id
stringlengths 14
16
| text
stringlengths 29
2.31k
| source
stringlengths 57
122
|
---|---|---|
659f8d0d5ef6-0
|
Source code for langchain.vectorstores.faiss
"""Wrapper around FAISS vector database."""
from __future__ import annotations
import pickle
import uuid
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
import numpy as np
from langchain.docstore.base import AddableMixin, Docstore
from langchain.docstore.document import Document
from langchain.docstore.in_memory import InMemoryDocstore
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.utils import maximal_marginal_relevance
def dependable_faiss_import() -> Any:
"""Import faiss if available, otherwise raise error."""
try:
import faiss
except ImportError:
raise ValueError(
"Could not import faiss python package. "
"Please install it with `pip install faiss` "
"or `pip install faiss-cpu` (depending on Python version)."
)
return faiss
[docs]class FAISS(VectorStore):
"""Wrapper around FAISS vector database.
To use, you should have the ``faiss`` python package installed.
Example:
.. code-block:: python
from langchain import FAISS
faiss = FAISS(embedding_function, index, docstore, index_to_docstore_id)
"""
def __init__(
self,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
|
659f8d0d5ef6-1
|
def __init__(
self,
embedding_function: Callable,
index: Any,
docstore: Docstore,
index_to_docstore_id: Dict[int, str],
):
"""Initialize with necessary components."""
self.embedding_function = embedding_function
self.index = index
self.docstore = docstore
self.index_to_docstore_id = index_to_docstore_id
def __add(
self,
texts: Iterable[str],
embeddings: Iterable[List[float]],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
if not isinstance(self.docstore, AddableMixin):
raise ValueError(
"If trying to add texts, the underlying docstore should support "
f"adding items, which {self.docstore} does not"
)
documents = []
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
documents.append(Document(page_content=text, metadata=metadata))
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
|
659f8d0d5ef6-2
|
documents.append(Document(page_content=text, metadata=metadata))
# Add to the index, the index_to_id mapping, and the docstore.
starting_len = len(self.index_to_docstore_id)
self.index.add(np.array(embeddings, dtype=np.float32))
# Get list of index, id, and docs.
full_info = [
(starting_len + i, str(uuid.uuid4()), doc)
for i, doc in enumerate(documents)
]
# Add information to docstore and index.
self.docstore.add({_id: doc for _, _id, doc in full_info})
index_to_id = {index: _id for index, _id, _ in full_info}
self.index_to_docstore_id.update(index_to_id)
return [_id for _, _id, _ in full_info]
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
|
659f8d0d5ef6-3
|
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
Returns:
List of ids from adding the texts into the vectorstore.
"""
if not isinstance(self.docstore, AddableMixin):
raise ValueError(
"If trying to add texts, the underlying docstore should support "
f"adding items, which {self.docstore} does not"
)
# Embed and create the documents.
embeddings = [self.embedding_function(text) for text in texts]
return self.__add(texts, embeddings, metadatas, **kwargs)
[docs] def add_embeddings(
self,
text_embeddings: Iterable[Tuple[str, List[float]]],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
text_embeddings: Iterable pairs of string and embedding to
add to the vectorstore.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
|
659f8d0d5ef6-4
|
add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
Returns:
List of ids from adding the texts into the vectorstore.
"""
if not isinstance(self.docstore, AddableMixin):
raise ValueError(
"If trying to add texts, the underlying docstore should support "
f"adding items, which {self.docstore} does not"
)
# Embed and create the documents.
texts = [te[0] for te in text_embeddings]
embeddings = [te[1] for te in text_embeddings]
return self.__add(texts, embeddings, metadatas, **kwargs)
[docs] def similarity_search_with_score_by_vector(
self, embedding: List[float], k: int = 4
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query and
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
|
659f8d0d5ef6-5
|
List of Documents most similar to the query and score for each
"""
scores, indices = self.index.search(np.array([embedding], dtype=np.float32), k)
docs = []
for j, i in enumerate(indices[0]):
if i == -1:
# This happens when not enough docs are returned.
continue
_id = self.index_to_docstore_id[i]
doc = self.docstore.search(_id)
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {_id}, got {doc}")
docs.append((doc, scores[0][j]))
return docs
[docs] def similarity_search_with_score(
self, query: str, k: int = 4
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
|
659f8d0d5ef6-6
|
Returns:
List of Documents most similar to the query and score for each
"""
embedding = self.embedding_function(query)
docs = self.similarity_search_with_score_by_vector(embedding, k)
return docs
[docs] def similarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the embedding.
"""
docs_and_scores = self.similarity_search_with_score_by_vector(embedding, k)
return [doc for doc, _ in docs_and_scores]
[docs] def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
|
659f8d0d5ef6-7
|
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query.
"""
docs_and_scores = self.similarity_search_with_score(query, k)
return [doc for doc, _ in docs_and_scores]
[docs] def max_marginal_relevance_search_by_vector(
self, embedding: List[float], k: int = 4, fetch_k: int = 20
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
Returns:
List of Documents selected by maximal marginal relevance.
"""
_, indices = self.index.search(np.array([embedding], dtype=np.float32), fetch_k)
# -1 happens when not enough docs are returned.
embeddings = [self.index.reconstruct(int(i)) for i in indices[0] if i != -1]
mmr_selected
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
|
659f8d0d5ef6-8
|
indices[0] if i != -1]
mmr_selected = maximal_marginal_relevance(
np.array([embedding], dtype=np.float32), embeddings, k=k
)
selected_indices = [indices[0][i] for i in mmr_selected]
docs = []
for i in selected_indices:
if i == -1:
# This happens when not enough docs are returned.
continue
_id = self.index_to_docstore_id[i]
doc = self.docstore.search(_id)
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {_id}, got {doc}")
docs.append(doc)
return docs
[docs] def max_marginal_relevance_search(
self, query: str, k: int = 4, fetch_k: int = 20
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
|
659f8d0d5ef6-9
|
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
Returns:
List of Documents selected by maximal marginal relevance.
"""
embedding = self.embedding_function(query)
docs = self.max_marginal_relevance_search_by_vector(embedding, k, fetch_k)
return docs
[docs] def merge_from(self, target: FAISS) -> None:
"""Merge another FAISS object with the current one.
Add the target FAISS to the current one.
Args:
target: FAISS object you wish to merge into the current one
Returns:
None.
"""
if not isinstance(self.docstore, AddableMixin):
raise ValueError("Cannot merge with this type of docstore")
# Numerical index for target docs are incremental on existing ones
starting_len = len(self.index_to_docstore_id)
# Merge two IndexFlatL2
self.index.merge_from(target.index)
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
|
659f8d0d5ef6-10
|
IndexFlatL2
self.index.merge_from(target.index)
# Create new id for docs from target FAISS object
full_info = []
for i in target.index_to_docstore_id:
doc = target.docstore.search(target.index_to_docstore_id[i])
if not isinstance(doc, Document):
raise ValueError("Document should be returned")
full_info.append((starting_len + i, str(uuid.uuid4()), doc))
# Add information to docstore and index_to_docstore_id.
self.docstore.add({_id: doc for _, _id, doc in full_info})
index_to_id = {index: _id for index, _id, _ in full_info}
self.index_to_docstore_id.update(index_to_id)
@classmethod
def __from(
cls,
texts: List[str],
embeddings: List[List[float]],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> FAISS:
faiss = dependable_faiss_import()
index = faiss.IndexFlatL2(len(embeddings[0]))
index.add(np.array(embeddings,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
|
659f8d0d5ef6-11
|
index.add(np.array(embeddings, dtype=np.float32))
documents = []
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
documents.append(Document(page_content=text, metadata=metadata))
index_to_id = {i: str(uuid.uuid4()) for i in range(len(documents))}
docstore = InMemoryDocstore(
{index_to_id[i]: doc for i, doc in enumerate(documents)}
)
return cls(embedding.embed_query, index, docstore, index_to_id)
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> FAISS:
"""Construct FAISS wrapper from raw documents.
This is a user friendly interface that:
1. Embeds documents.
2. Creates an in memory docstore
3. Initializes the FAISS database
This is intended to be a quick way to get started.
Example:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
|
659f8d0d5ef6-12
|
be a quick way to get started.
Example:
.. code-block:: python
from langchain import FAISS
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
faiss = FAISS.from_texts(texts, embeddings)
"""
embeddings = embedding.embed_documents(texts)
return cls.__from(texts, embeddings, embedding, metadatas, **kwargs)
[docs] @classmethod
def from_embeddings(
cls,
text_embeddings: List[Tuple[str, List[float]]],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> FAISS:
"""Construct FAISS wrapper from raw documents.
This is a user friendly interface that:
1. Embeds documents.
2. Creates an in memory docstore
3. Initializes the FAISS database
This is intended to be a quick way to get started.
Example:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
|
659f8d0d5ef6-13
|
get started.
Example:
.. code-block:: python
from langchain import FAISS
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
faiss = FAISS.from_texts(texts, embeddings)
"""
texts = [t[0] for t in text_embeddings]
embeddings = [t[1] for t in text_embeddings]
return cls.__from(texts, embeddings, embedding, metadatas, **kwargs)
[docs] def save_local(self, folder_path: str, index_name: str = "index") -> None:
"""Save FAISS index, docstore, and index_to_docstore_id to disk.
Args:
folder_path: folder path to save index, docstore,
and index_to_docstore_id to.
index_name: for saving with a specific index file name
"""
path = Path(folder_path)
path.mkdir(exist_ok=True, parents=True)
# save index separately since it is not picklable
faiss =
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
|
659f8d0d5ef6-14
|
index separately since it is not picklable
faiss = dependable_faiss_import()
faiss.write_index(
self.index, str(path / "{index_name}.faiss".format(index_name=index_name))
)
# save docstore and index_to_docstore_id
with open(path / "{index_name}.pkl".format(index_name=index_name), "wb") as f:
pickle.dump((self.docstore, self.index_to_docstore_id), f)
[docs] @classmethod
def load_local(
cls, folder_path: str, embeddings: Embeddings, index_name: str = "index"
) -> FAISS:
"""Load FAISS index, docstore, and index_to_docstore_id to disk.
Args:
folder_path: folder path to load index, docstore,
and index_to_docstore_id from.
embeddings: Embeddings to use when generating queries
index_name: for saving with a specific index file name
"""
path = Path(folder_path)
# load index separately since it is not picklable
faiss = dependable_faiss_import()
index = faiss.read_index(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
|
659f8d0d5ef6-15
|
index = faiss.read_index(
str(path / "{index_name}.faiss".format(index_name=index_name))
)
# load docstore and index_to_docstore_id
with open(path / "{index_name}.pkl".format(index_name=index_name), "rb") as f:
docstore, index_to_docstore_id = pickle.load(f)
return cls(embeddings.embed_query, index, docstore, index_to_docstore_id)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
|
f07dd1af27f7-0
|
Source code for langchain.vectorstores.atlas
"""Wrapper around Atlas by Nomic."""
from __future__ import annotations
import logging
import uuid
from typing import Any, Iterable, List, Optional, Type
import numpy as np
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
logger = logging.getLogger()
[docs]class AtlasDB(VectorStore):
"""Wrapper around Atlas: Nomic's neural database and rhizomatic instrument.
To use, you should have the ``nomic`` python package installed.
Example:
.. code-block:: python
from langchain.vectorstores import AtlasDB
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
vectorstore = AtlasDB("my_project", embeddings.embed_query)
"""
_ATLAS_DEFAULT_ID_FIELD = "atlas_id"
def __init__(
self,
name: str,
embedding_function: Optional[Embeddings] = None,
api_key: Optional[str] = None,
description: str = "A description for your project",
is_public: bool = True,
reset_project_if_exists: bool = False,
) -> None:
"""
Initialize
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
|
f07dd1af27f7-1
|
) -> None:
"""
Initialize the Atlas Client
Args:
name (str): The name of your project. If the project already exists,
it will be loaded.
embedding_function (Optional[Callable]): An optional function used for
embedding your data. If None, data will be embedded with
Nomic's embed model.
api_key (str): Your nomic API key
description (str): A description for your project.
is_public (bool): Whether your project is publicly accessible.
True by default.
reset_project_if_exists (bool): Whether to reset this project if it
already exists. Default False.
Generally userful during development and testing.
"""
try:
import nomic
from nomic import AtlasProject
except ImportError:
raise ValueError(
"Could not
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
|
f07dd1af27f7-2
|
ValueError(
"Could not import nomic python package. "
"Please install it with `pip install nomic`."
)
if api_key is None:
raise ValueError("No API key provided. Sign up at atlas.nomic.ai!")
nomic.login(api_key)
self._embedding_function = embedding_function
modality = "text"
if self._embedding_function is not None:
modality = "embedding"
# Check if the project exists, create it if not
self.project = AtlasProject(
name=name,
description=description,
modality=modality,
is_public=is_public,
reset_project_if_exists=reset_project_if_exists,
unique_id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD,
)
self.project._latest_project_state()
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
|
f07dd1af27f7-3
|
Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
refresh: bool = True,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts (Iterable[str]): Texts to add to the vectorstore.
metadatas (Optional[List[dict]], optional): Optional list of metadatas.
ids (Optional[List[str]]): An optional list of ids.
refresh(bool): Whether or not to refresh indices with the updated data.
Default True.
Returns:
List[str]: List of IDs of the added texts.
"""
if (
metadatas is not None
and len(metadatas) > 0
and "text" in metadatas[0].keys()
):
raise ValueError("Cannot accept key text in metadata!")
texts = list(texts)
if ids is None:
ids = [str(uuid.uuid1()) for _ in texts]
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
|
f07dd1af27f7-4
|
ids = [str(uuid.uuid1()) for _ in texts]
# Embedding upload case
if self._embedding_function is not None:
_embeddings = self._embedding_function.embed_documents(texts)
embeddings = np.stack(_embeddings)
if metadatas is None:
data = [
{AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i], "text": texts[i]}
for i, _ in enumerate(texts)
]
else:
for i in range(len(metadatas)):
metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i]
metadatas[i]["text"] = texts[i]
data = metadatas
self.project._validate_map_data_inputs(
[], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data
)
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
|
f07dd1af27f7-5
|
data=data
)
with self.project.wait_for_project_lock():
self.project.add_embeddings(embeddings=embeddings, data=data)
# Text upload case
else:
if metadatas is None:
data = [
{"text": text, AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i]}
for i, text in enumerate(texts)
]
else:
for i, text in enumerate(texts):
metadatas[i]["text"] = texts
metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i]
data = metadatas
self.project._validate_map_data_inputs(
[], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data
)
with
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
|
f07dd1af27f7-6
|
)
with self.project.wait_for_project_lock():
self.project.add_text(data)
if refresh:
if len(self.project.indices) > 0:
with self.project.wait_for_project_lock():
self.project.rebuild_maps()
return ids
[docs] def create_index(self, **kwargs: Any) -> Any:
"""Creates an index in your project.
See
https://docs.nomic.ai/atlas_api.html#nomic.project.AtlasProject.create_index
for full detail.
"""
with self.project.wait_for_project_lock():
return self.project.create_index(**kwargs)
[docs] def similarity_search(
self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Document]:
"""Run similarity search with AtlasDB
Args:
query (str): Query text to search for.
k (int): Number of results to return. Defaults to 4.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
|
f07dd1af27f7-7
|
k (int): Number of results to return. Defaults to 4.
Returns:
List[Document]: List of documents most similar to the query text.
"""
if self._embedding_function is None:
raise NotImplementedError(
"AtlasDB requires an embedding_function for text similarity search!"
)
_embedding = self._embedding_function.embed_documents([query])[0]
embedding = np.array(_embedding).reshape(1, -1)
with self.project.wait_for_project_lock():
neighbors, _ = self.project.projections[0].vector_search(
queries=embedding, k=k
)
datas = self.project.get_data(ids=neighbors[0])
docs = [
Document(page_content=datas[i]["text"], metadata=datas[i])
for i, neighbor in enumerate(neighbors)
]
return docs
[docs] @classmethod
def from_texts(
cls: Type[AtlasDB],
texts: List[str],
embedding: Optional[Embeddings] = None,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
|
f07dd1af27f7-8
|
embedding: Optional[Embeddings] = None,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
name: Optional[str] = None,
api_key: Optional[str] = None,
description: str = "A description for your project",
is_public: bool = True,
reset_project_if_exists: bool = False,
index_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> AtlasDB:
"""Create an AtlasDB vectorstore from a raw documents.
Args:
texts (List[str]): The list of texts to ingest.
name (str): Name of the project to create.
api_key (str): Your nomic API key,
embedding (Optional[Embeddings]): Embedding function. Defaults to None.
metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
ids (Optional[List[str]]): Optional list of document IDs. If None,
ids will be auto created
description (str): A description for your project.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
|
f07dd1af27f7-9
|
(str): A description for your project.
is_public (bool): Whether your project is publicly accessible.
True by default.
reset_project_if_exists (bool): Whether to reset this project if it
already exists. Default False.
Generally userful during development and testing.
index_kwargs (Optional[dict]): Dict of kwargs for index creation.
See https://docs.nomic.ai/atlas_api.html
Returns:
AtlasDB: Nomic's neural database and finest rhizomatic instrument
"""
if name is None or api_key is None:
raise ValueError("`name` and `api_key` cannot be None.")
# Inject relevant kwargs
all_index_kwargs = {"name": name + "_index", "indexed_field": "text"}
if index_kwargs is not None:
for k, v in index_kwargs.items():
all_index_kwargs[k] = v
# Build project
atlasDB = cls(
name,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
|
f07dd1af27f7-10
|
name,
embedding_function=embedding,
api_key=api_key,
description="A description for your project",
is_public=is_public,
reset_project_if_exists=reset_project_if_exists,
)
with atlasDB.project.wait_for_project_lock():
atlasDB.add_texts(texts=texts, metadatas=metadatas, ids=ids)
atlasDB.create_index(**all_index_kwargs)
return atlasDB
[docs] @classmethod
def from_documents(
cls: Type[AtlasDB],
documents: List[Document],
embedding: Optional[Embeddings] = None,
ids: Optional[List[str]] = None,
name: Optional[str] = None,
api_key: Optional[str] = None,
persist_directory: Optional[str] = None,
description: str = "A description for your project",
is_public: bool = True,
reset_project_if_exists: bool = False,
index_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> AtlasDB:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
|
f07dd1af27f7-11
|
**kwargs: Any,
) -> AtlasDB:
"""Create an AtlasDB vectorstore from a list of documents.
Args:
name (str): Name of the collection to create.
api_key (str): Your nomic API key,
documents (List[Document]): List of documents to add to the vectorstore.
embedding (Optional[Embeddings]): Embedding function. Defaults to None.
ids (Optional[List[str]]): Optional list of document IDs. If None,
ids will be auto created
description (str): A description for your project.
is_public (bool): Whether your project is publicly accessible.
True by default.
reset_project_if_exists (bool): Whether to reset this project if
it already exists. Default False.
Generally userful during development and testing.
index_kwargs (Optional[dict]): Dict of kwargs for index creation.
See https://docs.nomic.ai/atlas_api.html
Returns:
AtlasDB: Nomic's neural database
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
|
f07dd1af27f7-12
|
AtlasDB: Nomic's neural database and finest rhizomatic instrument
"""
if name is None or api_key is None:
raise ValueError("`name` and `api_key` cannot be None.")
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
return cls.from_texts(
name=name,
api_key=api_key,
texts=texts,
embedding=embedding,
metadatas=metadatas,
ids=ids,
description=description,
is_public=is_public,
reset_project_if_exists=reset_project_if_exists,
index_kwargs=index_kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
|
ed65811b5a99-0
|
Source code for langchain.vectorstores.base
"""Interface for vector stores."""
from __future__ import annotations
import asyncio
from abc import ABC, abstractmethod
from functools import partial
from typing import Any, Dict, Iterable, List, Optional, Type, TypeVar
from pydantic import BaseModel, Field, root_validator
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.schema import BaseRetriever
VST = TypeVar("VST", bound="VectorStore")
[docs]class VectorStore(ABC):
"""Interface for vector stores."""
[docs] @abstractmethod
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
kwargs: vectorstore specific parameters
Returns:
List of ids from adding the texts into the vectorstore.
"""
[docs] async def aadd_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
|
ed65811b5a99-1
|
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore."""
raise NotImplementedError
[docs] def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
"""Run more documents through the embeddings and add to the vectorstore.
Args:
documents (List[Document]: Documents to add to the vectorstore.
Returns:
List[str]: List of IDs of the added texts.
"""
# TODO: Handle the case where the user doesn't provide ids on the Collection
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
return self.add_texts(texts, metadatas, **kwargs)
[docs] async def aadd_documents(
self, documents: List[Document], **kwargs: Any
) -> List[str]:
"""Run more documents through the embeddings and add to the vectorstore.
Args:
documents (List[Document]: Documents to add to the vectorstore.
Returns:
List[str]: List of IDs of the added texts.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
|
ed65811b5a99-2
|
List[str]: List of IDs of the added texts.
"""
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
return await self.aadd_texts(texts, metadatas, **kwargs)
[docs] @abstractmethod
def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query."""
[docs] async def asimilarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query."""
# This is a temporary workaround to make the similarity search
# asynchronous. The proper solution is to make the similarity search
# asynchronous in the vector store implementations.
func = partial(self.similarity_search, query, k, **kwargs)
return await asyncio.get_event_loop().run_in_executor(None, func)
[docs] def similarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
|
ed65811b5a99-3
|
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query vector.
"""
raise NotImplementedError
[docs] async def asimilarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to embedding vector."""
# This is a temporary workaround to make the similarity search
# asynchronous. The proper solution is to make the similarity search
# asynchronous in the vector store implementations.
func = partial(self.similarity_search_by_vector, embedding, k, **kwargs)
return await asyncio.get_event_loop().run_in_executor(None, func)
[docs] def max_marginal_relevance_search(
self, query: str, k: int = 4, fetch_k: int = 20
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
|
ed65811b5a99-4
|
look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
Returns:
List of Documents selected by maximal marginal relevance.
"""
raise NotImplementedError
[docs] async def amax_marginal_relevance_search(
self, query: str, k: int = 4, fetch_k: int = 20
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance."""
# This is a temporary workaround to make the similarity search
# asynchronous. The proper solution is to make the similarity search
# asynchronous in the vector store implementations.
func = partial(self.max_marginal_relevance_search, query, k, fetch_k)
return await asyncio.get_event_loop().run_in_executor(None, func)
[docs] def max_marginal_relevance_search_by_vector(
self, embedding: List[float], k: int = 4, fetch_k: int = 20
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
|
ed65811b5a99-5
|
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
Returns:
List of Documents selected by maximal marginal relevance.
"""
raise NotImplementedError
[docs] async def amax_marginal_relevance_search_by_vector(
self, embedding: List[float], k: int = 4, fetch_k: int = 20
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance."""
raise NotImplementedError
[docs] @classmethod
def from_documents(
cls: Type[VST],
documents: List[Document],
embedding: Embeddings,
**kwargs: Any,
) -> VST:
"""Return VectorStore initialized from documents and embeddings."""
texts = [d.page_content for d in documents]
metadatas = [d.metadata for d in documents]
return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs)
[docs] @classmethod
async def afrom_documents(
cls: Type[VST],
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
|
ed65811b5a99-6
|
cls: Type[VST],
documents: List[Document],
embedding: Embeddings,
**kwargs: Any,
) -> VST:
"""Return VectorStore initialized from documents and embeddings."""
texts = [d.page_content for d in documents]
metadatas = [d.metadata for d in documents]
return await cls.afrom_texts(texts, embedding, metadatas=metadatas, **kwargs)
[docs] @classmethod
@abstractmethod
def from_texts(
cls: Type[VST],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> VST:
"""Return VectorStore initialized from texts and embeddings."""
[docs] @classmethod
async def afrom_texts(
cls: Type[VST],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> VST:
"""Return VectorStore initialized from texts and embeddings."""
raise NotImplementedError
[docs] def as_retriever(self, **kwargs: Any) ->
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
|
ed65811b5a99-7
|
def as_retriever(self, **kwargs: Any) -> BaseRetriever:
return VectorStoreRetriever(vectorstore=self, **kwargs)
class VectorStoreRetriever(BaseRetriever, BaseModel):
vectorstore: VectorStore
search_type: str = "similarity"
search_kwargs: dict = Field(default_factory=dict)
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@root_validator()
def validate_search_type(cls, values: Dict) -> Dict:
"""Validate search type."""
if "search_type" in values:
search_type = values["search_type"]
if search_type not in ("similarity", "mmr"):
raise ValueError(f"search_type of {search_type} not allowed.")
return values
def get_relevant_documents(self, query: str) -> List[Document]:
if self.search_type == "similarity":
docs = self.vectorstore.similarity_search(query, **self.search_kwargs)
elif self.search_type == "mmr":
docs = self.vectorstore.max_marginal_relevance_search(
query, **self.search_kwargs
)
else:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
|
ed65811b5a99-8
|
)
else:
raise ValueError(f"search_type of {self.search_type} not allowed.")
return docs
async def aget_relevant_documents(self, query: str) -> List[Document]:
if self.search_type == "similarity":
docs = await self.vectorstore.asimilarity_search(
query, **self.search_kwargs
)
elif self.search_type == "mmr":
docs = await self.vectorstore.amax_marginal_relevance_search(
query, **self.search_kwargs
)
else:
raise ValueError(f"search_type of {self.search_type} not allowed.")
return docs
def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
"""Add documents to vectorstore."""
return self.vectorstore.add_documents(documents, **kwargs)
async def aadd_documents(
self, documents: List[Document], **kwargs: Any
) -> List[str]:
"""Add documents to vectorstore."""
return await self.vectorstore.aadd_documents(documents, **kwargs)
By Harrison
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
|
ed65811b5a99-9
|
return await self.vectorstore.aadd_documents(documents, **kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
|
49d8bf8634c4-0
|
Source code for langchain.vectorstores.qdrant
"""Wrapper around Qdrant vector database."""
from __future__ import annotations
import uuid
from operator import itemgetter
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Type, Union
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import VectorStore
from langchain.vectorstores.utils import maximal_marginal_relevance
MetadataFilter = Dict[str, Union[str, int, bool]]
[docs]class Qdrant(VectorStore):
"""Wrapper around Qdrant vector database.
To use you should have the ``qdrant-client`` package installed.
Example:
.. code-block:: python
from qdrant_client import QdrantClient
from langchain import Qdrant
client = QdrantClient()
collection_name = "MyCollection"
qdrant = Qdrant(client, collection_name, embedding_function)
"""
CONTENT_KEY = "page_content"
METADATA_KEY = "metadata"
def __init__(
self,
client: Any,
collection_name: str,
embedding_function: Callable,
content_payload_key: str = CONTENT_KEY,
metadata_payload_key: str = METADATA_KEY,
):
"""Initialize with necessary components."""
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
|
49d8bf8634c4-1
|
):
"""Initialize with necessary components."""
try:
import qdrant_client
except ImportError:
raise ValueError(
"Could not import qdrant-client python package. "
"Please install it with `pip install qdrant-client`."
)
if not isinstance(client, qdrant_client.QdrantClient):
raise ValueError(
f"client should be an instance of qdrant_client.QdrantClient, "
f"got {type(client)}"
)
self.client: qdrant_client.QdrantClient = client
self.collection_name = collection_name
self.embedding_function = embedding_function
self.content_payload_key = content_payload_key or self.CONTENT_KEY
self.metadata_payload_key = metadata_payload_key or self.METADATA_KEY
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
|
49d8bf8634c4-2
|
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
Returns:
List of ids from adding the texts into the vectorstore.
"""
from qdrant_client.http import models as rest
ids = [uuid.uuid4().hex for _ in texts]
self.client.upsert(
collection_name=self.collection_name,
points=rest.Batch.construct(
ids=ids,
vectors=[self.embedding_function(text) for text in texts],
payloads=self._build_payloads(
texts,
metadatas,
self.content_payload_key,
self.metadata_payload_key,
),
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
|
49d8bf8634c4-3
|
),
),
)
return ids
[docs] def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[MetadataFilter] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filter by metadata. Defaults to None.
Returns:
List of Documents most similar to the query.
"""
results = self.similarity_search_with_score(query, k, filter)
return list(map(itemgetter(0), results))
[docs] def similarity_search_with_score(
self, query: str, k: int = 4, filter: Optional[MetadataFilter] = None
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
|
49d8bf8634c4-4
|
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filter by metadata. Defaults to None.
Returns:
List of Documents most similar to the query and score for each.
"""
embedding = self.embedding_function(query)
results = self.client.search(
collection_name=self.collection_name,
query_vector=embedding,
query_filter=self._qdrant_filter_from_dict(filter),
with_payload=True,
limit=k,
)
return [
(
self._document_from_scored_point(
result, self.content_payload_key, self.metadata_payload_key
),
result.score,
)
for result in results
]
[docs] def max_marginal_relevance_search(
self, query: str, k: int = 4,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
|
49d8bf8634c4-5
|
self, query: str, k: int = 4, fetch_k: int = 20
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
Defaults to 20.
Returns:
List of Documents selected by maximal marginal relevance.
"""
embedding = self.embedding_function(query)
results = self.client.search(
collection_name=self.collection_name,
query_vector=embedding,
with_payload=True,
with_vectors=True,
limit=fetch_k,
)
embeddings = [result.vector for result in results]
mmr_selected = maximal_marginal_relevance(embedding, embeddings, k=k)
return [
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
|
49d8bf8634c4-6
|
k=k)
return [
self._document_from_scored_point(
results[i], self.content_payload_key, self.metadata_payload_key
)
for i in mmr_selected
]
[docs] @classmethod
def from_texts(
cls: Type[Qdrant],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
location: Optional[str] = None,
url: Optional[str] = None,
port: Optional[int] = 6333,
grpc_port: int = 6334,
prefer_grpc: bool = False,
https: Optional[bool] = None,
api_key: Optional[str] = None,
prefix: Optional[str] = None,
timeout: Optional[float] = None,
host: Optional[str] = None,
path: Optional[str] = None,
collection_name: Optional[str] = None,
distance_func: str = "Cosine",
content_payload_key: str = CONTENT_KEY,
metadata_payload_key:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
|
49d8bf8634c4-7
|
content_payload_key: str = CONTENT_KEY,
metadata_payload_key: str = METADATA_KEY,
**kwargs: Any,
) -> Qdrant:
"""Construct Qdrant wrapper from a list of texts.
Args:
texts: A list of texts to be indexed in Qdrant.
embedding: A subclass of `Embeddings`, responsible for text vectorization.
metadatas:
An optional list of metadata. If provided it has to be of the same
length as a list of texts.
location:
If `:memory:` - use in-memory Qdrant instance.
If `str` - use it as a `url` parameter.
If `None` - fallback to relying on `host` and `port` parameters.
url: either host or str of "Optional[scheme], host, Optional[port],
Optional[prefix]". Default: `None`
port: Port of the REST API interface. Default: 6333
grpc_port: Port of the gRPC interface. Default:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
|
49d8bf8634c4-8
|
grpc_port: Port of the gRPC interface. Default: 6334
prefer_grpc:
If true - use gPRC interface whenever possible in custom methods.
Default: False
https: If true - use HTTPS(SSL) protocol. Default: None
api_key: API key for authentication in Qdrant Cloud. Default: None
prefix:
If not None - add prefix to the REST URL path.
Example: service/v1 will result in
http://localhost:6333/service/v1/{qdrant-endpoint} for REST API.
Default: None
timeout:
Timeout for REST and gRPC API requests.
Default: 5.0 seconds for REST and unlimited for gRPC
host:
Host name of Qdrant service. If url and host are None, set to
'localhost'. Default: None
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
|
49d8bf8634c4-9
|
'localhost'. Default: None
path:
Path in which the vectors will be stored while using local mode.
Default: None
collection_name:
Name of the Qdrant collection to be used. If not provided,
it will be created randomly. Default: None
distance_func:
Distance function. One of: "Cosine" / "Euclid" / "Dot".
Default: "Cosine"
content_payload_key:
A payload key used to store the content of the document.
Default: "page_content"
metadata_payload_key:
A payload key used to store the metadata of the document.
Default: "metadata"
**kwargs:
Additional arguments passed directly into REST client initialization
This is a user friendly interface that:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
|
49d8bf8634c4-10
|
This is a user friendly interface that:
1. Creates embeddings, one for each text
2. Initializes the Qdrant database as an in-memory docstore by default
(and overridable to a remote docstore)
3. Adds the text embeddings to the Qdrant database
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain import Qdrant
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
qdrant = Qdrant.from_texts(texts, embeddings, "localhost")
"""
try:
import qdrant_client
except ImportError:
raise ValueError(
"Could not import qdrant-client python package. "
"Please install it with `pip install qdrant-client`."
)
from
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
|
49d8bf8634c4-11
|
)
from qdrant_client.http import models as rest
# Just do a single quick embedding to get vector size
partial_embeddings = embedding.embed_documents(texts[:1])
vector_size = len(partial_embeddings[0])
collection_name = collection_name or uuid.uuid4().hex
distance_func = distance_func.upper()
client = qdrant_client.QdrantClient(
location=location,
url=url,
port=port,
grpc_port=grpc_port,
prefer_grpc=prefer_grpc,
https=https,
api_key=api_key,
prefix=prefix,
timeout=timeout,
host=host,
path=path,
**kwargs,
)
client.recreate_collection(
collection_name=collection_name,
vectors_config=rest.VectorParams(
size=vector_size,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
|
49d8bf8634c4-12
|
size=vector_size,
distance=rest.Distance[distance_func],
),
)
# Now generate the embeddings for all the texts
embeddings = embedding.embed_documents(texts)
client.upsert(
collection_name=collection_name,
points=rest.Batch.construct(
ids=[uuid.uuid4().hex for _ in texts],
vectors=embeddings,
payloads=cls._build_payloads(
texts, metadatas, content_payload_key, metadata_payload_key
),
),
)
return cls(
client=client,
collection_name=collection_name,
embedding_function=embedding.embed_query,
content_payload_key=content_payload_key,
metadata_payload_key=metadata_payload_key,
)
@classmethod
def _build_payloads(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
|
49d8bf8634c4-13
|
@classmethod
def _build_payloads(
cls,
texts: Iterable[str],
metadatas: Optional[List[dict]],
content_payload_key: str,
metadata_payload_key: str,
) -> List[dict]:
payloads = []
for i, text in enumerate(texts):
if text is None:
raise ValueError(
"At least one of the texts is None. Please remove it before "
"calling .from_texts or .add_texts on Qdrant instance."
)
metadata = metadatas[i] if metadatas is not None else None
payloads.append(
{
content_payload_key: text,
metadata_payload_key: metadata,
}
)
return payloads
@classmethod
def _document_from_scored_point(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
|
49d8bf8634c4-14
|
def _document_from_scored_point(
cls,
scored_point: Any,
content_payload_key: str,
metadata_payload_key: str,
) -> Document:
return Document(
page_content=scored_point.payload.get(content_payload_key),
metadata=scored_point.payload.get(metadata_payload_key) or {},
)
def _qdrant_filter_from_dict(self, filter: Optional[MetadataFilter]) -> Any:
if filter is None or 0 == len(filter):
return None
from qdrant_client.http import models as rest
return rest.Filter(
must=[
rest.FieldCondition(
key=f"{self.metadata_payload_key}.{key}",
match=rest.MatchValue(value=value),
)
for key, value in filter.items()
]
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
|
49d8bf8634c4-15
|
Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
|
637c522171ca-0
|
Source code for langchain.vectorstores.milvus
"""Wrapper around the Milvus vector database."""
from __future__ import annotations
import uuid
from typing import Any, Iterable, List, Optional, Tuple
import numpy as np
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.utils import maximal_marginal_relevance
[docs]class Milvus(VectorStore):
"""Wrapper around the Milvus vector database."""
def __init__(
self,
embedding_function: Embeddings,
connection_args: dict,
collection_name: str,
text_field: str,
):
"""Initialize wrapper around the milvus vector database.
In order to use this you need to have `pymilvus` installed and a
running Milvus instance.
See the following documentation for how to run a Milvus instance:
https://milvus.io/docs/install_standalone-docker.md
Args:
embedding_function (Embeddings): Function used to embed the text
connection_args (dict): Arguments for pymilvus connections.connect()
collection_name (str): The name of the collection to search.
text_field (str): The field in Milvus schema where the
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
637c522171ca-1
|
(str): The field in Milvus schema where the
original text is stored.
"""
try:
from pymilvus import Collection, DataType, connections
except ImportError:
raise ValueError(
"Could not import pymilvus python package. "
"Please install it with `pip install pymilvus`."
)
# Connecting to Milvus instance
if not connections.has_connection("default"):
connections.connect(**connection_args)
self.embedding_func = embedding_function
self.collection_name = collection_name
self.text_field = text_field
self.auto_id = False
self.primary_field = None
self.vector_field = None
self.fields = []
self.col = Collection(self.collection_name)
schema = self.col.schema
# Grabbing the fields for the existing collection.
for x in schema.fields:
self.fields.append(x.name)
if x.auto_id:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
637c522171ca-2
|
if x.auto_id:
self.fields.remove(x.name)
if x.is_primary:
self.primary_field = x.name
if x.dtype == DataType.FLOAT_VECTOR or x.dtype == DataType.BINARY_VECTOR:
self.vector_field = x.name
# Default search params when one is not provided.
self.index_params = {
"IVF_FLAT": {"params": {"nprobe": 10}},
"IVF_SQ8": {"params": {"nprobe": 10}},
"IVF_PQ": {"params": {"nprobe": 10}},
"HNSW": {"params": {"ef": 10}},
"RHNSW_FLAT": {"params": {"ef": 10}},
"RHNSW_SQ": {"params": {"ef": 10}},
"RHNSW_PQ": {"params": {"ef": 10}},
"IVF_HNSW": {"params": {"nprobe": 10, "ef": 10}},
"ANNOY": {"params": {"search_k": 10}},
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
637c522171ca-3
|
"ANNOY": {"params": {"search_k": 10}},
}
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
partition_name: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[str]:
"""Insert text data into Milvus.
When using add_texts() it is assumed that a collecton has already
been made and indexed. If metadata is included, it is assumed that
it is ordered correctly to match the schema provided to the Collection
and that the embedding vector is the first schema field.
Args:
texts (Iterable[str]): The text being embedded and inserted.
metadatas (Optional[List[dict]], optional): The metadata that
corresponds to each insert. Defaults to None.
partition_name (str, optional): The partition of the collection
to insert data into. Defaults to None.
timeout: specified timeout.
Returns:
List[str]: The resulting keys for
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
637c522171ca-4
|
Returns:
List[str]: The resulting keys for each inserted element.
"""
insert_dict: Any = {self.text_field: list(texts)}
try:
insert_dict[self.vector_field] = self.embedding_func.embed_documents(
list(texts)
)
except NotImplementedError:
insert_dict[self.vector_field] = [
self.embedding_func.embed_query(x) for x in texts
]
# Collect the metadata into the insert dict.
if len(self.fields) > 2 and metadatas is not None:
for d in metadatas:
for key, value in d.items():
if key in self.fields:
insert_dict.setdefault(key, []).append(value)
# Convert dict to list of lists for insertion
insert_list = [insert_dict[x] for x in self.fields]
# Insert into the collection.
res = self.col.insert(
insert_list,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
637c522171ca-5
|
res = self.col.insert(
insert_list, partition_name=partition_name, timeout=timeout
)
# Flush to make sure newly inserted is immediately searchable.
self.col.flush()
return res.primary_keys
def _worker_search(
self,
query: str,
k: int = 4,
param: Optional[dict] = None,
expr: Optional[str] = None,
partition_names: Optional[List[str]] = None,
round_decimal: int = -1,
timeout: Optional[int] = None,
**kwargs: Any,
) -> Tuple[List[float], List[Tuple[Document, Any, Any]]]:
# Load the collection into memory for searching.
self.col.load()
# Decide to use default params if not passed in.
if param is None:
index_type = self.col.indexes[0].params["index_type"]
param = self.index_params[index_type]
# Embed the query text.
data = [self.embedding_func.embed_query(query)]
# Determine result metadata fields.
output_fields = self.fields[:]
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
637c522171ca-6
|
output_fields = self.fields[:]
output_fields.remove(self.vector_field)
# Perform the search.
res = self.col.search(
data,
self.vector_field,
param,
k,
expr=expr,
output_fields=output_fields,
partition_names=partition_names,
round_decimal=round_decimal,
timeout=timeout,
**kwargs,
)
# Organize results.
ret = []
for result in res[0]:
meta = {x: result.entity.get(x) for x in output_fields}
ret.append(
(
Document(page_content=meta.pop(self.text_field), metadata=meta),
result.distance,
result.id,
)
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
637c522171ca-7
|
)
)
return data[0], ret
[docs] def similarity_search_with_score(
self,
query: str,
k: int = 4,
param: Optional[dict] = None,
expr: Optional[str] = None,
partition_names: Optional[List[str]] = None,
round_decimal: int = -1,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Perform a search on a query string and return results.
Args:
query (str): The text being searched.
k (int, optional): The amount of results ot return. Defaults to 4.
param (dict, optional): The search params for the specified index.
Defaults to None.
expr (str, optional): Filtering expression. Defaults to None.
partition_names (List[str], optional): Partitions to search through.
Defaults to None.
round_decimal (int, optional): Round the resulting
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
637c522171ca-8
|
round_decimal (int, optional): Round the resulting distance. Defaults
to -1.
timeout (int, optional): Amount to wait before timeout error. Defaults
to None.
kwargs: Collection.search() keyword arguments.
Returns:
List[float], List[Tuple[Document, any, any]]: search_embedding,
(Document, distance, primary_field) results.
"""
_, result = self._worker_search(
query, k, param, expr, partition_names, round_decimal, timeout, **kwargs
)
return [(x, y) for x, y, _ in result]
[docs] def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
param: Optional[dict] = None,
expr: Optional[str] = None,
partition_names: Optional[List[str]] = None,
round_decimal: int = -1,
timeout: Optional[int] = None,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
637c522171ca-9
|
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Document]:
"""Perform a search and return results that are reordered by MMR.
Args:
query (str): The text being searched.
k (int, optional): How many results to give. Defaults to 4.
fetch_k (int, optional): Total results to select k from.
Defaults to 20.
param (dict, optional): The search params for the specified index.
Defaults to None.
expr (str, optional): Filtering expression. Defaults to None.
partition_names (List[str], optional): What partitions to search.
Defaults to None.
round_decimal (int, optional): Round the resulting distance. Defaults
to -1.
timeout (int, optional): Amount to wait before timeout error. Defaults
to None.
Returns:
List[Document]: Document results for search.
"""
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
637c522171ca-10
|
Document results for search.
"""
data, res = self._worker_search(
query,
fetch_k,
param,
expr,
partition_names,
round_decimal,
timeout,
**kwargs,
)
# Extract result IDs.
ids = [x for _, _, x in res]
# Get the raw vectors from Milvus.
vectors = self.col.query(
expr=f"{self.primary_field} in {ids}",
output_fields=[self.primary_field, self.vector_field],
)
# Reorganize the results from query to match result order.
vectors = {x[self.primary_field]: x[self.vector_field] for x in vectors}
search_embedding = data
ordered_result_embeddings = [vectors[x] for x in ids]
# Get the new order of results.
new_ordering = maximal_marginal_relevance(
np.array(search_embedding), ordered_result_embeddings, k=k
)
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
637c522171ca-11
|
ordered_result_embeddings, k=k
)
# Reorder the values and return.
ret = []
for x in new_ordering:
if x == -1:
break
else:
ret.append(res[x][0])
return ret
[docs] def similarity_search(
self,
query: str,
k: int = 4,
param: Optional[dict] = None,
expr: Optional[str] = None,
partition_names: Optional[List[str]] = None,
round_decimal: int = -1,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Document]:
"""Perform a similarity search against the query string.
Args:
query (str): The text to search.
k (int, optional): How many results to return. Defaults to 4.
param (dict, optional): The search params for the index type.
Defaults to None.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
637c522171ca-12
|
Defaults to None.
expr (str, optional): Filtering expression. Defaults to None.
partition_names (List[str], optional): What partitions to search.
Defaults to None.
round_decimal (int, optional): What decimal point to round to.
Defaults to -1.
timeout (int, optional): How long to wait before timeout error.
Defaults to None.
Returns:
List[Document]: Document results for search.
"""
_, docs_and_scores = self._worker_search(
query, k, param, expr, partition_names, round_decimal, timeout, **kwargs
)
return [doc for doc, _, _ in docs_and_scores]
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> Milvus:
"""Create a Milvus collection, indexes it with HNSW, and insert data.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
637c522171ca-13
|
a Milvus collection, indexes it with HNSW, and insert data.
Args:
texts (List[str]): Text to insert.
embedding (Embeddings): Embedding function to use.
metadatas (Optional[List[dict]], optional): Dict metatadata.
Defaults to None.
Returns:
VectorStore: The Milvus vector store.
"""
try:
from pymilvus import (
Collection,
CollectionSchema,
DataType,
FieldSchema,
connections,
)
from pymilvus.orm.types import infer_dtype_bydata
except ImportError:
raise ValueError(
"Could not import pymilvus python package. "
"Please install it with `pip install pymilvus`."
)
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
637c522171ca-14
|
)
# Connect to Milvus instance
if not connections.has_connection("default"):
connections.connect(**kwargs.get("connection_args", {"port": 19530}))
# Determine embedding dim
embeddings = embedding.embed_query(texts[0])
dim = len(embeddings)
# Generate unique names
primary_field = "c" + str(uuid.uuid4().hex)
vector_field = "c" + str(uuid.uuid4().hex)
text_field = "c" + str(uuid.uuid4().hex)
collection_name = "c" + str(uuid.uuid4().hex)
fields = []
# Determine metadata schema
if metadatas:
# Check if all metadata keys line up
key = metadatas[0].keys()
for x in metadatas:
if key != x.keys():
raise ValueError(
"Mismatched metadata. "
"Make sure all metadata
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
637c522171ca-15
|
"Make sure all metadata has the same keys and datatype."
)
# Create FieldSchema for each entry in singular metadata.
for key, value in metadatas[0].items():
# Infer the corresponding datatype of the metadata
dtype = infer_dtype_bydata(value)
if dtype == DataType.UNKNOWN:
raise ValueError(f"Unrecognized datatype for {key}.")
elif dtype == DataType.VARCHAR:
# Find out max length text based metadata
max_length = 0
for subvalues in metadatas:
max_length = max(max_length, len(subvalues[key]))
fields.append(
FieldSchema(key, DataType.VARCHAR, max_length=max_length + 1)
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
637c522171ca-16
|
max_length=max_length + 1)
)
else:
fields.append(FieldSchema(key, dtype))
# Find out max length of texts
max_length = 0
for y in texts:
max_length = max(max_length, len(y))
# Create the text field
fields.append(
FieldSchema(text_field, DataType.VARCHAR, max_length=max_length + 1)
)
# Create the primary key field
fields.append(
FieldSchema(primary_field, DataType.INT64, is_primary=True, auto_id=True)
)
# Create the vector field
fields.append(FieldSchema(vector_field, DataType.FLOAT_VECTOR, dim=dim))
# Create the schema for the collection
schema = CollectionSchema(fields)
# Create the collection
collection = Collection(collection_name, schema)
# Index parameters for the collection
index = {
"index_type": "HNSW",
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
637c522171ca-17
|
"index_type": "HNSW",
"metric_type": "L2",
"params": {"M": 8, "efConstruction": 64},
}
# Create the index
collection.create_index(vector_field, index)
# Create the VectorStore
milvus = cls(
embedding,
kwargs.get("connection_args", {"port": 19530}),
collection_name,
text_field,
)
# Add the texts.
milvus.add_texts(texts, metadatas)
return milvus
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
|
8b1de501dd51-0
|
Source code for langchain.vectorstores.chroma
"""Wrapper around ChromaDB embeddings platform."""
from __future__ import annotations
import logging
import uuid
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Type
import numpy as np
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.utils import maximal_marginal_relevance
if TYPE_CHECKING:
import chromadb
import chromadb.config
logger = logging.getLogger()
def _results_to_docs(results: Any) -> List[Document]:
return [doc for doc, _ in _results_to_docs_and_scores(results)]
def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]:
return [
# TODO: Chroma can do batch querying,
# we shouldn't hard code to the 1st result
(Document(page_content=result[0], metadata=result[1] or {}), result[2])
for result in zip(
results["documents"][0],
results["metadatas"][0],
results["distances"][0],
)
]
[docs]class Chroma(VectorStore):
"""Wrapper around ChromaDB embeddings platform.
To use, you should have the ``chromadb`` python package installed.
Example:
.. code-block:: python
from
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
|
8b1de501dd51-1
|
python
from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
vectorstore = Chroma("langchain_store", embeddings.embed_query)
"""
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
def __init__(
self,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
embedding_function: Optional[Embeddings] = None,
persist_directory: Optional[str] = None,
client_settings: Optional[chromadb.config.Settings] = None,
collection_metadata: Optional[Dict] = None,
) -> None:
"""Initialize with Chroma client."""
try:
import chromadb
import chromadb.config
except ImportError:
raise ValueError(
"Could not import chromadb python package. "
"Please install it with `pip install chromadb`."
)
if client_settings:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
|
8b1de501dd51-2
|
if client_settings:
self._client_settings = client_settings
else:
self._client_settings = chromadb.config.Settings()
if persist_directory is not None:
self._client_settings = chromadb.config.Settings(
chroma_db_impl="duckdb+parquet", persist_directory=persist_directory
)
self._client = chromadb.Client(self._client_settings)
self._embedding_function = embedding_function
self._persist_directory = persist_directory
self._collection = self._client.get_or_create_collection(
name=collection_name,
embedding_function=self._embedding_function.embed_documents
if self._embedding_function is not None
else None,
metadata=collection_metadata,
)
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) ->
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
|
8b1de501dd51-3
|
= None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts (Iterable[str]): Texts to add to the vectorstore.
metadatas (Optional[List[dict]], optional): Optional list of metadatas.
ids (Optional[List[str]], optional): Optional list of IDs.
Returns:
List[str]: List of IDs of the added texts.
"""
# TODO: Handle the case where the user doesn't provide ids on the Collection
if ids is None:
ids = [str(uuid.uuid1()) for _ in texts]
embeddings = None
if self._embedding_function is not None:
embeddings = self._embedding_function.embed_documents(list(texts))
self._collection.add(
metadatas=metadatas, embeddings=embeddings, documents=texts, ids=ids
)
return ids
[docs] def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
|
8b1de501dd51-4
|
int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Run similarity search with Chroma.
Args:
query (str): Query text to search for.
k (int): Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List[Document]: List of documents most similar to the query text.
"""
docs_and_scores = self.similarity_search_with_score(query, k, filter=filter)
return [doc for doc, _ in docs_and_scores]
[docs] def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
|
8b1de501dd51-5
|
Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query vector.
"""
results = self._collection.query(
query_embeddings=embedding, n_results=k, where=filter
)
return _results_to_docs(results)
[docs] def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Run similarity search with Chroma with distance.
Args:
query (str): Query text to search for.
k (int): Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List[Tuple[Document, float]]: List of documents most similar to the query
text with distance in float.
"""
if self._embedding_function is None:
results = self._collection.query(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
|
8b1de501dd51-6
|
results = self._collection.query(
query_texts=[query], n_results=k, where=filter
)
else:
query_embedding = self._embedding_function.embed_query(query)
results = self._collection.query(
query_embeddings=[query_embedding], n_results=k, where=filter
)
return _results_to_docs_and_scores(results)
[docs] def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
filter: Optional[Dict[str, str]] = None,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
filter
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
|
8b1de501dd51-7
|
fetch to pass to MMR algorithm.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents selected by maximal marginal relevance.
"""
results = self._collection.query(
query_embeddings=embedding,
n_results=fetch_k,
where=filter,
include=["metadatas", "documents", "distances", "embeddings"],
)
mmr_selected = maximal_marginal_relevance(
np.array(embedding, dtype=np.float32), results["embeddings"][0], k=k
)
candidates = _results_to_docs(results)
selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected]
return selected_results
[docs] def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
filter: Optional[Dict[str, str]] = None,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
|
8b1de501dd51-8
|
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents selected by maximal marginal relevance.
"""
if self._embedding_function is None:
raise ValueError(
"For MMR search, you must specify an embedding function on" "creation."
)
embedding = self._embedding_function.embed_query(query)
docs = self.max_marginal_relevance_search_by_vector(
embedding, k, fetch_k, filter
)
return docs
[docs] def delete_collection(self) -> None:
"""Delete the collection."""
self._client.delete_collection(self._collection.name)
[docs] def persist(self) -> None:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
|
8b1de501dd51-9
|
def persist(self) -> None:
"""Persist the collection.
This can be used to explicitly persist the data to disk.
It will also be called automatically when the object is destroyed.
"""
if self._persist_directory is None:
raise ValueError(
"You must specify a persist_directory on"
"creation to persist the collection."
)
self._client.persist()
[docs] @classmethod
def from_texts(
cls: Type[Chroma],
texts: List[str],
embedding: Optional[Embeddings] = None,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
persist_directory: Optional[str] = None,
client_settings: Optional[chromadb.config.Settings] = None,
**kwargs: Any,
) -> Chroma:
"""Create a Chroma vectorstore from a raw documents.
If a persist_directory is specified, the collection will be persisted there.
Otherwise, the data will be ephemeral in-memory.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
|
8b1de501dd51-10
|
Otherwise, the data will be ephemeral in-memory.
Args:
texts (List[str]): List of texts to add to the collection.
collection_name (str): Name of the collection to create.
persist_directory (Optional[str]): Directory to persist the collection.
embedding (Optional[Embeddings]): Embedding function. Defaults to None.
metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
ids (Optional[List[str]]): List of document IDs. Defaults to None.
client_settings (Optional[chromadb.config.Settings]): Chroma client settings
Returns:
Chroma: Chroma vectorstore.
"""
chroma_collection = cls(
collection_name=collection_name,
embedding_function=embedding,
persist_directory=persist_directory,
client_settings=client_settings,
)
chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids)
return chroma_collection
[docs] @classmethod
def from_documents(
cls: Type[Chroma],
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
|
8b1de501dd51-11
|
def from_documents(
cls: Type[Chroma],
documents: List[Document],
embedding: Optional[Embeddings] = None,
ids: Optional[List[str]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
persist_directory: Optional[str] = None,
client_settings: Optional[chromadb.config.Settings] = None,
**kwargs: Any,
) -> Chroma:
"""Create a Chroma vectorstore from a list of documents.
If a persist_directory is specified, the collection will be persisted there.
Otherwise, the data will be ephemeral in-memory.
Args:
collection_name (str): Name of the collection to create.
persist_directory (Optional[str]): Directory to persist the collection.
ids (Optional[List[str]]): List of document IDs. Defaults to None.
documents (List[Document]): List of documents to add to the vectorstore.
embedding (Optional[Embeddings]): Embedding function. Defaults to None.
client_settings (Optional[chromadb.config.Settings]): Chroma client settings
Returns:
Chroma: Chroma vectorstore.
"""
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
|
8b1de501dd51-12
|
Chroma: Chroma vectorstore.
"""
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
return cls.from_texts(
texts=texts,
embedding=embedding,
metadatas=metadatas,
ids=ids,
collection_name=collection_name,
persist_directory=persist_directory,
client_settings=client_settings,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
|
ac7d4cf5ea34-0
|
Source code for langchain.vectorstores.deeplake
"""Wrapper around Activeloop Deep Lake."""
from __future__ import annotations
import logging
import uuid
from functools import partial
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple
import numpy as np
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.utils import maximal_marginal_relevance
logger = logging.getLogger()
distance_metric_map = {
"l2": lambda a, b: np.linalg.norm(a - b, axis=1, ord=2),
"l1": lambda a, b: np.linalg.norm(a - b, axis=1, ord=1),
"max": lambda a, b: np.linalg.norm(a - b, axis=1, ord=np.inf),
"cos": lambda a, b: np.dot(a, b.T)
/ (np.linalg.norm(a) * np.linalg.norm(b, axis=1)),
"dot": lambda a, b: np.dot(a, b.T),
}
def vector_search(
query_embedding: np.ndarray,
data_vectors: np.ndarray,
distance_metric: str = "L2",
k: Optional[int] = 4,
) -> Tuple[List, List]:
"""Naive search for nearest neighbors
args:
query_embedding: np.ndarray
data_vectors: np.ndarray
k (int): number of nearest neighbors
distance_metric: distance function 'L2' for Euclidean, 'L1' for Nuclear, 'Max'
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
|
ac7d4cf5ea34-1
|
for Euclidean, 'L1' for Nuclear, 'Max'
l-infinity distnace, 'cos' for cosine similarity, 'dot' for dot product
returns:
nearest_indices: List, indices of nearest neighbors
"""
# Calculate the distance between the query_vector and all data_vectors
distances = distance_metric_map[distance_metric](query_embedding, data_vectors)
nearest_indices = np.argsort(distances)
nearest_indices = (
nearest_indices[::-1][:k] if distance_metric in ["cos"] else nearest_indices[:k]
)
return nearest_indices.tolist(), distances[nearest_indices].tolist()
def dp_filter(x: dict, filter: Dict[str, str]) -> bool:
"""Filter helper function for Deep Lake"""
metadata = x["metadata"].data()["value"]
return all(k in metadata and v == metadata[k] for k, v in filter.items())
[docs]class DeepLake(VectorStore):
"""Wrapper around Deep Lake, a data lake for deep learning applications.
We implement naive similarity search and filtering for fast prototyping,
but it can be extended with Tensor Query Language (TQL) for production use cases
over billion rows.
Why Deep Lake?
- Not only stores embeddings, but also the original data with version control.
- Serverless, doesn't require another service and can be used with major
cloud providers (S3, GCS, etc.)
- More than just a multi-modal vector store. You can use the dataset
to fine-tune your own LLM models.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
|
ac7d4cf5ea34-2
|
the dataset
to fine-tune your own LLM models.
To use, you should have the ``deeplake`` python package installed.
Example:
.. code-block:: python
from langchain.vectorstores import DeepLake
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
vectorstore = DeepLake("langchain_store", embeddings.embed_query)
"""
_LANGCHAIN_DEFAULT_DEEPLAKE_PATH = "mem://langchain"
def __init__(
self,
dataset_path: str = _LANGCHAIN_DEFAULT_DEEPLAKE_PATH,
token: Optional[str] = None,
embedding_function: Optional[Embeddings] = None,
read_only: Optional[bool] = False,
ingestion_batch_size: int = 1024,
num_workers: int = 4,
) -> None:
"""Initialize with Deep Lake client."""
self.ingestion_batch_size = ingestion_batch_size
self.num_workers = num_workers
try:
import deeplake
from deeplake.constants import MB
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
|
ac7d4cf5ea34-3
|
from deeplake.constants import MB
except ImportError:
raise ValueError(
"Could not import deeplake python package. "
"Please install it with `pip install deeplake`."
)
self._deeplake = deeplake
if deeplake.exists(dataset_path, token=token):
self.ds = deeplake.load(dataset_path, token=token, read_only=read_only)
logger.warning(
f"Deep Lake Dataset in {dataset_path} already exists, "
f"loading from the storage"
)
self.ds.summary()
else:
self.ds = deeplake.empty(dataset_path, token=token, overwrite=True)
with self.ds:
self.ds.create_tensor(
"text",
htype="text",
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
|
ac7d4cf5ea34-4
|
htype="text",
create_id_tensor=False,
create_sample_info_tensor=False,
create_shape_tensor=False,
chunk_compression="lz4",
)
self.ds.create_tensor(
"metadata",
htype="json",
create_id_tensor=False,
create_sample_info_tensor=False,
create_shape_tensor=False,
chunk_compression="lz4",
)
self.ds.create_tensor(
"embedding",
htype="generic",
dtype=np.float32,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
|
ac7d4cf5ea34-5
|
dtype=np.float32,
create_id_tensor=False,
create_sample_info_tensor=False,
max_chunk_size=64 * MB,
create_shape_tensor=True,
)
self.ds.create_tensor(
"ids",
htype="text",
create_id_tensor=False,
create_sample_info_tensor=False,
create_shape_tensor=False,
chunk_compression="lz4",
)
self._embedding_function = embedding_function
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
|
ac7d4cf5ea34-6
|
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts (Iterable[str]): Texts to add to the vectorstore.
metadatas (Optional[List[dict]], optional): Optional list of metadatas.
ids (Optional[List[str]], optional): Optional list of IDs.
Returns:
List[str]: List of IDs of the added texts.
"""
if ids is None:
ids = [str(uuid.uuid1()) for _ in texts]
text_list = list(texts)
if metadatas is None:
metadatas = [{}] * len(text_list)
elements = list(zip(text_list, metadatas, ids))
@self._deeplake.compute
def ingest(sample_in: list, sample_out: list) -> None:
text_list = [s[0] for s in sample_in]
embeds: Sequence[Optional[np.ndarray]] = []
if self._embedding_function is not None:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
|
ac7d4cf5ea34-7
|
is not None:
embeddings = self._embedding_function.embed_documents(text_list)
embeds = [np.array(e, dtype=np.float32) for e in embeddings]
else:
embeds = [None] * len(text_list)
for s, e in zip(sample_in, embeds):
sample_out.append(
{
"text": s[0],
"metadata": s[1],
"ids": s[2],
"embedding": e,
}
)
batch_size = min(self.ingestion_batch_size, len(elements))
batched = [
elements[i : i + batch_size] for i in range(0, len(elements), batch_size)
]
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
|
ac7d4cf5ea34-8
|
batch_size)
]
ingest().eval(
batched,
self.ds,
num_workers=min(self.num_workers, len(batched) // self.num_workers),
)
self.ds.commit(allow_empty=True)
self.ds.summary()
return ids
[docs] def search(
self,
query: Any[str, None] = None,
embedding: Any[float, None] = None,
k: int = 4,
distance_metric: str = "L2",
use_maximal_marginal_relevance: Optional[bool] = False,
fetch_k: Optional[int] = 20,
filter: Optional[Any[Dict[str, str], Callable, str]] = None,
return_score: Optional[bool] = False,
**kwargs: Any,
) -> Any[List[Document], List[Tuple[Document, float]]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
embedding: Embedding function to use. Defaults to None.
k: Number of Documents to
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
|
ac7d4cf5ea34-9
|
to None.
k: Number of Documents to return. Defaults to 4.
distance_metric: `L2` for Euclidean, `L1` for Nuclear,
`max` L-infinity distance, `cos` for cosine similarity,
'dot' for dot product. Defaults to `L2`.
filter: Attribute filter by metadata example {'key': 'value'}. It can also
take [Deep Lake filter]
(https://docs.deeplake.ai/en/latest/deeplake.core.dataset.html#deeplake.core.dataset.Dataset.filter)
Defaults to None.
maximal_marginal_relevance: Whether to use maximal marginal relevance.
Defaults to False.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
Defaults to 20.
return_score: Whether to return the score. Defaults to False.
Returns:
List of Documents selected by the specified distance metric,
if return_score True, return a tuple of (Document, score)
"""
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
|
ac7d4cf5ea34-10
|
of (Document, score)
"""
view = self.ds
# attribute based filtering
if filter is not None:
if isinstance(filter, dict):
filter = partial(dp_filter, filter=filter)
view = view.filter(filter)
if len(view) == 0:
return []
if self._embedding_function is None:
view = view.filter(lambda x: query in x["text"].data()["value"])
scores = [1.0] * len(view)
if use_maximal_marginal_relevance:
raise ValueError(
"For MMR search, you must specify an embedding function on"
"creation."
)
else:
emb = embedding or self._embedding_function.embed_query(
query
) # type: ignore
query_emb
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
|
ac7d4cf5ea34-11
|
) # type: ignore
query_emb = np.array(emb, dtype=np.float32)
embeddings = view.embedding.numpy(fetch_chunks=True)
k_search = fetch_k if use_maximal_marginal_relevance else k
indices, scores = vector_search(
query_emb,
embeddings,
k=k_search,
distance_metric=distance_metric.lower(),
)
view = view[indices]
if use_maximal_marginal_relevance:
indices = maximal_marginal_relevance(
query_emb, embeddings[indices], k=min(k, len(indices))
)
view = view[indices]
scores = [scores[i] for i in indices]
docs = [
Document(
page_content=el["text"].data()["value"],
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
|
ac7d4cf5ea34-12
|
page_content=el["text"].data()["value"],
metadata=el["metadata"].data()["value"],
)
for el in view
]
if return_score:
return [(doc, score) for doc, score in zip(docs, scores)]
return docs
[docs] def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: text to embed and run the query on.
k: Number of Documents to return.
Defaults to 4.
query: Text to look up documents similar to.
embedding: Embedding function to use.
Defaults to None.
k: Number of Documents to return.
Defaults to 4.
distance_metric: `L2` for Euclidean, `L1` for Nuclear, `max`
L-infinity distance,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
|
ac7d4cf5ea34-13
|
L-infinity distance, `cos` for cosine similarity, 'dot' for dot product
Defaults to `L2`.
filter: Attribute filter by metadata example {'key': 'value'}.
Defaults to None.
maximal_marginal_relevance: Whether to use maximal marginal relevance.
Defaults to False.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
Defaults to 20.
return_score: Whether to return the score. Defaults to False.
Returns:
List of Documents most similar to the query vector.
"""
return self.search(query=query, k=k, **kwargs)
[docs] def similarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.