChain
from langchain.llms.base import BaseLLM
from langchain.requests import TextRequestsWrapper
from langchain.tools.base import BaseTool
from langchain.tools.bing_search.tool import BingSearchRun
from langchain.tools.google_search.tool import GoogleSearchResults, GoogleSearchRun
from langchain.tools.human.tool import HumanInputRun
from langchain.tools.python.tool import PythonREPLTool
from langchain.tools.requests.tool import (
RequestsDeleteTool,
RequestsGetTool,
RequestsPatchTool,
RequestsPostTool,
RequestsPutTool,
)
from langchain.tools.searx_search.tool import SearxSearchResults, SearxSearchRun
from langchain.tools.wikipedia.tool import WikipediaQueryRun
from langchain.tools.wolfram_alpha.tool import WolframAlphaQueryRun
from langchain.utilities.apify import ApifyWrapper
from langchain.utilities.bash import BashProcess
from langchain.utilities.bing_search import BingSearchAPIWrapper
from langchain.utilities.google_search import GoogleSearchAPIWrapper
from langchain.utilities.google_serper import GoogleSerperAPIWrapper
from langchain.utilities.searx_search import SearxSearchWrapper
from langchain.utilities.serpapi import SerpAPIWrapper
from langchain.utilities.wikipedia import WikipediaAPIWrapper
from langchain.utilities.wolfram_alpha import
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/load_tools.html
|
5a8f5fd4dbc9-1
|
langchain.utilities.wikipedia import WikipediaAPIWrapper
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
def _get_python_repl() -> BaseTool:
return PythonREPLTool()
def _get_tools_requests_get() -> BaseTool:
return RequestsGetTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_post() -> BaseTool:
return RequestsPostTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_patch() -> BaseTool:
return RequestsPatchTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_put() -> BaseTool:
return RequestsPutTool(requests_wrapper=TextRequestsWrapper())
def _get_tools_requests_delete() -> BaseTool:
return RequestsDeleteTool(requests_wrapper=TextRequestsWrapper())
def _get_terminal() -> BaseTool:
return Tool(
name="Terminal",
description="Executes commands in a terminal. Input should be valid commands, and the output will be any output from running that command.",
func=BashProcess().run,
)
_BASE_TOOLS = {
"python_repl": _get_python_repl,
"requests": _get_tools_requests_get, # preserved for backwards compatability
"requests_get": _get_tools_requests_get,
"requests_post": _get_tools_requests_post,
"requests_patch": _get_tools_requests_patch,
"requests_put": _get_tools_requests_put,
"requests_delete": _get_tools_requests_delete,
"terminal": _get_terminal,
}
def _get_pal_math(llm: BaseLLM) -> BaseTool:
return Tool(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/load_tools.html
|
5a8f5fd4dbc9-2
|
-> BaseTool:
return Tool(
name="PAL-MATH",
description="A language model that is really good at solving complex word math problems. Input should be a fully worded hard word math problem.",
func=PALChain.from_math_prompt(llm).run,
)
def _get_pal_colored_objects(llm: BaseLLM) -> BaseTool:
return Tool(
name="PAL-COLOR-OBJ",
description="A language model that is really good at reasoning about position and the color attributes of objects. Input should be a fully worded hard reasoning problem. Make sure to include all information about the objects AND the final question you want to answer.",
func=PALChain.from_colored_object_prompt(llm).run,
)
def _get_llm_math(llm: BaseLLM) -> BaseTool:
return Tool(
name="Calculator",
description="Useful for when you need to answer questions about math.",
func=LLMMathChain(llm=llm, callback_manager=llm.callback_manager).run,
coroutine=LLMMathChain(llm=llm, callback_manager=llm.callback_manager).arun,
)
def _get_open_meteo_api(llm: BaseLLM) -> BaseTool:
chain = APIChain.from_llm_and_api_docs(llm, open_meteo_docs.OPEN_METEO_DOCS)
return Tool(
name="Open Meteo API",
description="Useful for when you want
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/load_tools.html
|
5a8f5fd4dbc9-3
|
Meteo API",
description="Useful for when you want to get weather information from the OpenMeteo API. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
_LLM_TOOLS = {
"pal-math": _get_pal_math,
"pal-colored-objects": _get_pal_colored_objects,
"llm-math": _get_llm_math,
"open-meteo-api": _get_open_meteo_api,
}
def _get_news_api(llm: BaseLLM, **kwargs: Any) -> BaseTool:
news_api_key = kwargs["news_api_key"]
chain = APIChain.from_llm_and_api_docs(
llm, news_docs.NEWS_DOCS, headers={"X-Api-Key": news_api_key}
)
return Tool(
name="News API",
description="Use this when you want to get information about the top headlines of current news stories. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
def _get_tmdb_api(llm: BaseLLM, **kwargs: Any) -> BaseTool:
tmdb_bearer_token = kwargs["tmdb_bearer_token"]
chain = APIChain.from_llm_and_api_docs(
llm,
tmdb_docs.TMDB_DOCS,
headers={"Authorization": f"Bearer {tmdb_bearer_token}"},
)
return Tool(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/load_tools.html
|
5a8f5fd4dbc9-4
|
)
return Tool(
name="TMDB API",
description="Useful for when you want to get information from The Movie Database. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
def _get_podcast_api(llm: BaseLLM, **kwargs: Any) -> BaseTool:
listen_api_key = kwargs["listen_api_key"]
chain = APIChain.from_llm_and_api_docs(
llm,
podcast_docs.PODCAST_DOCS,
headers={"X-ListenAPI-Key": listen_api_key},
)
return Tool(
name="Podcast API",
description="Use the Listen Notes Podcast API to search all podcasts or episodes. The input should be a question in natural language that this API can answer.",
func=chain.run,
)
def _get_wolfram_alpha(**kwargs: Any) -> BaseTool:
return WolframAlphaQueryRun(api_wrapper=WolframAlphaAPIWrapper(**kwargs))
def _get_google_search(**kwargs: Any) -> BaseTool:
return GoogleSearchRun(api_wrapper=GoogleSearchAPIWrapper(**kwargs))
def _get_wikipedia(**kwargs: Any) -> BaseTool:
return WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(**kwargs))
def _get_google_serper(**kwargs: Any) -> BaseTool:
return Tool(
name="Serper Search",
func=GoogleSerperAPIWrapper(**kwargs).run,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/load_tools.html
|
5a8f5fd4dbc9-5
|
func=GoogleSerperAPIWrapper(**kwargs).run,
description="A low-cost Google Search API. Useful for when you need to answer questions about current events. Input should be a search query.",
)
def _get_google_search_results_json(**kwargs: Any) -> BaseTool:
return GoogleSearchResults(api_wrapper=GoogleSearchAPIWrapper(**kwargs))
def _get_serpapi(**kwargs: Any) -> BaseTool:
return Tool(
name="Search",
description="A search engine. Useful for when you need to answer questions about current events. Input should be a search query.",
func=SerpAPIWrapper(**kwargs).run,
coroutine=SerpAPIWrapper(**kwargs).arun,
)
def _get_searx_search(**kwargs: Any) -> BaseTool:
return SearxSearchRun(wrapper=SearxSearchWrapper(**kwargs))
def _get_searx_search_results_json(**kwargs: Any) -> BaseTool:
wrapper_kwargs = {k: v for k, v in kwargs.items() if k != "num_results"}
return SearxSearchResults(wrapper=SearxSearchWrapper(**wrapper_kwargs), **kwargs)
def _get_bing_search(**kwargs: Any) -> BaseTool:
return BingSearchRun(api_wrapper=BingSearchAPIWrapper(**kwargs))
def _get_human_tool(**kwargs: Any) -> BaseTool:
return HumanInputRun(**kwargs)
_EXTRA_LLM_TOOLS = {
"news-api": (_get_news_api, ["news_api_key"]),
"tmdb-api": (_get_tmdb_api, ["tmdb_bearer_token"]),
"podcast-api":
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/load_tools.html
|
5a8f5fd4dbc9-6
|
["tmdb_bearer_token"]),
"podcast-api": (_get_podcast_api, ["listen_api_key"]),
}
_EXTRA_OPTIONAL_TOOLS = {
"wolfram-alpha": (_get_wolfram_alpha, ["wolfram_alpha_appid"]),
"google-search": (_get_google_search, ["google_api_key", "google_cse_id"]),
"google-search-results-json": (
_get_google_search_results_json,
["google_api_key", "google_cse_id", "num_results"],
),
"searx-search-results-json": (
_get_searx_search_results_json,
["searx_host", "engines", "num_results", "aiosession"],
),
"bing-search": (_get_bing_search, ["bing_subscription_key", "bing_search_url"]),
"google-serper": (_get_google_serper, ["serper_api_key"]),
"serpapi": (_get_serpapi, ["serpapi_api_key", "aiosession"]),
"searx-search": (_get_searx_search, ["searx_host", "engines", "aiosession"]),
"wikipedia": (_get_wikipedia, ["top_k_results"]),
"human": (_get_human_tool, ["prompt_func", "input_func"]),
}
[docs]def load_tools(
tool_names: List[str],
llm: Optional[BaseLLM] = None,
callback_manager: Optional[BaseCallbackManager] = None,
**kwargs: Any,
) -> List[BaseTool]:
"""Load tools based on their name.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/load_tools.html
|
5a8f5fd4dbc9-7
|
-> List[BaseTool]:
"""Load tools based on their name.
Args:
tool_names: name of tools to load.
llm: Optional language model, may be needed to initialize certain tools.
callback_manager: Optional callback manager. If not provided, default global callback manager will be used.
Returns:
List of tools.
"""
tools = []
for name in tool_names:
if name == "requests":
warnings.warn(
"tool name `requests` is deprecated - "
"please use `requests_all` or specify the requests method"
)
if name == "requests_all":
# expand requests into various methods
requests_method_tools = [
_tool for _tool in _BASE_TOOLS if _tool.startswith("requests_")
]
tool_names.extend(requests_method_tools)
elif name in _BASE_TOOLS:
tools.append(_BASE_TOOLS[name]())
elif name in _LLM_TOOLS:
if llm is None:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/load_tools.html
|
5a8f5fd4dbc9-8
|
if llm is None:
raise ValueError(f"Tool {name} requires an LLM to be provided")
tool = _LLM_TOOLS[name](llm)
if callback_manager is not None:
tool.callback_manager = callback_manager
tools.append(tool)
elif name in _EXTRA_LLM_TOOLS:
if llm is None:
raise ValueError(f"Tool {name} requires an LLM to be provided")
_get_llm_tool_func, extra_keys = _EXTRA_LLM_TOOLS[name]
missing_keys = set(extra_keys).difference(kwargs)
if missing_keys:
raise ValueError(
f"Tool {name} requires some parameters that were not "
f"provided: {missing_keys}"
)
sub_kwargs = {k: kwargs[k] for k in extra_keys}
tool = _get_llm_tool_func(llm=llm,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/load_tools.html
|
5a8f5fd4dbc9-9
|
tool = _get_llm_tool_func(llm=llm, **sub_kwargs)
if callback_manager is not None:
tool.callback_manager = callback_manager
tools.append(tool)
elif name in _EXTRA_OPTIONAL_TOOLS:
_get_tool_func, extra_keys = _EXTRA_OPTIONAL_TOOLS[name]
sub_kwargs = {k: kwargs[k] for k in extra_keys if k in kwargs}
tool = _get_tool_func(**sub_kwargs)
if callback_manager is not None:
tool.callback_manager = callback_manager
tools.append(tool)
else:
raise ValueError(f"Got unknown tool {name}")
return tools
[docs]def get_all_tool_names() -> List[str]:
"""Get a list of all possible tool names."""
return (
list(_BASE_TOOLS)
+ list(_EXTRA_OPTIONAL_TOOLS)
+ list(_EXTRA_LLM_TOOLS)
+ list(_LLM_TOOLS)
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/load_tools.html
|
5a8f5fd4dbc9-10
|
Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/load_tools.html
|
d7ac3f50b4d4-0
|
Source code for langchain.agents.agent_types
from enum import Enum
[docs]class AgentType(str, Enum):
ZERO_SHOT_REACT_DESCRIPTION = "zero-shot-react-description"
REACT_DOCSTORE = "react-docstore"
SELF_ASK_WITH_SEARCH = "self-ask-with-search"
CONVERSATIONAL_REACT_DESCRIPTION = "conversational-react-description"
CHAT_ZERO_SHOT_REACT_DESCRIPTION = "chat-zero-shot-react-description"
CHAT_CONVERSATIONAL_REACT_DESCRIPTION = "chat-conversational-react-description"
CHAT_ZERO_SHOT_REACT_DESCRIPTION_V2 = "chat-zero-shot-react-description-002"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent_types.html
|
545a96376be2-0
|
Source code for langchain.agents.self_ask_with_search.base
"""Chain that does self ask with search."""
from typing import Any, Optional, Sequence, Tuple, Union
from langchain.agents.agent import Agent, AgentExecutor
from langchain.agents.agent_types import AgentType
from langchain.agents.self_ask_with_search.prompt import PROMPT
from langchain.agents.tools import Tool
from langchain.llms.base import BaseLLM
from langchain.prompts.base import BasePromptTemplate
from langchain.tools.base import BaseTool
from langchain.utilities.google_serper import GoogleSerperAPIWrapper
from langchain.utilities.serpapi import SerpAPIWrapper
class SelfAskWithSearchAgent(Agent):
"""Agent for the self-ask-with-search paper."""
@property
def _agent_type(self) -> str:
"""Return Identifier of agent type."""
return AgentType.SELF_ASK_WITH_SEARCH
@classmethod
def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate:
"""Prompt does not depend on tools."""
return PROMPT
@classmethod
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
if len(tools) != 1:
raise ValueError(f"Exactly one tool must be specified, but got {tools}")
tool_names = {tool.name for tool in tools}
if tool_names != {"Intermediate Answer"}:
raise ValueError(
f"Tool name should
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/self_ask_with_search/base.html
|
545a96376be2-1
|
f"Tool name should be Intermediate Answer, got {tool_names}"
)
def _extract_tool_and_input(self, text: str) -> Optional[Tuple[str, str]]:
followup = "Follow up:"
last_line = text.split("\n")[-1]
if followup not in last_line:
finish_string = "So the final answer is: "
if finish_string not in last_line:
return None
return "Final Answer", last_line[len(finish_string) :]
after_colon = text.split(":")[-1]
if " " == after_colon[0]:
after_colon = after_colon[1:]
return "Intermediate Answer", after_colon
def _fix_text(self, text: str) -> str:
return f"{text}\nSo the final answer is:"
@property
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
return "Intermediate answer: "
@property
def llm_prefix(self) -> str:
"""Prefix to append the LLM call with."""
return ""
@property
def
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/self_ask_with_search/base.html
|
545a96376be2-2
|
return ""
@property
def starter_string(self) -> str:
"""Put this string after user input but before first LLM call."""
return "Are follow up questions needed here:"
[docs]class SelfAskWithSearchChain(AgentExecutor):
"""Chain that does self ask with search.
Example:
.. code-block:: python
from langchain import SelfAskWithSearchChain, OpenAI, GoogleSerperAPIWrapper
search_chain = GoogleSerperAPIWrapper()
self_ask = SelfAskWithSearchChain(llm=OpenAI(), search_chain=search_chain)
"""
def __init__(
self,
llm: BaseLLM,
search_chain: Union[GoogleSerperAPIWrapper, SerpAPIWrapper],
**kwargs: Any,
):
"""Initialize with just an LLM and a search chain."""
search_tool = Tool(
name="Intermediate Answer", func=search_chain.run, description="Search"
)
agent = SelfAskWithSearchAgent.from_llm_and_tools(llm, [search_tool])
super().__init__(agent=agent, tools=[search_tool], **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/self_ask_with_search/base.html
|
545a96376be2-3
|
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/self_ask_with_search/base.html
|
1ebc458cdeec-0
|
Source code for langchain.agents.mrkl.base
"""Attempt to implement MRKL systems as described in arxiv.org/pdf/2205.00445.pdf."""
from __future__ import annotations
import re
from typing import Any, Callable, List, NamedTuple, Optional, Sequence, Tuple
from langchain.agents.agent import Agent, AgentExecutor
from langchain.agents.agent_types import AgentType
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX
from langchain.agents.tools import Tool
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.schema import BaseLanguageModel
from langchain.tools.base import BaseTool
FINAL_ANSWER_ACTION = "Final Answer:"
class ChainConfig(NamedTuple):
"""Configuration for chain to use in MRKL system.
Args:
action_name: Name of the action.
action: Action function to call.
action_description: Description of the action.
"""
action_name: str
action: Callable
action_description: str
def get_action_and_input(llm_output: str) -> Tuple[str, str]:
"""Parse out the action and input from the LLM output.
Note: if you're specifying a custom prompt for the ZeroShotAgent,
you will need to ensure that it meets the following Regex requirements.
The string starting with "Action:" and the following string starting
with "Action Input:" should be separated by a newline.
"""
if FINAL_ANSWER_ACTION in llm_output:
return "Final Answer",
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/mrkl/base.html
|
1ebc458cdeec-1
|
in llm_output:
return "Final Answer", llm_output.split(FINAL_ANSWER_ACTION)[-1].strip()
# \s matches against tab/newline/whitespace
regex = r"Action: (.*?)[\n]*Action Input:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
return action, action_input.strip(" ").strip('"')
[docs]class ZeroShotAgent(Agent):
"""Agent for the MRKL chain."""
@property
def _agent_type(self) -> str:
"""Return Identifier of agent type."""
return AgentType.ZERO_SHOT_REACT_DESCRIPTION
@property
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
return "Observation: "
@property
def llm_prefix(self) -> str:
"""Prefix to append the llm call with."""
return "Thought:"
[docs] @classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
suffix: str = SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/mrkl/base.html
|
1ebc458cdeec-2
|
SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
) -> PromptTemplate:
"""Create prompt in the style of the zero shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
suffix: String to put after the list of tools.
input_variables: List of input variables the final prompt will expect.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(tool_names=tool_names)
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "agent_scratchpad"]
return PromptTemplate(template=template, input_variables=input_variables)
[docs] @classmethod
def from_llm_and_tools(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/mrkl/base.html
|
1ebc458cdeec-3
|
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = PREFIX,
suffix: str = SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
**kwargs: Any,
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
prompt = cls.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
return cls(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
@classmethod
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/mrkl/base.html
|
1ebc458cdeec-4
|
allowed_tools=tool_names, **kwargs)
@classmethod
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
for tool in tools:
if tool.description is None:
raise ValueError(
f"Got a tool {tool.name} without a description. For this agent, "
f"a description must always be provided."
)
def _extract_tool_and_input(self, text: str) -> Optional[Tuple[str, str]]:
return get_action_and_input(text)
[docs]class MRKLChain(AgentExecutor):
"""Chain that implements the MRKL system.
Example:
.. code-block:: python
from langchain import OpenAI, MRKLChain
from langchain.chains.mrkl.base import ChainConfig
llm = OpenAI(temperature=0)
prompt = PromptTemplate(...)
chains = [...]
mrkl = MRKLChain.from_chains(llm=llm, prompt=prompt)
"""
[docs] @classmethod
def from_chains(
cls, llm:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/mrkl/base.html
|
1ebc458cdeec-5
|
def from_chains(
cls, llm: BaseLanguageModel, chains: List[ChainConfig], **kwargs: Any
) -> AgentExecutor:
"""User friendly way to initialize the MRKL chain.
This is intended to be an easy way to get up and running with the
MRKL chain.
Args:
llm: The LLM to use as the agent LLM.
chains: The chains the MRKL system has access to.
**kwargs: parameters to be passed to initialization.
Returns:
An initialized MRKL chain.
Example:
.. code-block:: python
from langchain import LLMMathChain, OpenAI, SerpAPIWrapper, MRKLChain
from langchain.chains.mrkl.base import ChainConfig
llm = OpenAI(temperature=0)
search = SerpAPIWrapper()
llm_math_chain = LLMMathChain(llm=llm)
chains = [
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/mrkl/base.html
|
1ebc458cdeec-6
|
chains = [
ChainConfig(
action_name = "Search",
action=search.search,
action_description="useful for searching"
),
ChainConfig(
action_name="Calculator",
action=llm_math_chain.run,
action_description="useful for doing math"
)
]
mrkl = MRKLChain.from_chains(llm, chains)
"""
tools = [
Tool(
name=c.action_name,
func=c.action,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/mrkl/base.html
|
1ebc458cdeec-7
|
func=c.action,
description=c.action_description,
)
for c in chains
]
agent = ZeroShotAgent.from_llm_and_tools(llm, tools)
return cls(agent=agent, tools=tools, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/mrkl/base.html
|
5647c4b7fe00-0
|
Source code for langchain.agents.conversational_chat.base
"""An agent designed to hold a conversation in addition to using tools."""
from __future__ import annotations
import json
from typing import Any, List, Optional, Sequence, Tuple
from langchain.agents.agent import Agent
from langchain.agents.conversational_chat.prompt import (
FORMAT_INSTRUCTIONS,
PREFIX,
SUFFIX,
TEMPLATE_TOOL_RESPONSE,
)
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains import LLMChain
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
SystemMessagePromptTemplate,
)
from langchain.schema import (
AgentAction,
AIMessage,
BaseLanguageModel,
BaseMessage,
BaseOutputParser,
HumanMessage,
)
from langchain.tools.base import BaseTool
class AgentOutputParser(BaseOutputParser):
def get_format_instructions(self) -> str:
return FORMAT_INSTRUCTIONS
def parse(self, text: str) -> Any:
cleaned_output = text.strip()
if "```json" in cleaned_output:
_, cleaned_output = cleaned_output.split("```json")
if "```" in cleaned_output:
cleaned_output, _ = cleaned_output.split("```")
if cleaned_output.startswith("```json"):
cleaned_output = cleaned_output[len("```json") :]
if
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/conversational_chat/base.html
|
5647c4b7fe00-1
|
cleaned_output = cleaned_output[len("```json") :]
if cleaned_output.startswith("```"):
cleaned_output = cleaned_output[len("```") :]
if cleaned_output.endswith("```"):
cleaned_output = cleaned_output[: -len("```")]
cleaned_output = cleaned_output.strip()
response = json.loads(cleaned_output)
return {"action": response["action"], "action_input": response["action_input"]}
[docs]class ConversationalChatAgent(Agent):
"""An agent designed to hold a conversation in addition to using tools."""
output_parser: BaseOutputParser
@property
def _agent_type(self) -> str:
raise NotImplementedError
@property
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
return "Observation: "
@property
def llm_prefix(self) -> str:
"""Prefix to append the llm call with."""
return "Thought:"
[docs] @classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
system_message: str = PREFIX,
human_message: str = SUFFIX,
input_variables: Optional[List[str]] = None,
output_parser: Optional[BaseOutputParser] = None,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/conversational_chat/base.html
|
5647c4b7fe00-2
|
output_parser: Optional[BaseOutputParser] = None,
) -> BasePromptTemplate:
tool_strings = "\n".join(
[f"> {tool.name}: {tool.description}" for tool in tools]
)
tool_names = ", ".join([tool.name for tool in tools])
_output_parser = output_parser or AgentOutputParser()
format_instructions = human_message.format(
format_instructions=_output_parser.get_format_instructions()
)
final_prompt = format_instructions.format(
tool_names=tool_names, tools=tool_strings
)
if input_variables is None:
input_variables = ["input", "chat_history", "agent_scratchpad"]
messages = [
SystemMessagePromptTemplate.from_template(system_message),
MessagesPlaceholder(variable_name="chat_history"),
HumanMessagePromptTemplate.from_template(final_prompt),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
def _extract_tool_and_input(self, llm_output: str) -> Optional[Tuple[str, str]]:
try:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/conversational_chat/base.html
|
5647c4b7fe00-3
|
str]]:
try:
response = self.output_parser.parse(llm_output)
return response["action"], response["action_input"]
except Exception:
raise ValueError(f"Could not parse LLM output: {llm_output}")
def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> List[BaseMessage]:
"""Construct the scratchpad that lets the agent continue its thought process."""
thoughts: List[BaseMessage] = []
for action, observation in intermediate_steps:
thoughts.append(AIMessage(content=action.log))
human_message = HumanMessage(
content=TEMPLATE_TOOL_RESPONSE.format(observation=observation)
)
thoughts.append(human_message)
return thoughts
[docs] @classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
system_message: str = PREFIX,
human_message: str = SUFFIX,
input_variables:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/conversational_chat/base.html
|
5647c4b7fe00-4
|
human_message: str = SUFFIX,
input_variables: Optional[List[str]] = None,
output_parser: Optional[BaseOutputParser] = None,
**kwargs: Any,
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
_output_parser = output_parser or AgentOutputParser()
prompt = cls.create_prompt(
tools,
system_message=system_message,
human_message=human_message,
input_variables=input_variables,
output_parser=_output_parser,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
output_parser=_output_parser,
**kwargs,
)
By Harrison Chase
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/conversational_chat/base.html
|
5647c4b7fe00-5
|
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/conversational_chat/base.html
|
00633ee8f4b0-0
|
Source code for langchain.agents.agent_toolkits.openapi.base
"""OpenAPI spec agent."""
from typing import Any, List, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.openapi.prompt import (
OPENAPI_PREFIX,
OPENAPI_SUFFIX,
)
from langchain.agents.agent_toolkits.openapi.toolkit import OpenAPIToolkit
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.llms.base import BaseLLM
[docs]def create_openapi_agent(
llm: BaseLLM,
toolkit: OpenAPIToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = OPENAPI_PREFIX,
suffix: str = OPENAPI_SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
verbose: bool = False,
return_intermediate_steps: bool = False,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a json agent from an LLM and tools."""
tools = toolkit.get_tools()
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent_toolkits/openapi/base.html
|
00633ee8f4b0-1
|
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=toolkit.get_tools(),
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent_toolkits/openapi/base.html
|
b8aefa129f48-0
|
Source code for langchain.agents.agent_toolkits.json.base
"""Json agent."""
from typing import Any, List, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.json.prompt import JSON_PREFIX, JSON_SUFFIX
from langchain.agents.agent_toolkits.json.toolkit import JsonToolkit
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.llms.base import BaseLLM
[docs]def create_json_agent(
llm: BaseLLM,
toolkit: JsonToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = JSON_PREFIX,
suffix: str = JSON_SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
verbose: bool = False,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a json agent from an LLM and tools."""
tools = toolkit.get_tools()
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent_toolkits/json/base.html
|
b8aefa129f48-1
|
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent, tools=toolkit.get_tools(), verbose=verbose
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent_toolkits/json/base.html
|
8770b1a9d785-0
|
Source code for langchain.agents.agent_toolkits.csv.base
"""Agent for working with csvs."""
from typing import Any, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent
from langchain.llms.base import BaseLLM
[docs]def create_csv_agent(
llm: BaseLLM, path: str, pandas_kwargs: Optional[dict] = None, **kwargs: Any
) -> AgentExecutor:
"""Create csv agent by loading to a dataframe and using pandas agent."""
import pandas as pd
_kwargs = pandas_kwargs or {}
df = pd.read_csv(path, **_kwargs)
return create_pandas_dataframe_agent(llm, df, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent_toolkits/csv/base.html
|
dd989f20d3f8-0
|
Source code for langchain.agents.agent_toolkits.pandas.base
"""Agent for working with pandas objects."""
from typing import Any, List, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.pandas.prompt import PREFIX, SUFFIX
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.llms.base import BaseLLM
from langchain.tools.python.tool import PythonAstREPLTool
[docs]def create_pandas_dataframe_agent(
llm: BaseLLM,
df: Any,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = PREFIX,
suffix: str = SUFFIX,
input_variables: Optional[List[str]] = None,
verbose: bool = False,
return_intermediate_steps: bool = False,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
**kwargs: Any,
) -> AgentExecutor:
"""Construct a pandas agent from an LLM and dataframe."""
import pandas as pd
if not isinstance(df, pd.DataFrame):
raise ValueError(f"Expected pandas object, got {type(df)}")
if input_variables is None:
input_variables = ["df", "input", "agent_scratchpad"]
tools = [PythonAstREPLTool(locals={"df": df})]
prompt = ZeroShotAgent.create_prompt(
tools, prefix=prefix, suffix=suffix,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html
|
dd989f20d3f8-1
|
tools, prefix=prefix, suffix=suffix, input_variables=input_variables
)
partial_prompt = prompt.partial(df=str(df.head()))
llm_chain = LLMChain(
llm=llm,
prompt=partial_prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
verbose=verbose,
return_intermediate_steps=return_intermediate_steps,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html
|
02d323c12090-0
|
Source code for langchain.agents.agent_toolkits.vectorstore.base
"""VectorStore agent."""
from typing import Any, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.vectorstore.prompt import PREFIX, ROUTER_PREFIX
from langchain.agents.agent_toolkits.vectorstore.toolkit import (
VectorStoreRouterToolkit,
VectorStoreToolkit,
)
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.llms.base import BaseLLM
[docs]def create_vectorstore_agent(
llm: BaseLLM,
toolkit: VectorStoreToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = PREFIX,
verbose: bool = False,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a vectorstore agent from an LLM and tools."""
tools = toolkit.get_tools()
prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=verbose)
[docs]def create_vectorstore_router_agent(
llm: BaseLLM,
toolkit: VectorStoreRouterToolkit,
callback_manager:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/base.html
|
02d323c12090-1
|
BaseLLM,
toolkit: VectorStoreRouterToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = ROUTER_PREFIX,
verbose: bool = False,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a vectorstore router agent from an LLM and tools."""
tools = toolkit.get_tools()
prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=verbose)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/base.html
|
9d2d26382aa8-0
|
Source code for langchain.agents.agent_toolkits.sql.base
"""SQL agent."""
from typing import Any, List, Optional
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits.sql.prompt import SQL_PREFIX, SQL_SUFFIX
from langchain.agents.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.llms.base import BaseLLM
[docs]def create_sql_agent(
llm: BaseLLM,
toolkit: SQLDatabaseToolkit,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = SQL_PREFIX,
suffix: str = SQL_SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
input_variables: Optional[List[str]] = None,
top_k: int = 10,
max_iterations: Optional[int] = 15,
max_execution_time: Optional[float] = None,
early_stopping_method: str = "force",
verbose: bool = False,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a sql agent from an LLM and tools."""
tools = toolkit.get_tools()
prefix = prefix.format(dialect=toolkit.dialect, top_k=top_k)
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent_toolkits/sql/base.html
|
9d2d26382aa8-1
|
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
verbose=verbose,
max_iterations=max_iterations,
max_execution_time=max_execution_time,
early_stopping_method=early_stopping_method,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/agent_toolkits/sql/base.html
|
d76dc02d8efb-0
|
Source code for langchain.agents.conversational.base
"""An agent designed to hold a conversation in addition to using tools."""
from __future__ import annotations
import re
from typing import Any, List, Optional, Sequence, Tuple
from langchain.agents.agent import Agent
from langchain.agents.agent_types import AgentType
from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.schema import BaseLanguageModel
from langchain.tools.base import BaseTool
[docs]class ConversationalAgent(Agent):
"""An agent designed to hold a conversation in addition to using tools."""
ai_prefix: str = "AI"
@property
def _agent_type(self) -> str:
"""Return Identifier of agent type."""
return AgentType.CONVERSATIONAL_REACT_DESCRIPTION
@property
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
return "Observation: "
@property
def llm_prefix(self) -> str:
"""Prefix to append the llm call with."""
return "Thought:"
[docs] @classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
prefix: str = PREFIX,
suffix: str = SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/conversational/base.html
|
d76dc02d8efb-1
|
format_instructions: str = FORMAT_INSTRUCTIONS,
ai_prefix: str = "AI",
human_prefix: str = "Human",
input_variables: Optional[List[str]] = None,
) -> PromptTemplate:
"""Create prompt in the style of the zero shot agent.
Args:
tools: List of tools the agent will have access to, used to format the
prompt.
prefix: String to put before the list of tools.
suffix: String to put after the list of tools.
ai_prefix: String to use before AI output.
human_prefix: String to use before human output.
input_variables: List of input variables the final prompt will expect.
Returns:
A PromptTemplate with the template assembled from the pieces here.
"""
tool_strings = "\n".join(
[f"> {tool.name}: {tool.description}" for tool in tools]
)
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = format_instructions.format(
tool_names=tool_names,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/conversational/base.html
|
d76dc02d8efb-2
|
tool_names=tool_names, ai_prefix=ai_prefix, human_prefix=human_prefix
)
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
if input_variables is None:
input_variables = ["input", "chat_history", "agent_scratchpad"]
return PromptTemplate(template=template, input_variables=input_variables)
@property
def finish_tool_name(self) -> str:
"""Name of the tool to use to finish the chain."""
return self.ai_prefix
def _extract_tool_and_input(self, llm_output: str) -> Optional[Tuple[str, str]]:
if f"{self.ai_prefix}:" in llm_output:
return self.ai_prefix, llm_output.split(f"{self.ai_prefix}:")[-1].strip()
regex = r"Action: (.*?)[\n]*Action Input: (.*)"
match = re.search(regex, llm_output)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1)
action_input = match.group(2)
return action.strip(), action_input.strip(" ").strip('"')
[docs] @classmethod
def from_llm_and_tools(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/conversational/base.html
|
d76dc02d8efb-3
|
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = PREFIX,
suffix: str = SUFFIX,
format_instructions: str = FORMAT_INSTRUCTIONS,
ai_prefix: str = "AI",
human_prefix: str = "Human",
input_variables: Optional[List[str]] = None,
**kwargs: Any,
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
prompt = cls.create_prompt(
tools,
ai_prefix=ai_prefix,
human_prefix=human_prefix,
prefix=prefix,
suffix=suffix,
format_instructions=format_instructions,
input_variables=input_variables,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/conversational/base.html
|
d76dc02d8efb-4
|
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
return cls(
llm_chain=llm_chain, allowed_tools=tool_names, ai_prefix=ai_prefix, **kwargs
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/conversational/base.html
|
be2d2f9483fe-0
|
Source code for langchain.agents.react.base
"""Chain that implements the ReAct paper from https://arxiv.org/pdf/2210.03629.pdf."""
import re
from typing import Any, List, Optional, Sequence, Tuple
from langchain.agents.agent import Agent, AgentExecutor
from langchain.agents.agent_types import AgentType
from langchain.agents.react.textworld_prompt import TEXTWORLD_PROMPT
from langchain.agents.react.wiki_prompt import WIKI_PROMPT
from langchain.agents.tools import Tool
from langchain.docstore.base import Docstore
from langchain.docstore.document import Document
from langchain.llms.base import BaseLLM
from langchain.prompts.base import BasePromptTemplate
from langchain.tools.base import BaseTool
class ReActDocstoreAgent(Agent):
"""Agent for the ReAct chain."""
@property
def _agent_type(self) -> str:
"""Return Identifier of agent type."""
return AgentType.REACT_DOCSTORE
@classmethod
def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate:
"""Return default prompt."""
return WIKI_PROMPT
@classmethod
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
if len(tools) != 2:
raise ValueError(f"Exactly two tools must be specified, but got {tools}")
tool_names = {tool.name for tool in tools}
if tool_names != {"Lookup", "Search"}:
raise ValueError(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/react/base.html
|
be2d2f9483fe-1
|
"Search"}:
raise ValueError(
f"Tool names should be Lookup and Search, got {tool_names}"
)
def _fix_text(self, text: str) -> str:
return text + "\nAction:"
def _extract_tool_and_input(self, text: str) -> Optional[Tuple[str, str]]:
action_prefix = "Action: "
if not text.strip().split("\n")[-1].startswith(action_prefix):
return None
action_block = text.strip().split("\n")[-1]
action_str = action_block[len(action_prefix) :]
# Parse out the action and the directive.
re_matches = re.search(r"(.*?)\[(.*?)\]", action_str)
if re_matches is None:
raise ValueError(f"Could not parse action directive: {action_str}")
return re_matches.group(1), re_matches.group(2)
@property
def finish_tool_name(self) -> str:
"""Name of the tool of when to finish the chain."""
return "Finish"
@property
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
return "Observation: "
@property
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/react/base.html
|
be2d2f9483fe-2
|
return "Observation: "
@property
def _stop(self) -> List[str]:
return ["\nObservation:"]
@property
def llm_prefix(self) -> str:
"""Prefix to append the LLM call with."""
return "Thought:"
class DocstoreExplorer:
"""Class to assist with exploration of a document store."""
def __init__(self, docstore: Docstore):
"""Initialize with a docstore, and set initial document to None."""
self.docstore = docstore
self.document: Optional[Document] = None
self.lookup_str = ""
self.lookup_index = 0
def search(self, term: str) -> str:
"""Search for a term in the docstore, and if found save."""
result = self.docstore.search(term)
if isinstance(result, Document):
self.document = result
return self._summary
else:
self.document = None
return result
def lookup(self, term: str) -> str:
"""Lookup a term in document (if saved)."""
if self.document is None:
raise ValueError("Cannot lookup without a
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/react/base.html
|
be2d2f9483fe-3
|
None:
raise ValueError("Cannot lookup without a successful search first")
if term.lower() != self.lookup_str:
self.lookup_str = term.lower()
self.lookup_index = 0
else:
self.lookup_index += 1
lookups = [p for p in self._paragraphs if self.lookup_str in p.lower()]
if len(lookups) == 0:
return "No Results"
elif self.lookup_index >= len(lookups):
return "No More Results"
else:
result_prefix = f"(Result {self.lookup_index + 1}/{len(lookups)})"
return f"{result_prefix} {lookups[self.lookup_index]}"
@property
def _summary(self) -> str:
return self._paragraphs[0]
@property
def _paragraphs(self) -> List[str]:
if self.document is None:
raise ValueError("Cannot get paragraphs without a document")
return self.document.page_content.split("\n\n")
[docs]class ReActTextWorldAgent(ReActDocstoreAgent):
"""Agent for the ReAct TextWorld chain."""
[docs]
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/react/base.html
|
be2d2f9483fe-4
|
"""Agent for the ReAct TextWorld chain."""
[docs] @classmethod
def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate:
"""Return default prompt."""
return TEXTWORLD_PROMPT
@classmethod
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
if len(tools) != 1:
raise ValueError(f"Exactly one tool must be specified, but got {tools}")
tool_names = {tool.name for tool in tools}
if tool_names != {"Play"}:
raise ValueError(f"Tool name should be Play, got {tool_names}")
[docs]class ReActChain(AgentExecutor):
"""Chain that implements the ReAct paper.
Example:
.. code-block:: python
from langchain import ReActChain, OpenAI
react = ReAct(llm=OpenAI())
"""
def __init__(self, llm: BaseLLM, docstore: Docstore, **kwargs: Any):
"""Initialize with the LLM and a docstore."""
docstore_explorer = DocstoreExplorer(docstore)
tools = [
Tool(
name="Search",
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/react/base.html
|
be2d2f9483fe-5
|
name="Search",
func=docstore_explorer.search,
description="Search for a term in the docstore.",
),
Tool(
name="Lookup",
func=docstore_explorer.lookup,
description="Lookup a term in the docstore.",
),
]
agent = ReActDocstoreAgent.from_llm_and_tools(llm, tools)
super().__init__(agent=agent, tools=tools, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/agents/react/base.html
|
0591b95e1073-0
|
Source code for langchain.utilities.searx_search
"""Utility for using SearxNG meta search API.
SearxNG is a privacy-friendly free metasearch engine that aggregates results from
`multiple search engines
<https://docs.searxng.org/admin/engines/configured_engines.html>`_ and databases and
supports the `OpenSearch
<https://github.com/dewitt/opensearch/blob/master/opensearch-1-1-draft-6.md>`_
specification.
More detailes on the installtion instructions `here. <../../ecosystem/searx.html>`_
For the search API refer to https://docs.searxng.org/dev/search_api.html
Quick Start
-----------
In order to use this utility you need to provide the searx host. This can be done
by passing the named parameter :attr:`searx_host <SearxSearchWrapper.searx_host>`
or exporting the environment variable SEARX_HOST.
Note: this is the only required parameter.
Then create a searx search instance like this:
.. code-block:: python
from langchain.utilities import SearxSearchWrapper
# when the host starts with `http` SSL is disabled and the connection
# is assumed to be on a private network
searx_host='http://self.hosted'
search = SearxSearchWrapper(searx_host=searx_host)
You can now use the ``search`` instance to query the searx API.
Searching
---------
Use the :meth:`run() <SearxSearchWrapper.run>` and
:meth:`results() <SearxSearchWrapper.results>` methods to query the searx API.
Other methods are are available for
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/searx_search.html
|
0591b95e1073-1
|
methods to query the searx API.
Other methods are are available for convenience.
:class:`SearxResults` is a convenience wrapper around the raw json result.
Example usage of the ``run`` method to make a search:
.. code-block:: python
s.run(query="what is the best search engine?")
Engine Parameters
-----------------
You can pass any `accepted searx search API
<https://docs.searxng.org/dev/search_api.html>`_ parameters to the
:py:class:`SearxSearchWrapper` instance.
In the following example we are using the
:attr:`engines <SearxSearchWrapper.engines>` and the ``language`` parameters:
.. code-block:: python
# assuming the searx host is set as above or exported as an env variable
s = SearxSearchWrapper(engines=['google', 'bing'],
language='es')
Search Tips
-----------
Searx offers a special
`search syntax <https://docs.searxng.org/user/index.html#search-syntax>`_
that can also be used instead of passing engine parameters.
For example the following query:
.. code-block:: python
s = SearxSearchWrapper("langchain library", engines=['github'])
# can also be written as:
s = SearxSearchWrapper("langchain library !github")
# or even:
s = SearxSearchWrapper("langchain library !gh")
In some situations you might want to pass an extra string to the
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/searx_search.html
|
0591b95e1073-2
|
library !gh")
In some situations you might want to pass an extra string to the search query.
For example when the `run()` method is called by an agent. The search suffix can
also be used as a way to pass extra parameters to searx or the underlying search
engines.
.. code-block:: python
# select the github engine and pass the search suffix
s = SearchWrapper("langchain library", query_suffix="!gh")
s = SearchWrapper("langchain library")
# select github the conventional google search syntax
s.run("large language models", query_suffix="site:github.com")
*NOTE*: A search suffix can be defined on both the instance and the method level.
The resulting query will be the concatenation of the two with the former taking
precedence.
See `SearxNG Configured Engines
<https://docs.searxng.org/admin/engines/configured_engines.html>`_ and
`SearxNG Search Syntax <https://docs.searxng.org/user/index.html#id1>`_
for more details.
Notes
-----
This wrapper is based on the SearxNG fork https://github.com/searxng/searxng which is
better maintained than the original Searx project and offers more features.
Public searxNG instances often use a rate limiter for API usage, so you might want to
use a self hosted instance and disable the rate limiter.
If you are self-hosting an instance you can customize the rate limiter for your
own network as described `here <https://github.com/searxng/searxng/pull/2129>`_.
For a list of public SearxNG instances see
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/searx_search.html
|
0591b95e1073-3
|
a list of public SearxNG instances see https://searx.space/
"""
import json
from typing import Any, Dict, List, Optional
import aiohttp
import requests
from pydantic import BaseModel, Extra, Field, PrivateAttr, root_validator, validator
from langchain.utils import get_from_dict_or_env
def _get_default_params() -> dict:
return {"language": "en", "format": "json"}
[docs]class SearxResults(dict):
"""Dict like wrapper around search api results."""
_data = ""
def __init__(self, data: str):
"""Take a raw result from Searx and make it into a dict like object."""
json_data = json.loads(data)
super().__init__(json_data)
self.__dict__ = self
def __str__(self) -> str:
"""Text representation of searx result."""
return self._data
@property
def results(self) -> Any:
"""Silence mypy for accessing this field.
:meta private:
"""
return self.get("results")
@property
def answers(self) -> Any:
"""Helper accessor on the json result."""
return self.get("answers")
[docs]class SearxSearchWrapper(BaseModel):
"""Wrapper for Searx API.
To use you need to provide the searx host by passing the named parameter
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/searx_search.html
|
0591b95e1073-4
|
To use you need to provide the searx host by passing the named parameter
``searx_host`` or exporting the environment variable ``SEARX_HOST``.
In some situations you might want to disable SSL verification, for example
if you are running searx locally. You can do this by passing the named parameter
``unsecure``. You can also pass the host url scheme as ``http`` to disable SSL.
Example:
.. code-block:: python
from langchain.utilities import SearxSearchWrapper
searx = SearxSearchWrapper(searx_host="http://localhost:8888")
Example with SSL disabled:
.. code-block:: python
from langchain.utilities import SearxSearchWrapper
# note the unsecure parameter is not needed if you pass the url scheme as
# http
searx = SearxSearchWrapper(searx_host="http://localhost:8888",
unsecure=True)
"""
_result: SearxResults = PrivateAttr()
searx_host: str = ""
unsecure: bool = False
params: dict = Field(default_factory=_get_default_params)
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/searx_search.html
|
0591b95e1073-5
|
bool = False
params: dict = Field(default_factory=_get_default_params)
headers: Optional[dict] = None
engines: Optional[List[str]] = []
categories: Optional[List[str]] = []
query_suffix: Optional[str] = ""
k: int = 10
aiosession: Optional[Any] = None
@validator("unsecure")
def disable_ssl_warnings(cls, v: bool) -> bool:
"""Disable SSL warnings."""
if v:
# requests.urllib3.disable_warnings()
try:
import urllib3
urllib3.disable_warnings()
except ImportError as e:
print(e)
return v
@root_validator()
def validate_params(cls, values: Dict) -> Dict:
"""Validate that custom searx params are merged with default ones."""
user_params = values["params"]
default = _get_default_params()
values["params"] = {**default, **user_params}
engines = values.get("engines")
if engines:
values["params"]["engines"] = ",".join(engines)
categories =
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/searx_search.html
|
0591b95e1073-6
|
= ",".join(engines)
categories = values.get("categories")
if categories:
values["params"]["categories"] = ",".join(categories)
searx_host = get_from_dict_or_env(values, "searx_host", "SEARX_HOST")
if not searx_host.startswith("http"):
print(
f"Warning: missing the url scheme on host \
! assuming secure https://{searx_host} "
)
searx_host = "https://" + searx_host
elif searx_host.startswith("http://"):
values["unsecure"] = True
cls.disable_ssl_warnings(True)
values["searx_host"] = searx_host
return values
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def _searx_api_query(self, params: dict) -> SearxResults:
"""Actual request to searx API."""
raw_result = requests.get(
self.searx_host,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/searx_search.html
|
0591b95e1073-7
|
self.searx_host,
headers=self.headers,
params=params,
verify=not self.unsecure,
)
# test if http result is ok
if not raw_result.ok:
raise ValueError("Searx API returned an error: ", raw_result.text)
res = SearxResults(raw_result.text)
self._result = res
return res
async def _asearx_api_query(self, params: dict) -> SearxResults:
if not self.aiosession:
async with aiohttp.ClientSession() as session:
async with session.get(
self.searx_host,
headers=self.headers,
params=params,
ssl=(lambda: False if self.unsecure else None)(),
) as response:
if not response.ok:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/searx_search.html
|
0591b95e1073-8
|
not response.ok:
raise ValueError("Searx API returned an error: ", response.text)
result = SearxResults(await response.text())
self._result = result
else:
async with self.aiosession.get(
self.searx_host,
headers=self.headers,
params=params,
verify=not self.unsecure,
) as response:
if not response.ok:
raise ValueError("Searx API returned an error: ", response.text)
result = SearxResults(await response.text())
self._result = result
return result
[docs] def run(
self,
query: str,
engines: Optional[List[str]] = None,
categories: Optional[List[str]] = None,
query_suffix:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/searx_search.html
|
0591b95e1073-9
|
categories: Optional[List[str]] = None,
query_suffix: Optional[str] = "",
**kwargs: Any,
) -> str:
"""Run query through Searx API and parse results.
You can pass any other params to the searx query API.
Args:
query: The query to search for.
query_suffix: Extra suffix appended to the query.
engines: List of engines to use for the query.
categories: List of categories to use for the query.
**kwargs: extra parameters to pass to the searx API.
Returns:
str: The result of the query.
Raises:
ValueError: If an error occured with the query.
Example:
This will make a query to the qwant engine:
.. code-block:: python
from langchain.utilities import SearxSearchWrapper
searx = SearxSearchWrapper(searx_host="http://my.searx.host")
searx.run("what is the weather in France ?",
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/searx_search.html
|
0591b95e1073-10
|
searx.run("what is the weather in France ?", engine="qwant")
# the same result can be achieved using the `!` syntax of searx
# to select the engine using `query_suffix`
searx.run("what is the weather in France ?", query_suffix="!qwant")
"""
_params = {
"q": query,
}
params = {**self.params, **_params, **kwargs}
if self.query_suffix and len(self.query_suffix) > 0:
params["q"] += " " + self.query_suffix
if isinstance(query_suffix, str) and len(query_suffix) > 0:
params["q"] += " " + query_suffix
if isinstance(engines, list) and len(engines) > 0:
params["engines"] = ",".join(engines)
if isinstance(categories, list) and len(categories) > 0:
params["categories"] = ",".join(categories)
res = self._searx_api_query(params)
if len(res.answers) > 0:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/searx_search.html
|
0591b95e1073-11
|
if len(res.answers) > 0:
toret = res.answers[0]
# only return the content of the results list
elif len(res.results) > 0:
toret = "\n\n".join([r.get("content", "") for r in res.results[: self.k]])
else:
toret = "No good search result found"
return toret
[docs] async def arun(
self,
query: str,
engines: Optional[List[str]] = None,
query_suffix: Optional[str] = "",
**kwargs: Any,
) -> str:
"""Asynchronously version of `run`."""
_params = {
"q": query,
}
params = {**self.params, **_params, **kwargs}
if self.query_suffix and len(self.query_suffix) > 0:
params["q"] += " " + self.query_suffix
if isinstance(query_suffix, str) and len(query_suffix) > 0:
params["q"] += " " + query_suffix
if isinstance(engines, list)
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/searx_search.html
|
0591b95e1073-12
|
" + query_suffix
if isinstance(engines, list) and len(engines) > 0:
params["engines"] = ",".join(engines)
res = await self._asearx_api_query(params)
if len(res.answers) > 0:
toret = res.answers[0]
# only return the content of the results list
elif len(res.results) > 0:
toret = "\n\n".join([r.get("content", "") for r in res.results[: self.k]])
else:
toret = "No good search result found"
return toret
[docs] def results(
self,
query: str,
num_results: int,
engines: Optional[List[str]] = None,
categories: Optional[List[str]] = None,
query_suffix: Optional[str] = "",
**kwargs: Any,
) -> List[Dict]:
"""Run query through Searx API and returns the results with metadata.
Args:
query: The query to search for.
query_suffix: Extra suffix appended to the query.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/searx_search.html
|
0591b95e1073-13
|
query_suffix: Extra suffix appended to the query.
num_results: Limit the number of results to return.
engines: List of engines to use for the query.
categories: List of categories to use for the query.
**kwargs: extra parameters to pass to the searx API.
Returns:
Dict with the following keys:
{
snippet: The description of the result.
title: The title of the result.
link: The link to the result.
engines: The engines used for the result.
category: Searx category of the result.
}
"""
_params = {
"q": query,
}
params = {**self.params, **_params, **kwargs}
if self.query_suffix and len(self.query_suffix) > 0:
params["q"] += " " + self.query_suffix
if isinstance(query_suffix, str)
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/searx_search.html
|
0591b95e1073-14
|
" + self.query_suffix
if isinstance(query_suffix, str) and len(query_suffix) > 0:
params["q"] += " " + query_suffix
if isinstance(engines, list) and len(engines) > 0:
params["engines"] = ",".join(engines)
if isinstance(categories, list) and len(categories) > 0:
params["categories"] = ",".join(categories)
results = self._searx_api_query(params).results[:num_results]
if len(results) == 0:
return [{"Result": "No good Search Result was found"}]
return [
{
"snippet": result.get("content", ""),
"title": result["title"],
"link": result["url"],
"engines": result["engines"],
"category": result["category"],
}
for result in results
]
[docs] async def aresults(
self,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/searx_search.html
|
0591b95e1073-15
|
async def aresults(
self,
query: str,
num_results: int,
engines: Optional[List[str]] = None,
query_suffix: Optional[str] = "",
**kwargs: Any,
) -> List[Dict]:
"""Asynchronously query with json results.
Uses aiohttp. See `results` for more info.
"""
_params = {
"q": query,
}
params = {**self.params, **_params, **kwargs}
if self.query_suffix and len(self.query_suffix) > 0:
params["q"] += " " + self.query_suffix
if isinstance(query_suffix, str) and len(query_suffix) > 0:
params["q"] += " " + query_suffix
if isinstance(engines, list) and len(engines) > 0:
params["engines"] = ",".join(engines)
results = (await self._asearx_api_query(params)).results[:num_results]
if len(results) == 0:
return [{"Result": "No good Search Result was found"}]
return [
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/searx_search.html
|
0591b95e1073-16
|
"No good Search Result was found"}]
return [
{
"snippet": result.get("content", ""),
"title": result["title"],
"link": result["url"],
"engines": result["engines"],
"category": result["category"],
}
for result in results
]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/searx_search.html
|
0fe667826214-0
|
Source code for langchain.utilities.serpapi
"""Chain that calls SerpAPI.
Heavily borrowed from https://github.com/ofirpress/self-ask
"""
import os
import sys
from typing import Any, Dict, Optional, Tuple
import aiohttp
from pydantic import BaseModel, Extra, Field, root_validator
from langchain.utils import get_from_dict_or_env
class HiddenPrints:
"""Context manager to hide prints."""
def __enter__(self) -> None:
"""Open file to pipe stdout to."""
self._original_stdout = sys.stdout
sys.stdout = open(os.devnull, "w")
def __exit__(self, *_: Any) -> None:
"""Close file that stdout was piped to."""
sys.stdout.close()
sys.stdout = self._original_stdout
[docs]class SerpAPIWrapper(BaseModel):
"""Wrapper around SerpAPI.
To use, you should have the ``google-search-results`` python package installed,
and the environment variable ``SERPAPI_API_KEY`` set with your API key, or pass
`serpapi_api_key` as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain import SerpAPIWrapper
serpapi = SerpAPIWrapper()
"""
search_engine: Any #: :meta private:
params: dict = Field(
default={
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/serpapi.html
|
0fe667826214-1
|
default={
"engine": "google",
"google_domain": "google.com",
"gl": "us",
"hl": "en",
}
)
serpapi_api_key: Optional[str] = None
aiosession: Optional[aiohttp.ClientSession] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
serpapi_api_key = get_from_dict_or_env(
values, "serpapi_api_key", "SERPAPI_API_KEY"
)
values["serpapi_api_key"] = serpapi_api_key
try:
from serpapi import GoogleSearch
values["search_engine"] = GoogleSearch
except ImportError:
raise ValueError(
"Could not import serpapi python package. "
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/serpapi.html
|
0fe667826214-2
|
python package. "
"Please install it with `pip install google-search-results`."
)
return values
[docs] async def arun(self, query: str) -> str:
"""Use aiohttp to run query through SerpAPI and parse result."""
def construct_url_and_params() -> Tuple[str, Dict[str, str]]:
params = self.get_params(query)
params["source"] = "python"
if self.serpapi_api_key:
params["serp_api_key"] = self.serpapi_api_key
params["output"] = "json"
url = "https://serpapi.com/search"
return url, params
url, params = construct_url_and_params()
if not self.aiosession:
async with aiohttp.ClientSession() as session:
async with session.get(url, params=params) as response:
res = await response.json()
else:
async with self.aiosession.get(url, params=params) as response:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/serpapi.html
|
0fe667826214-3
|
async with self.aiosession.get(url, params=params) as response:
res = await response.json()
return self._process_response(res)
[docs] def run(self, query: str) -> str:
"""Run query through SerpAPI and parse result."""
return self._process_response(self.results(query))
[docs] def results(self, query: str) -> dict:
"""Run query through SerpAPI and return the raw result."""
params = self.get_params(query)
with HiddenPrints():
search = self.search_engine(params)
res = search.get_dict()
return res
[docs] def get_params(self, query: str) -> Dict[str, str]:
"""Get parameters for SerpAPI."""
_params = {
"api_key": self.serpapi_api_key,
"q": query,
}
params = {**self.params, **_params}
return params
@staticmethod
def _process_response(res: dict) -> str:
"""Process response from SerpAPI."""
if "error" in res.keys():
raise ValueError(f"Got error
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/serpapi.html
|
0fe667826214-4
|
res.keys():
raise ValueError(f"Got error from SerpAPI: {res['error']}")
if "answer_box" in res.keys() and "answer" in res["answer_box"].keys():
toret = res["answer_box"]["answer"]
elif "answer_box" in res.keys() and "snippet" in res["answer_box"].keys():
toret = res["answer_box"]["snippet"]
elif (
"answer_box" in res.keys()
and "snippet_highlighted_words" in res["answer_box"].keys()
):
toret = res["answer_box"]["snippet_highlighted_words"][0]
elif (
"sports_results" in res.keys()
and "game_spotlight" in res["sports_results"].keys()
):
toret = res["sports_results"]["game_spotlight"]
elif (
"knowledge_graph" in res.keys()
and "description" in res["knowledge_graph"].keys()
):
toret = res["knowledge_graph"]["description"]
elif "snippet" in
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/serpapi.html
|
0fe667826214-5
|
= res["knowledge_graph"]["description"]
elif "snippet" in res["organic_results"][0].keys():
toret = res["organic_results"][0]["snippet"]
else:
toret = "No good search result found"
return toret
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/utilities/serpapi.html
|
478ff309f542-0
|
Source code for langchain.vectorstores.opensearch_vector_search
"""Wrapper around OpenSearch vector database."""
from __future__ import annotations
import uuid
from typing import Any, Dict, Iterable, List, Optional
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores.base import VectorStore
IMPORT_OPENSEARCH_PY_ERROR = (
"Could not import OpenSearch. Please install it with `pip install opensearch-py`."
)
SCRIPT_SCORING_SEARCH = "script_scoring"
PAINLESS_SCRIPTING_SEARCH = "painless_scripting"
MATCH_ALL_QUERY = {"match_all": {}} # type: Dict
def _import_opensearch() -> Any:
"""Import OpenSearch if available, otherwise raise error."""
try:
from opensearchpy import OpenSearch
except ImportError:
raise ValueError(IMPORT_OPENSEARCH_PY_ERROR)
return OpenSearch
def _import_bulk() -> Any:
"""Import bulk if available, otherwise raise error."""
try:
from opensearchpy.helpers import bulk
except ImportError:
raise ValueError(IMPORT_OPENSEARCH_PY_ERROR)
return bulk
def _get_opensearch_client(opensearch_url: str, **kwargs: Any) -> Any:
"""Get OpenSearch client from the opensearch_url, otherwise raise error."""
try:
opensearch = _import_opensearch()
client = opensearch(opensearch_url, **kwargs)
except ValueError as e:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
478ff309f542-1
|
**kwargs)
except ValueError as e:
raise ValueError(
f"OpenSearch client string provided is not in proper format. "
f"Got error: {e} "
)
return client
def _validate_embeddings_and_bulk_size(embeddings_length: int, bulk_size: int) -> None:
"""Validate Embeddings Length and Bulk Size."""
if embeddings_length == 0:
raise RuntimeError("Embeddings size is zero")
if bulk_size < embeddings_length:
raise RuntimeError(
f"The embeddings count, {embeddings_length} is more than the "
f"[bulk_size], {bulk_size}. Increase the value of [bulk_size]."
)
def _bulk_ingest_embeddings(
client: Any,
index_name: str,
embeddings: List[List[float]],
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
vector_field: str = "vector_field",
text_field: str = "text",
) -> List[str]:
"""Bulk Ingest Embeddings into given index."""
bulk = _import_bulk()
requests = []
ids = []
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
_id = str(uuid.uuid4())
request = {
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
478ff309f542-2
|
str(uuid.uuid4())
request = {
"_op_type": "index",
"_index": index_name,
vector_field: embeddings[i],
text_field: text,
"metadata": metadata,
"_id": _id,
}
requests.append(request)
ids.append(_id)
bulk(client, requests)
client.indices.refresh(index=index_name)
return ids
def _default_scripting_text_mapping(
dim: int,
vector_field: str = "vector_field",
) -> Dict:
"""For Painless Scripting or Script Scoring,the default mapping to create index."""
return {
"mappings": {
"properties": {
vector_field: {"type": "knn_vector", "dimension": dim},
}
}
}
def _default_text_mapping(
dim: int,
engine: str = "nmslib",
space_type: str = "l2",
ef_search: int = 512,
ef_construction: int = 512,
m: int = 16,
vector_field: str = "vector_field",
) -> Dict:
"""For
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
478ff309f542-3
|
vector_field: str = "vector_field",
) -> Dict:
"""For Approximate k-NN Search, this is the default mapping to create index."""
return {
"settings": {"index": {"knn": True, "knn.algo_param.ef_search": ef_search}},
"mappings": {
"properties": {
vector_field: {
"type": "knn_vector",
"dimension": dim,
"method": {
"name": "hnsw",
"space_type": space_type,
"engine": engine,
"parameters": {"ef_construction": ef_construction, "m": m},
},
}
}
},
}
def _default_approximate_search_query(
query_vector: List[float],
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
478ff309f542-4
|
_default_approximate_search_query(
query_vector: List[float],
size: int = 4,
k: int = 4,
vector_field: str = "vector_field",
) -> Dict:
"""For Approximate k-NN Search, this is the default query."""
return {
"size": size,
"query": {"knn": {vector_field: {"vector": query_vector, "k": k}}},
}
def _default_script_query(
query_vector: List[float],
space_type: str = "l2",
pre_filter: Dict = MATCH_ALL_QUERY,
vector_field: str = "vector_field",
) -> Dict:
"""For Script Scoring Search, this is the default query."""
return {
"query": {
"script_score": {
"query": pre_filter,
"script": {
"source": "knn_score",
"lang": "knn",
"params": {
"field": vector_field,
"query_value": query_vector,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
478ff309f542-5
|
"query_value": query_vector,
"space_type": space_type,
},
},
}
}
}
def __get_painless_scripting_source(
space_type: str, query_vector: List[float], vector_field: str = "vector_field"
) -> str:
"""For Painless Scripting, it returns the script source based on space type."""
source_value = (
"(1.0 + "
+ space_type
+ "("
+ str(query_vector)
+ ", doc['"
+ vector_field
+ "']))"
)
if space_type == "cosineSimilarity":
return source_value
else:
return "1/" + source_value
def _default_painless_scripting_query(
query_vector: List[float],
space_type: str = "l2Squared",
pre_filter: Dict = MATCH_ALL_QUERY,
vector_field: str = "vector_field",
) -> Dict:
"""For Painless Scripting Search, this is the default query."""
source = __get_painless_scripting_source(space_type, query_vector)
return {
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
478ff309f542-6
|
__get_painless_scripting_source(space_type, query_vector)
return {
"query": {
"script_score": {
"query": pre_filter,
"script": {
"source": source,
"params": {
"field": vector_field,
"query_value": query_vector,
},
},
}
}
}
def _get_kwargs_value(kwargs: Any, key: str, default_value: Any) -> Any:
"""Get the value of the key if present. Else get the default_value."""
if key in kwargs:
return kwargs.get(key)
return default_value
[docs]class OpenSearchVectorSearch(VectorStore):
"""Wrapper around OpenSearch as a vector database.
Example:
.. code-block:: python
from langchain import OpenSearchVectorSearch
opensearch_vector_search =
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
478ff309f542-7
|
opensearch_vector_search = OpenSearchVectorSearch(
"http://localhost:9200",
"embeddings",
embedding_function
)
"""
def __init__(
self,
opensearch_url: str,
index_name: str,
embedding_function: Embeddings,
**kwargs: Any,
):
"""Initialize with necessary components."""
self.embedding_function = embedding_function
self.index_name = index_name
self.client = _get_opensearch_client(opensearch_url, **kwargs)
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
bulk_size: int = 500,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
478ff309f542-8
|
metadatas: Optional list of metadatas associated with the texts.
bulk_size: Bulk API request count; Default: 500
Returns:
List of ids from adding the texts into the vectorstore.
Optional Args:
vector_field: Document field embeddings are stored in. Defaults to
"vector_field".
text_field: Document field the text of the document is stored in. Defaults
to "text".
"""
embeddings = self.embedding_function.embed_documents(list(texts))
_validate_embeddings_and_bulk_size(len(embeddings), bulk_size)
vector_field = _get_kwargs_value(kwargs, "vector_field", "vector_field")
text_field = _get_kwargs_value(kwargs, "text_field", "text")
return _bulk_ingest_embeddings(
self.client,
self.index_name,
embeddings,
texts,
metadatas,
vector_field,
text_field,
)
[docs] def similarity_search(
self, query:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
478ff309f542-9
|
def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query.
By default supports Approximate Search.
Also supports Script Scoring and Painless Scripting.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query.
Optional Args:
vector_field: Document field embeddings are stored in. Defaults to
"vector_field".
text_field: Document field the text of the document is stored in. Defaults
to "text".
metadata_field: Document field that metadata is stored in. Defaults to
"metadata".
Can be set to a special value "*" to include the entire document.
Optional Args for Approximate Search:
search_type: "approximate_search"; default: "approximate_search"
size: number of results the query actually returns; default: 4
Optional
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
478ff309f542-10
|
of results the query actually returns; default: 4
Optional Args for Script Scoring Search:
search_type: "script_scoring"; default: "approximate_search"
space_type: "l2", "l1", "linf", "cosinesimil", "innerproduct",
"hammingbit"; default: "l2"
pre_filter: script_score query to pre-filter documents before identifying
nearest neighbors; default: {"match_all": {}}
Optional Args for Painless Scripting Search:
search_type: "painless_scripting"; default: "approximate_search"
space_type: "l2Squared", "l1Norm", "cosineSimilarity"; default: "l2Squared"
pre_filter: script_score query to pre-filter documents before identifying
nearest neighbors; default: {"match_all": {}}
"""
embedding = self.embedding_function.embed_query(query)
search_type = _get_kwargs_value(kwargs, "search_type", "approximate_search")
text_field = _get_kwargs_value(kwargs, "text_field", "text")
metadata_field = _get_kwargs_value(kwargs, "metadata_field", "metadata")
vector_field = _get_kwargs_value(kwargs, "vector_field",
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
478ff309f542-11
|
vector_field = _get_kwargs_value(kwargs, "vector_field", "vector_field")
if search_type == "approximate_search":
size = _get_kwargs_value(kwargs, "size", 4)
search_query = _default_approximate_search_query(
embedding, size, k, vector_field
)
elif search_type == SCRIPT_SCORING_SEARCH:
space_type = _get_kwargs_value(kwargs, "space_type", "l2")
pre_filter = _get_kwargs_value(kwargs, "pre_filter", MATCH_ALL_QUERY)
search_query = _default_script_query(
embedding, space_type, pre_filter, vector_field
)
elif search_type == PAINLESS_SCRIPTING_SEARCH:
space_type = _get_kwargs_value(kwargs, "space_type", "l2Squared")
pre_filter = _get_kwargs_value(kwargs, "pre_filter", MATCH_ALL_QUERY)
search_query = _default_painless_scripting_query(
embedding, space_type, pre_filter, vector_field
)
else:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
478ff309f542-12
|
)
else:
raise ValueError("Invalid `search_type` provided as an argument")
response = self.client.search(index=self.index_name, body=search_query)
hits = [hit["_source"] for hit in response["hits"]["hits"][:k]]
documents = [
Document(
page_content=hit[text_field],
metadata=hit
if metadata_field == "*" or metadata_field not in hit
else hit[metadata_field],
)
for hit in hits
]
return documents
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
bulk_size: int = 500,
**kwargs: Any,
) -> OpenSearchVectorSearch:
"""Construct OpenSearchVectorSearch wrapper from raw documents.
Example:
.. code-block:: python
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
478ff309f542-13
|
.. code-block:: python
from langchain import OpenSearchVectorSearch
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
opensearch_vector_search = OpenSearchVectorSearch.from_texts(
texts,
embeddings,
opensearch_url="http://localhost:9200"
)
OpenSearch by default supports Approximate Search powered by nmslib, faiss
and lucene engines recommended for large datasets. Also supports brute force
search through Script Scoring and Painless Scripting.
Optional Args:
vector_field: Document field embeddings are stored in. Defaults to
"vector_field".
text_field: Document field the text of the document is stored in. Defaults
to "text".
Optional Keyword Args for Approximate Search:
engine: "nmslib", "faiss", "hnsw"; default:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
478ff309f542-14
|
engine: "nmslib", "faiss", "hnsw"; default: "nmslib"
space_type: "l2", "l1", "cosinesimil", "linf", "innerproduct"; default: "l2"
ef_search: Size of the dynamic list used during k-NN searches. Higher values
lead to more accurate but slower searches; default: 512
ef_construction: Size of the dynamic list used during k-NN graph creation.
Higher values lead to more accurate graph but slower indexing speed;
default: 512
m: Number of bidirectional links created for each new element. Large impact
on memory consumption. Between 2 and 100; default: 16
Keyword Args for Script Scoring or Painless Scripting:
is_appx_search: False
"""
opensearch_url = get_from_dict_or_env(
kwargs, "opensearch_url", "OPENSEARCH_URL"
)
client = _get_opensearch_client(opensearch_url)
embeddings = embedding.embed_documents(texts)
_validate_embeddings_and_bulk_size(len(embeddings), bulk_size)
dim
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
478ff309f542-15
|
bulk_size)
dim = len(embeddings[0])
# Get the index name from either from kwargs or ENV Variable
# before falling back to random generation
index_name = get_from_dict_or_env(
kwargs, "index_name", "OPENSEARCH_INDEX_NAME", default=uuid.uuid4().hex
)
is_appx_search = _get_kwargs_value(kwargs, "is_appx_search", True)
vector_field = _get_kwargs_value(kwargs, "vector_field", "vector_field")
text_field = _get_kwargs_value(kwargs, "text_field", "text")
if is_appx_search:
engine = _get_kwargs_value(kwargs, "engine", "nmslib")
space_type = _get_kwargs_value(kwargs, "space_type", "l2")
ef_search = _get_kwargs_value(kwargs, "ef_search", 512)
ef_construction = _get_kwargs_value(kwargs, "ef_construction", 512)
m = _get_kwargs_value(kwargs, "m", 16)
mapping = _default_text_mapping(
dim, engine, space_type, ef_search, ef_construction, m, vector_field
)
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
478ff309f542-16
|
vector_field
)
else:
mapping = _default_scripting_text_mapping(dim)
client.indices.create(index=index_name, body=mapping)
_bulk_ingest_embeddings(
client, index_name, embeddings, texts, metadatas, vector_field, text_field
)
return cls(opensearch_url, index_name, embedding)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.