id
stringlengths
14
16
text
stringlengths
29
2.31k
source
stringlengths
57
122
659f8d0d5ef6-0
Source code for langchain.vectorstores.faiss """Wrapper around FAISS vector database.""" from __future__ import annotations import pickle import uuid from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple import numpy as np from langchain.docstore.base import AddableMixin, Docstore from langchain.docstore.document import Document from langchain.docstore.in_memory import InMemoryDocstore from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance def dependable_faiss_import() -> Any: """Import faiss if available, otherwise raise error.""" try: import faiss except ImportError: raise ValueError( "Could not import faiss python package. " "Please install it with `pip install faiss` " "or `pip install faiss-cpu` (depending on Python version)." ) return faiss [docs]class FAISS(VectorStore): """Wrapper around FAISS vector database. To use, you should have the ``faiss`` python package installed. Example: .. code-block:: python from langchain import FAISS faiss = FAISS(embedding_function, index, docstore, index_to_docstore_id) """ def __init__( self,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
659f8d0d5ef6-1
def __init__( self, embedding_function: Callable, index: Any, docstore: Docstore, index_to_docstore_id: Dict[int, str], ): """Initialize with necessary components.""" self.embedding_function = embedding_function self.index = index self.docstore = docstore self.index_to_docstore_id = index_to_docstore_id def __add( self, texts: Iterable[str], embeddings: Iterable[List[float]], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: if not isinstance(self.docstore, AddableMixin): raise ValueError( "If trying to add texts, the underlying docstore should support " f"adding items, which {self.docstore} does not" ) documents = [] for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} documents.append(Document(page_content=text, metadata=metadata))
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
659f8d0d5ef6-2
documents.append(Document(page_content=text, metadata=metadata)) # Add to the index, the index_to_id mapping, and the docstore. starting_len = len(self.index_to_docstore_id) self.index.add(np.array(embeddings, dtype=np.float32)) # Get list of index, id, and docs. full_info = [ (starting_len + i, str(uuid.uuid4()), doc) for i, doc in enumerate(documents) ] # Add information to docstore and index. self.docstore.add({_id: doc for _, _id, doc in full_info}) index_to_id = {index: _id for index, _id, _ in full_info} self.index_to_docstore_id.update(index_to_id) return [_id for _, _id, _ in full_info] [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
659f8d0d5ef6-3
texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ if not isinstance(self.docstore, AddableMixin): raise ValueError( "If trying to add texts, the underlying docstore should support " f"adding items, which {self.docstore} does not" ) # Embed and create the documents. embeddings = [self.embedding_function(text) for text in texts] return self.__add(texts, embeddings, metadatas, **kwargs) [docs] def add_embeddings( self, text_embeddings: Iterable[Tuple[str, List[float]]], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: text_embeddings: Iterable pairs of string and embedding to add to the vectorstore.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
659f8d0d5ef6-4
add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ if not isinstance(self.docstore, AddableMixin): raise ValueError( "If trying to add texts, the underlying docstore should support " f"adding items, which {self.docstore} does not" ) # Embed and create the documents. texts = [te[0] for te in text_embeddings] embeddings = [te[1] for te in text_embeddings] return self.__add(texts, embeddings, metadatas, **kwargs) [docs] def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4 ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query and
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
659f8d0d5ef6-5
List of Documents most similar to the query and score for each """ scores, indices = self.index.search(np.array([embedding], dtype=np.float32), k) docs = [] for j, i in enumerate(indices[0]): if i == -1: # This happens when not enough docs are returned. continue _id = self.index_to_docstore_id[i] doc = self.docstore.search(_id) if not isinstance(doc, Document): raise ValueError(f"Could not find document for id {_id}, got {doc}") docs.append((doc, scores[0][j])) return docs [docs] def similarity_search_with_score( self, query: str, k: int = 4 ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
659f8d0d5ef6-6
Returns: List of Documents most similar to the query and score for each """ embedding = self.embedding_function(query) docs = self.similarity_search_with_score_by_vector(embedding, k) return docs [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the embedding. """ docs_and_scores = self.similarity_search_with_score_by_vector(embedding, k) return [doc for doc, _ in docs_and_scores] [docs] def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
659f8d0d5ef6-7
k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ docs_and_scores = self.similarity_search_with_score(query, k) return [doc for doc, _ in docs_and_scores] [docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20 ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Returns: List of Documents selected by maximal marginal relevance. """ _, indices = self.index.search(np.array([embedding], dtype=np.float32), fetch_k) # -1 happens when not enough docs are returned. embeddings = [self.index.reconstruct(int(i)) for i in indices[0] if i != -1] mmr_selected
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
659f8d0d5ef6-8
indices[0] if i != -1] mmr_selected = maximal_marginal_relevance( np.array([embedding], dtype=np.float32), embeddings, k=k ) selected_indices = [indices[0][i] for i in mmr_selected] docs = [] for i in selected_indices: if i == -1: # This happens when not enough docs are returned. continue _id = self.index_to_docstore_id[i] doc = self.docstore.search(_id) if not isinstance(doc, Document): raise ValueError(f"Could not find document for id {_id}, got {doc}") docs.append(doc) return docs [docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20 ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
659f8d0d5ef6-9
among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Returns: List of Documents selected by maximal marginal relevance. """ embedding = self.embedding_function(query) docs = self.max_marginal_relevance_search_by_vector(embedding, k, fetch_k) return docs [docs] def merge_from(self, target: FAISS) -> None: """Merge another FAISS object with the current one. Add the target FAISS to the current one. Args: target: FAISS object you wish to merge into the current one Returns: None. """ if not isinstance(self.docstore, AddableMixin): raise ValueError("Cannot merge with this type of docstore") # Numerical index for target docs are incremental on existing ones starting_len = len(self.index_to_docstore_id) # Merge two IndexFlatL2 self.index.merge_from(target.index)
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
659f8d0d5ef6-10
IndexFlatL2 self.index.merge_from(target.index) # Create new id for docs from target FAISS object full_info = [] for i in target.index_to_docstore_id: doc = target.docstore.search(target.index_to_docstore_id[i]) if not isinstance(doc, Document): raise ValueError("Document should be returned") full_info.append((starting_len + i, str(uuid.uuid4()), doc)) # Add information to docstore and index_to_docstore_id. self.docstore.add({_id: doc for _, _id, doc in full_info}) index_to_id = {index: _id for index, _id, _ in full_info} self.index_to_docstore_id.update(index_to_id) @classmethod def __from( cls, texts: List[str], embeddings: List[List[float]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> FAISS: faiss = dependable_faiss_import() index = faiss.IndexFlatL2(len(embeddings[0])) index.add(np.array(embeddings,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
659f8d0d5ef6-11
index.add(np.array(embeddings, dtype=np.float32)) documents = [] for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} documents.append(Document(page_content=text, metadata=metadata)) index_to_id = {i: str(uuid.uuid4()) for i in range(len(documents))} docstore = InMemoryDocstore( {index_to_id[i]: doc for i, doc in enumerate(documents)} ) return cls(embedding.embed_query, index, docstore, index_to_id) [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> FAISS: """Construct FAISS wrapper from raw documents. This is a user friendly interface that: 1. Embeds documents. 2. Creates an in memory docstore 3. Initializes the FAISS database This is intended to be a quick way to get started. Example:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
659f8d0d5ef6-12
be a quick way to get started. Example: .. code-block:: python from langchain import FAISS from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() faiss = FAISS.from_texts(texts, embeddings) """ embeddings = embedding.embed_documents(texts) return cls.__from(texts, embeddings, embedding, metadatas, **kwargs) [docs] @classmethod def from_embeddings( cls, text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> FAISS: """Construct FAISS wrapper from raw documents. This is a user friendly interface that: 1. Embeds documents. 2. Creates an in memory docstore 3. Initializes the FAISS database This is intended to be a quick way to get started. Example:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
659f8d0d5ef6-13
get started. Example: .. code-block:: python from langchain import FAISS from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() faiss = FAISS.from_texts(texts, embeddings) """ texts = [t[0] for t in text_embeddings] embeddings = [t[1] for t in text_embeddings] return cls.__from(texts, embeddings, embedding, metadatas, **kwargs) [docs] def save_local(self, folder_path: str, index_name: str = "index") -> None: """Save FAISS index, docstore, and index_to_docstore_id to disk. Args: folder_path: folder path to save index, docstore, and index_to_docstore_id to. index_name: for saving with a specific index file name """ path = Path(folder_path) path.mkdir(exist_ok=True, parents=True) # save index separately since it is not picklable faiss =
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
659f8d0d5ef6-14
index separately since it is not picklable faiss = dependable_faiss_import() faiss.write_index( self.index, str(path / "{index_name}.faiss".format(index_name=index_name)) ) # save docstore and index_to_docstore_id with open(path / "{index_name}.pkl".format(index_name=index_name), "wb") as f: pickle.dump((self.docstore, self.index_to_docstore_id), f) [docs] @classmethod def load_local( cls, folder_path: str, embeddings: Embeddings, index_name: str = "index" ) -> FAISS: """Load FAISS index, docstore, and index_to_docstore_id to disk. Args: folder_path: folder path to load index, docstore, and index_to_docstore_id from. embeddings: Embeddings to use when generating queries index_name: for saving with a specific index file name """ path = Path(folder_path) # load index separately since it is not picklable faiss = dependable_faiss_import() index = faiss.read_index(
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
659f8d0d5ef6-15
index = faiss.read_index( str(path / "{index_name}.faiss".format(index_name=index_name)) ) # load docstore and index_to_docstore_id with open(path / "{index_name}.pkl".format(index_name=index_name), "rb") as f: docstore, index_to_docstore_id = pickle.load(f) return cls(embeddings.embed_query, index, docstore, index_to_docstore_id) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/faiss.html
f07dd1af27f7-0
Source code for langchain.vectorstores.atlas """Wrapper around Atlas by Nomic.""" from __future__ import annotations import logging import uuid from typing import Any, Iterable, List, Optional, Type import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore logger = logging.getLogger() [docs]class AtlasDB(VectorStore): """Wrapper around Atlas: Nomic's neural database and rhizomatic instrument. To use, you should have the ``nomic`` python package installed. Example: .. code-block:: python from langchain.vectorstores import AtlasDB from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = AtlasDB("my_project", embeddings.embed_query) """ _ATLAS_DEFAULT_ID_FIELD = "atlas_id" def __init__( self, name: str, embedding_function: Optional[Embeddings] = None, api_key: Optional[str] = None, description: str = "A description for your project", is_public: bool = True, reset_project_if_exists: bool = False, ) -> None: """ Initialize
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
f07dd1af27f7-1
) -> None: """ Initialize the Atlas Client Args: name (str): The name of your project. If the project already exists, it will be loaded. embedding_function (Optional[Callable]): An optional function used for embedding your data. If None, data will be embedded with Nomic's embed model. api_key (str): Your nomic API key description (str): A description for your project. is_public (bool): Whether your project is publicly accessible. True by default. reset_project_if_exists (bool): Whether to reset this project if it already exists. Default False. Generally userful during development and testing. """ try: import nomic from nomic import AtlasProject except ImportError: raise ValueError( "Could not
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
f07dd1af27f7-2
ValueError( "Could not import nomic python package. " "Please install it with `pip install nomic`." ) if api_key is None: raise ValueError("No API key provided. Sign up at atlas.nomic.ai!") nomic.login(api_key) self._embedding_function = embedding_function modality = "text" if self._embedding_function is not None: modality = "embedding" # Check if the project exists, create it if not self.project = AtlasProject( name=name, description=description, modality=modality, is_public=is_public, reset_project_if_exists=reset_project_if_exists, unique_id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, ) self.project._latest_project_state() [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
f07dd1af27f7-3
Optional[List[dict]] = None, ids: Optional[List[str]] = None, refresh: bool = True, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]]): An optional list of ids. refresh(bool): Whether or not to refresh indices with the updated data. Default True. Returns: List[str]: List of IDs of the added texts. """ if ( metadatas is not None and len(metadatas) > 0 and "text" in metadatas[0].keys() ): raise ValueError("Cannot accept key text in metadata!") texts = list(texts) if ids is None: ids = [str(uuid.uuid1()) for _ in texts]
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
f07dd1af27f7-4
ids = [str(uuid.uuid1()) for _ in texts] # Embedding upload case if self._embedding_function is not None: _embeddings = self._embedding_function.embed_documents(texts) embeddings = np.stack(_embeddings) if metadatas is None: data = [ {AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i], "text": texts[i]} for i, _ in enumerate(texts) ] else: for i in range(len(metadatas)): metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i] metadatas[i]["text"] = texts[i] data = metadatas self.project._validate_map_data_inputs( [], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data )
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
f07dd1af27f7-5
data=data ) with self.project.wait_for_project_lock(): self.project.add_embeddings(embeddings=embeddings, data=data) # Text upload case else: if metadatas is None: data = [ {"text": text, AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i]} for i, text in enumerate(texts) ] else: for i, text in enumerate(texts): metadatas[i]["text"] = texts metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i] data = metadatas self.project._validate_map_data_inputs( [], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data ) with
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
f07dd1af27f7-6
) with self.project.wait_for_project_lock(): self.project.add_text(data) if refresh: if len(self.project.indices) > 0: with self.project.wait_for_project_lock(): self.project.rebuild_maps() return ids [docs] def create_index(self, **kwargs: Any) -> Any: """Creates an index in your project. See https://docs.nomic.ai/atlas_api.html#nomic.project.AtlasProject.create_index for full detail. """ with self.project.wait_for_project_lock(): return self.project.create_index(**kwargs) [docs] def similarity_search( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Document]: """Run similarity search with AtlasDB Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
f07dd1af27f7-7
k (int): Number of results to return. Defaults to 4. Returns: List[Document]: List of documents most similar to the query text. """ if self._embedding_function is None: raise NotImplementedError( "AtlasDB requires an embedding_function for text similarity search!" ) _embedding = self._embedding_function.embed_documents([query])[0] embedding = np.array(_embedding).reshape(1, -1) with self.project.wait_for_project_lock(): neighbors, _ = self.project.projections[0].vector_search( queries=embedding, k=k ) datas = self.project.get_data(ids=neighbors[0]) docs = [ Document(page_content=datas[i]["text"], metadata=datas[i]) for i, neighbor in enumerate(neighbors) ] return docs [docs] @classmethod def from_texts( cls: Type[AtlasDB], texts: List[str], embedding: Optional[Embeddings] = None,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
f07dd1af27f7-8
embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, name: Optional[str] = None, api_key: Optional[str] = None, description: str = "A description for your project", is_public: bool = True, reset_project_if_exists: bool = False, index_kwargs: Optional[dict] = None, **kwargs: Any, ) -> AtlasDB: """Create an AtlasDB vectorstore from a raw documents. Args: texts (List[str]): The list of texts to ingest. name (str): Name of the project to create. api_key (str): Your nomic API key, embedding (Optional[Embeddings]): Embedding function. Defaults to None. metadatas (Optional[List[dict]]): List of metadatas. Defaults to None. ids (Optional[List[str]]): Optional list of document IDs. If None, ids will be auto created description (str): A description for your project.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
f07dd1af27f7-9
(str): A description for your project. is_public (bool): Whether your project is publicly accessible. True by default. reset_project_if_exists (bool): Whether to reset this project if it already exists. Default False. Generally userful during development and testing. index_kwargs (Optional[dict]): Dict of kwargs for index creation. See https://docs.nomic.ai/atlas_api.html Returns: AtlasDB: Nomic's neural database and finest rhizomatic instrument """ if name is None or api_key is None: raise ValueError("`name` and `api_key` cannot be None.") # Inject relevant kwargs all_index_kwargs = {"name": name + "_index", "indexed_field": "text"} if index_kwargs is not None: for k, v in index_kwargs.items(): all_index_kwargs[k] = v # Build project atlasDB = cls( name,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
f07dd1af27f7-10
name, embedding_function=embedding, api_key=api_key, description="A description for your project", is_public=is_public, reset_project_if_exists=reset_project_if_exists, ) with atlasDB.project.wait_for_project_lock(): atlasDB.add_texts(texts=texts, metadatas=metadatas, ids=ids) atlasDB.create_index(**all_index_kwargs) return atlasDB [docs] @classmethod def from_documents( cls: Type[AtlasDB], documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None, name: Optional[str] = None, api_key: Optional[str] = None, persist_directory: Optional[str] = None, description: str = "A description for your project", is_public: bool = True, reset_project_if_exists: bool = False, index_kwargs: Optional[dict] = None, **kwargs: Any, ) -> AtlasDB:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
f07dd1af27f7-11
**kwargs: Any, ) -> AtlasDB: """Create an AtlasDB vectorstore from a list of documents. Args: name (str): Name of the collection to create. api_key (str): Your nomic API key, documents (List[Document]): List of documents to add to the vectorstore. embedding (Optional[Embeddings]): Embedding function. Defaults to None. ids (Optional[List[str]]): Optional list of document IDs. If None, ids will be auto created description (str): A description for your project. is_public (bool): Whether your project is publicly accessible. True by default. reset_project_if_exists (bool): Whether to reset this project if it already exists. Default False. Generally userful during development and testing. index_kwargs (Optional[dict]): Dict of kwargs for index creation. See https://docs.nomic.ai/atlas_api.html Returns: AtlasDB: Nomic's neural database
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
f07dd1af27f7-12
AtlasDB: Nomic's neural database and finest rhizomatic instrument """ if name is None or api_key is None: raise ValueError("`name` and `api_key` cannot be None.") texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( name=name, api_key=api_key, texts=texts, embedding=embedding, metadatas=metadatas, ids=ids, description=description, is_public=is_public, reset_project_if_exists=reset_project_if_exists, index_kwargs=index_kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/atlas.html
ed65811b5a99-0
Source code for langchain.vectorstores.base """Interface for vector stores.""" from __future__ import annotations import asyncio from abc import ABC, abstractmethod from functools import partial from typing import Any, Dict, Iterable, List, Optional, Type, TypeVar from pydantic import BaseModel, Field, root_validator from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.schema import BaseRetriever VST = TypeVar("VST", bound="VectorStore") [docs]class VectorStore(ABC): """Interface for vector stores.""" [docs] @abstractmethod def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ [docs] async def aadd_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
ed65811b5a99-1
metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore.""" raise NotImplementedError [docs] def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: """Run more documents through the embeddings and add to the vectorstore. Args: documents (List[Document]: Documents to add to the vectorstore. Returns: List[str]: List of IDs of the added texts. """ # TODO: Handle the case where the user doesn't provide ids on the Collection texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return self.add_texts(texts, metadatas, **kwargs) [docs] async def aadd_documents( self, documents: List[Document], **kwargs: Any ) -> List[str]: """Run more documents through the embeddings and add to the vectorstore. Args: documents (List[Document]: Documents to add to the vectorstore. Returns: List[str]: List of IDs of the added texts.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
ed65811b5a99-2
List[str]: List of IDs of the added texts. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return await self.aadd_texts(texts, metadatas, **kwargs) [docs] @abstractmethod def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query.""" [docs] async def asimilarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query.""" # This is a temporary workaround to make the similarity search # asynchronous. The proper solution is to make the similarity search # asynchronous in the vector store implementations. func = partial(self.similarity_search, query, k, **kwargs) return await asyncio.get_event_loop().run_in_executor(None, func) [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
ed65811b5a99-3
embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query vector. """ raise NotImplementedError [docs] async def asimilarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to embedding vector.""" # This is a temporary workaround to make the similarity search # asynchronous. The proper solution is to make the similarity search # asynchronous in the vector store implementations. func = partial(self.similarity_search_by_vector, embedding, k, **kwargs) return await asyncio.get_event_loop().run_in_executor(None, func) [docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20 ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
ed65811b5a99-4
look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Returns: List of Documents selected by maximal marginal relevance. """ raise NotImplementedError [docs] async def amax_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20 ) -> List[Document]: """Return docs selected using the maximal marginal relevance.""" # This is a temporary workaround to make the similarity search # asynchronous. The proper solution is to make the similarity search # asynchronous in the vector store implementations. func = partial(self.max_marginal_relevance_search, query, k, fetch_k) return await asyncio.get_event_loop().run_in_executor(None, func) [docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20 ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
ed65811b5a99-5
Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Returns: List of Documents selected by maximal marginal relevance. """ raise NotImplementedError [docs] async def amax_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20 ) -> List[Document]: """Return docs selected using the maximal marginal relevance.""" raise NotImplementedError [docs] @classmethod def from_documents( cls: Type[VST], documents: List[Document], embedding: Embeddings, **kwargs: Any, ) -> VST: """Return VectorStore initialized from documents and embeddings.""" texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs) [docs] @classmethod async def afrom_documents( cls: Type[VST],
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
ed65811b5a99-6
cls: Type[VST], documents: List[Document], embedding: Embeddings, **kwargs: Any, ) -> VST: """Return VectorStore initialized from documents and embeddings.""" texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] return await cls.afrom_texts(texts, embedding, metadatas=metadatas, **kwargs) [docs] @classmethod @abstractmethod def from_texts( cls: Type[VST], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> VST: """Return VectorStore initialized from texts and embeddings.""" [docs] @classmethod async def afrom_texts( cls: Type[VST], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> VST: """Return VectorStore initialized from texts and embeddings.""" raise NotImplementedError [docs] def as_retriever(self, **kwargs: Any) ->
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
ed65811b5a99-7
def as_retriever(self, **kwargs: Any) -> BaseRetriever: return VectorStoreRetriever(vectorstore=self, **kwargs) class VectorStoreRetriever(BaseRetriever, BaseModel): vectorstore: VectorStore search_type: str = "similarity" search_kwargs: dict = Field(default_factory=dict) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True @root_validator() def validate_search_type(cls, values: Dict) -> Dict: """Validate search type.""" if "search_type" in values: search_type = values["search_type"] if search_type not in ("similarity", "mmr"): raise ValueError(f"search_type of {search_type} not allowed.") return values def get_relevant_documents(self, query: str) -> List[Document]: if self.search_type == "similarity": docs = self.vectorstore.similarity_search(query, **self.search_kwargs) elif self.search_type == "mmr": docs = self.vectorstore.max_marginal_relevance_search( query, **self.search_kwargs ) else:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
ed65811b5a99-8
) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs async def aget_relevant_documents(self, query: str) -> List[Document]: if self.search_type == "similarity": docs = await self.vectorstore.asimilarity_search( query, **self.search_kwargs ) elif self.search_type == "mmr": docs = await self.vectorstore.amax_marginal_relevance_search( query, **self.search_kwargs ) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: """Add documents to vectorstore.""" return self.vectorstore.add_documents(documents, **kwargs) async def aadd_documents( self, documents: List[Document], **kwargs: Any ) -> List[str]: """Add documents to vectorstore.""" return await self.vectorstore.aadd_documents(documents, **kwargs) By Harrison
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
ed65811b5a99-9
return await self.vectorstore.aadd_documents(documents, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/base.html
49d8bf8634c4-0
Source code for langchain.vectorstores.qdrant """Wrapper around Qdrant vector database.""" from __future__ import annotations import uuid from operator import itemgetter from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Type, Union from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance MetadataFilter = Dict[str, Union[str, int, bool]] [docs]class Qdrant(VectorStore): """Wrapper around Qdrant vector database. To use you should have the ``qdrant-client`` package installed. Example: .. code-block:: python from qdrant_client import QdrantClient from langchain import Qdrant client = QdrantClient() collection_name = "MyCollection" qdrant = Qdrant(client, collection_name, embedding_function) """ CONTENT_KEY = "page_content" METADATA_KEY = "metadata" def __init__( self, client: Any, collection_name: str, embedding_function: Callable, content_payload_key: str = CONTENT_KEY, metadata_payload_key: str = METADATA_KEY, ): """Initialize with necessary components."""
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
49d8bf8634c4-1
): """Initialize with necessary components.""" try: import qdrant_client except ImportError: raise ValueError( "Could not import qdrant-client python package. " "Please install it with `pip install qdrant-client`." ) if not isinstance(client, qdrant_client.QdrantClient): raise ValueError( f"client should be an instance of qdrant_client.QdrantClient, " f"got {type(client)}" ) self.client: qdrant_client.QdrantClient = client self.collection_name = collection_name self.embedding_function = embedding_function self.content_payload_key = content_payload_key or self.CONTENT_KEY self.metadata_payload_key = metadata_payload_key or self.METADATA_KEY [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
49d8bf8634c4-2
**kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ from qdrant_client.http import models as rest ids = [uuid.uuid4().hex for _ in texts] self.client.upsert( collection_name=self.collection_name, points=rest.Batch.construct( ids=ids, vectors=[self.embedding_function(text) for text in texts], payloads=self._build_payloads( texts, metadatas, self.content_payload_key, self.metadata_payload_key, ),
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
49d8bf8634c4-3
), ), ) return ids [docs] def similarity_search( self, query: str, k: int = 4, filter: Optional[MetadataFilter] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query. """ results = self.similarity_search_with_score(query, k, filter) return list(map(itemgetter(0), results)) [docs] def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[MetadataFilter] = None ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
49d8bf8634c4-4
query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. Returns: List of Documents most similar to the query and score for each. """ embedding = self.embedding_function(query) results = self.client.search( collection_name=self.collection_name, query_vector=embedding, query_filter=self._qdrant_filter_from_dict(filter), with_payload=True, limit=k, ) return [ ( self._document_from_scored_point( result, self.content_payload_key, self.metadata_payload_key ), result.score, ) for result in results ] [docs] def max_marginal_relevance_search( self, query: str, k: int = 4,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
49d8bf8634c4-5
self, query: str, k: int = 4, fetch_k: int = 20 ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. Returns: List of Documents selected by maximal marginal relevance. """ embedding = self.embedding_function(query) results = self.client.search( collection_name=self.collection_name, query_vector=embedding, with_payload=True, with_vectors=True, limit=fetch_k, ) embeddings = [result.vector for result in results] mmr_selected = maximal_marginal_relevance(embedding, embeddings, k=k) return [
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
49d8bf8634c4-6
k=k) return [ self._document_from_scored_point( results[i], self.content_payload_key, self.metadata_payload_key ) for i in mmr_selected ] [docs] @classmethod def from_texts( cls: Type[Qdrant], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, location: Optional[str] = None, url: Optional[str] = None, port: Optional[int] = 6333, grpc_port: int = 6334, prefer_grpc: bool = False, https: Optional[bool] = None, api_key: Optional[str] = None, prefix: Optional[str] = None, timeout: Optional[float] = None, host: Optional[str] = None, path: Optional[str] = None, collection_name: Optional[str] = None, distance_func: str = "Cosine", content_payload_key: str = CONTENT_KEY, metadata_payload_key:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
49d8bf8634c4-7
content_payload_key: str = CONTENT_KEY, metadata_payload_key: str = METADATA_KEY, **kwargs: Any, ) -> Qdrant: """Construct Qdrant wrapper from a list of texts. Args: texts: A list of texts to be indexed in Qdrant. embedding: A subclass of `Embeddings`, responsible for text vectorization. metadatas: An optional list of metadata. If provided it has to be of the same length as a list of texts. location: If `:memory:` - use in-memory Qdrant instance. If `str` - use it as a `url` parameter. If `None` - fallback to relying on `host` and `port` parameters. url: either host or str of "Optional[scheme], host, Optional[port], Optional[prefix]". Default: `None` port: Port of the REST API interface. Default: 6333 grpc_port: Port of the gRPC interface. Default:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
49d8bf8634c4-8
grpc_port: Port of the gRPC interface. Default: 6334 prefer_grpc: If true - use gPRC interface whenever possible in custom methods. Default: False https: If true - use HTTPS(SSL) protocol. Default: None api_key: API key for authentication in Qdrant Cloud. Default: None prefix: If not None - add prefix to the REST URL path. Example: service/v1 will result in http://localhost:6333/service/v1/{qdrant-endpoint} for REST API. Default: None timeout: Timeout for REST and gRPC API requests. Default: 5.0 seconds for REST and unlimited for gRPC host: Host name of Qdrant service. If url and host are None, set to 'localhost'. Default: None
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
49d8bf8634c4-9
'localhost'. Default: None path: Path in which the vectors will be stored while using local mode. Default: None collection_name: Name of the Qdrant collection to be used. If not provided, it will be created randomly. Default: None distance_func: Distance function. One of: "Cosine" / "Euclid" / "Dot". Default: "Cosine" content_payload_key: A payload key used to store the content of the document. Default: "page_content" metadata_payload_key: A payload key used to store the metadata of the document. Default: "metadata" **kwargs: Additional arguments passed directly into REST client initialization This is a user friendly interface that:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
49d8bf8634c4-10
This is a user friendly interface that: 1. Creates embeddings, one for each text 2. Initializes the Qdrant database as an in-memory docstore by default (and overridable to a remote docstore) 3. Adds the text embeddings to the Qdrant database This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import Qdrant from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() qdrant = Qdrant.from_texts(texts, embeddings, "localhost") """ try: import qdrant_client except ImportError: raise ValueError( "Could not import qdrant-client python package. " "Please install it with `pip install qdrant-client`." ) from
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
49d8bf8634c4-11
) from qdrant_client.http import models as rest # Just do a single quick embedding to get vector size partial_embeddings = embedding.embed_documents(texts[:1]) vector_size = len(partial_embeddings[0]) collection_name = collection_name or uuid.uuid4().hex distance_func = distance_func.upper() client = qdrant_client.QdrantClient( location=location, url=url, port=port, grpc_port=grpc_port, prefer_grpc=prefer_grpc, https=https, api_key=api_key, prefix=prefix, timeout=timeout, host=host, path=path, **kwargs, ) client.recreate_collection( collection_name=collection_name, vectors_config=rest.VectorParams( size=vector_size,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
49d8bf8634c4-12
size=vector_size, distance=rest.Distance[distance_func], ), ) # Now generate the embeddings for all the texts embeddings = embedding.embed_documents(texts) client.upsert( collection_name=collection_name, points=rest.Batch.construct( ids=[uuid.uuid4().hex for _ in texts], vectors=embeddings, payloads=cls._build_payloads( texts, metadatas, content_payload_key, metadata_payload_key ), ), ) return cls( client=client, collection_name=collection_name, embedding_function=embedding.embed_query, content_payload_key=content_payload_key, metadata_payload_key=metadata_payload_key, ) @classmethod def _build_payloads(
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
49d8bf8634c4-13
@classmethod def _build_payloads( cls, texts: Iterable[str], metadatas: Optional[List[dict]], content_payload_key: str, metadata_payload_key: str, ) -> List[dict]: payloads = [] for i, text in enumerate(texts): if text is None: raise ValueError( "At least one of the texts is None. Please remove it before " "calling .from_texts or .add_texts on Qdrant instance." ) metadata = metadatas[i] if metadatas is not None else None payloads.append( { content_payload_key: text, metadata_payload_key: metadata, } ) return payloads @classmethod def _document_from_scored_point(
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
49d8bf8634c4-14
def _document_from_scored_point( cls, scored_point: Any, content_payload_key: str, metadata_payload_key: str, ) -> Document: return Document( page_content=scored_point.payload.get(content_payload_key), metadata=scored_point.payload.get(metadata_payload_key) or {}, ) def _qdrant_filter_from_dict(self, filter: Optional[MetadataFilter]) -> Any: if filter is None or 0 == len(filter): return None from qdrant_client.http import models as rest return rest.Filter( must=[ rest.FieldCondition( key=f"{self.metadata_payload_key}.{key}", match=rest.MatchValue(value=value), ) for key, value in filter.items() ] ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
49d8bf8634c4-15
Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/qdrant.html
637c522171ca-0
Source code for langchain.vectorstores.milvus """Wrapper around the Milvus vector database.""" from __future__ import annotations import uuid from typing import Any, Iterable, List, Optional, Tuple import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance [docs]class Milvus(VectorStore): """Wrapper around the Milvus vector database.""" def __init__( self, embedding_function: Embeddings, connection_args: dict, collection_name: str, text_field: str, ): """Initialize wrapper around the milvus vector database. In order to use this you need to have `pymilvus` installed and a running Milvus instance. See the following documentation for how to run a Milvus instance: https://milvus.io/docs/install_standalone-docker.md Args: embedding_function (Embeddings): Function used to embed the text connection_args (dict): Arguments for pymilvus connections.connect() collection_name (str): The name of the collection to search. text_field (str): The field in Milvus schema where the
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
637c522171ca-1
(str): The field in Milvus schema where the original text is stored. """ try: from pymilvus import Collection, DataType, connections except ImportError: raise ValueError( "Could not import pymilvus python package. " "Please install it with `pip install pymilvus`." ) # Connecting to Milvus instance if not connections.has_connection("default"): connections.connect(**connection_args) self.embedding_func = embedding_function self.collection_name = collection_name self.text_field = text_field self.auto_id = False self.primary_field = None self.vector_field = None self.fields = [] self.col = Collection(self.collection_name) schema = self.col.schema # Grabbing the fields for the existing collection. for x in schema.fields: self.fields.append(x.name) if x.auto_id:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
637c522171ca-2
if x.auto_id: self.fields.remove(x.name) if x.is_primary: self.primary_field = x.name if x.dtype == DataType.FLOAT_VECTOR or x.dtype == DataType.BINARY_VECTOR: self.vector_field = x.name # Default search params when one is not provided. self.index_params = { "IVF_FLAT": {"params": {"nprobe": 10}}, "IVF_SQ8": {"params": {"nprobe": 10}}, "IVF_PQ": {"params": {"nprobe": 10}}, "HNSW": {"params": {"ef": 10}}, "RHNSW_FLAT": {"params": {"ef": 10}}, "RHNSW_SQ": {"params": {"ef": 10}}, "RHNSW_PQ": {"params": {"ef": 10}}, "IVF_HNSW": {"params": {"nprobe": 10, "ef": 10}}, "ANNOY": {"params": {"search_k": 10}},
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
637c522171ca-3
"ANNOY": {"params": {"search_k": 10}}, } [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, partition_name: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any, ) -> List[str]: """Insert text data into Milvus. When using add_texts() it is assumed that a collecton has already been made and indexed. If metadata is included, it is assumed that it is ordered correctly to match the schema provided to the Collection and that the embedding vector is the first schema field. Args: texts (Iterable[str]): The text being embedded and inserted. metadatas (Optional[List[dict]], optional): The metadata that corresponds to each insert. Defaults to None. partition_name (str, optional): The partition of the collection to insert data into. Defaults to None. timeout: specified timeout. Returns: List[str]: The resulting keys for
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
637c522171ca-4
Returns: List[str]: The resulting keys for each inserted element. """ insert_dict: Any = {self.text_field: list(texts)} try: insert_dict[self.vector_field] = self.embedding_func.embed_documents( list(texts) ) except NotImplementedError: insert_dict[self.vector_field] = [ self.embedding_func.embed_query(x) for x in texts ] # Collect the metadata into the insert dict. if len(self.fields) > 2 and metadatas is not None: for d in metadatas: for key, value in d.items(): if key in self.fields: insert_dict.setdefault(key, []).append(value) # Convert dict to list of lists for insertion insert_list = [insert_dict[x] for x in self.fields] # Insert into the collection. res = self.col.insert( insert_list,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
637c522171ca-5
res = self.col.insert( insert_list, partition_name=partition_name, timeout=timeout ) # Flush to make sure newly inserted is immediately searchable. self.col.flush() return res.primary_keys def _worker_search( self, query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = -1, timeout: Optional[int] = None, **kwargs: Any, ) -> Tuple[List[float], List[Tuple[Document, Any, Any]]]: # Load the collection into memory for searching. self.col.load() # Decide to use default params if not passed in. if param is None: index_type = self.col.indexes[0].params["index_type"] param = self.index_params[index_type] # Embed the query text. data = [self.embedding_func.embed_query(query)] # Determine result metadata fields. output_fields = self.fields[:]
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
637c522171ca-6
output_fields = self.fields[:] output_fields.remove(self.vector_field) # Perform the search. res = self.col.search( data, self.vector_field, param, k, expr=expr, output_fields=output_fields, partition_names=partition_names, round_decimal=round_decimal, timeout=timeout, **kwargs, ) # Organize results. ret = [] for result in res[0]: meta = {x: result.entity.get(x) for x in output_fields} ret.append( ( Document(page_content=meta.pop(self.text_field), metadata=meta), result.distance, result.id, )
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
637c522171ca-7
) ) return data[0], ret [docs] def similarity_search_with_score( self, query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = -1, timeout: Optional[int] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Perform a search on a query string and return results. Args: query (str): The text being searched. k (int, optional): The amount of results ot return. Defaults to 4. param (dict, optional): The search params for the specified index. Defaults to None. expr (str, optional): Filtering expression. Defaults to None. partition_names (List[str], optional): Partitions to search through. Defaults to None. round_decimal (int, optional): Round the resulting
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
637c522171ca-8
round_decimal (int, optional): Round the resulting distance. Defaults to -1. timeout (int, optional): Amount to wait before timeout error. Defaults to None. kwargs: Collection.search() keyword arguments. Returns: List[float], List[Tuple[Document, any, any]]: search_embedding, (Document, distance, primary_field) results. """ _, result = self._worker_search( query, k, param, expr, partition_names, round_decimal, timeout, **kwargs ) return [(x, y) for x, y, _ in result] [docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = -1, timeout: Optional[int] = None,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
637c522171ca-9
timeout: Optional[int] = None, **kwargs: Any, ) -> List[Document]: """Perform a search and return results that are reordered by MMR. Args: query (str): The text being searched. k (int, optional): How many results to give. Defaults to 4. fetch_k (int, optional): Total results to select k from. Defaults to 20. param (dict, optional): The search params for the specified index. Defaults to None. expr (str, optional): Filtering expression. Defaults to None. partition_names (List[str], optional): What partitions to search. Defaults to None. round_decimal (int, optional): Round the resulting distance. Defaults to -1. timeout (int, optional): Amount to wait before timeout error. Defaults to None. Returns: List[Document]: Document results for search. """
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
637c522171ca-10
Document results for search. """ data, res = self._worker_search( query, fetch_k, param, expr, partition_names, round_decimal, timeout, **kwargs, ) # Extract result IDs. ids = [x for _, _, x in res] # Get the raw vectors from Milvus. vectors = self.col.query( expr=f"{self.primary_field} in {ids}", output_fields=[self.primary_field, self.vector_field], ) # Reorganize the results from query to match result order. vectors = {x[self.primary_field]: x[self.vector_field] for x in vectors} search_embedding = data ordered_result_embeddings = [vectors[x] for x in ids] # Get the new order of results. new_ordering = maximal_marginal_relevance( np.array(search_embedding), ordered_result_embeddings, k=k )
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
637c522171ca-11
ordered_result_embeddings, k=k ) # Reorder the values and return. ret = [] for x in new_ordering: if x == -1: break else: ret.append(res[x][0]) return ret [docs] def similarity_search( self, query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = -1, timeout: Optional[int] = None, **kwargs: Any, ) -> List[Document]: """Perform a similarity search against the query string. Args: query (str): The text to search. k (int, optional): How many results to return. Defaults to 4. param (dict, optional): The search params for the index type. Defaults to None.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
637c522171ca-12
Defaults to None. expr (str, optional): Filtering expression. Defaults to None. partition_names (List[str], optional): What partitions to search. Defaults to None. round_decimal (int, optional): What decimal point to round to. Defaults to -1. timeout (int, optional): How long to wait before timeout error. Defaults to None. Returns: List[Document]: Document results for search. """ _, docs_and_scores = self._worker_search( query, k, param, expr, partition_names, round_decimal, timeout, **kwargs ) return [doc for doc, _, _ in docs_and_scores] [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> Milvus: """Create a Milvus collection, indexes it with HNSW, and insert data.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
637c522171ca-13
a Milvus collection, indexes it with HNSW, and insert data. Args: texts (List[str]): Text to insert. embedding (Embeddings): Embedding function to use. metadatas (Optional[List[dict]], optional): Dict metatadata. Defaults to None. Returns: VectorStore: The Milvus vector store. """ try: from pymilvus import ( Collection, CollectionSchema, DataType, FieldSchema, connections, ) from pymilvus.orm.types import infer_dtype_bydata except ImportError: raise ValueError( "Could not import pymilvus python package. " "Please install it with `pip install pymilvus`." )
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
637c522171ca-14
) # Connect to Milvus instance if not connections.has_connection("default"): connections.connect(**kwargs.get("connection_args", {"port": 19530})) # Determine embedding dim embeddings = embedding.embed_query(texts[0]) dim = len(embeddings) # Generate unique names primary_field = "c" + str(uuid.uuid4().hex) vector_field = "c" + str(uuid.uuid4().hex) text_field = "c" + str(uuid.uuid4().hex) collection_name = "c" + str(uuid.uuid4().hex) fields = [] # Determine metadata schema if metadatas: # Check if all metadata keys line up key = metadatas[0].keys() for x in metadatas: if key != x.keys(): raise ValueError( "Mismatched metadata. " "Make sure all metadata
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
637c522171ca-15
"Make sure all metadata has the same keys and datatype." ) # Create FieldSchema for each entry in singular metadata. for key, value in metadatas[0].items(): # Infer the corresponding datatype of the metadata dtype = infer_dtype_bydata(value) if dtype == DataType.UNKNOWN: raise ValueError(f"Unrecognized datatype for {key}.") elif dtype == DataType.VARCHAR: # Find out max length text based metadata max_length = 0 for subvalues in metadatas: max_length = max(max_length, len(subvalues[key])) fields.append( FieldSchema(key, DataType.VARCHAR, max_length=max_length + 1)
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
637c522171ca-16
max_length=max_length + 1) ) else: fields.append(FieldSchema(key, dtype)) # Find out max length of texts max_length = 0 for y in texts: max_length = max(max_length, len(y)) # Create the text field fields.append( FieldSchema(text_field, DataType.VARCHAR, max_length=max_length + 1) ) # Create the primary key field fields.append( FieldSchema(primary_field, DataType.INT64, is_primary=True, auto_id=True) ) # Create the vector field fields.append(FieldSchema(vector_field, DataType.FLOAT_VECTOR, dim=dim)) # Create the schema for the collection schema = CollectionSchema(fields) # Create the collection collection = Collection(collection_name, schema) # Index parameters for the collection index = { "index_type": "HNSW",
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
637c522171ca-17
"index_type": "HNSW", "metric_type": "L2", "params": {"M": 8, "efConstruction": 64}, } # Create the index collection.create_index(vector_field, index) # Create the VectorStore milvus = cls( embedding, kwargs.get("connection_args", {"port": 19530}), collection_name, text_field, ) # Add the texts. milvus.add_texts(texts, metadatas) return milvus By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/milvus.html
8b1de501dd51-0
Source code for langchain.vectorstores.chroma """Wrapper around ChromaDB embeddings platform.""" from __future__ import annotations import logging import uuid from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Type import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance if TYPE_CHECKING: import chromadb import chromadb.config logger = logging.getLogger() def _results_to_docs(results: Any) -> List[Document]: return [doc for doc, _ in _results_to_docs_and_scores(results)] def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]: return [ # TODO: Chroma can do batch querying, # we shouldn't hard code to the 1st result (Document(page_content=result[0], metadata=result[1] or {}), result[2]) for result in zip( results["documents"][0], results["metadatas"][0], results["distances"][0], ) ] [docs]class Chroma(VectorStore): """Wrapper around ChromaDB embeddings platform. To use, you should have the ``chromadb`` python package installed. Example: .. code-block:: python from
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
8b1de501dd51-1
python from langchain.vectorstores import Chroma from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = Chroma("langchain_store", embeddings.embed_query) """ _LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain" def __init__( self, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, embedding_function: Optional[Embeddings] = None, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, collection_metadata: Optional[Dict] = None, ) -> None: """Initialize with Chroma client.""" try: import chromadb import chromadb.config except ImportError: raise ValueError( "Could not import chromadb python package. " "Please install it with `pip install chromadb`." ) if client_settings:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
8b1de501dd51-2
if client_settings: self._client_settings = client_settings else: self._client_settings = chromadb.config.Settings() if persist_directory is not None: self._client_settings = chromadb.config.Settings( chroma_db_impl="duckdb+parquet", persist_directory=persist_directory ) self._client = chromadb.Client(self._client_settings) self._embedding_function = embedding_function self._persist_directory = persist_directory self._collection = self._client.get_or_create_collection( name=collection_name, embedding_function=self._embedding_function.embed_documents if self._embedding_function is not None else None, metadata=collection_metadata, ) [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) ->
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
8b1de501dd51-3
= None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. Returns: List[str]: List of IDs of the added texts. """ # TODO: Handle the case where the user doesn't provide ids on the Collection if ids is None: ids = [str(uuid.uuid1()) for _ in texts] embeddings = None if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(list(texts)) self._collection.add( metadatas=metadatas, embeddings=embeddings, documents=texts, ids=ids ) return ids [docs] def similarity_search( self, query: str, k: int = 4, filter: Optional[Dict[str,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
8b1de501dd51-4
int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Run similarity search with Chroma. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Document]: List of documents most similar to the query text. """ docs_and_scores = self.similarity_search_with_score(query, k, filter=filter) return [doc for doc, _ in docs_and_scores] [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
8b1de501dd51-5
Documents to return. Defaults to 4. Returns: List of Documents most similar to the query vector. """ results = self._collection.query( query_embeddings=embedding, n_results=k, where=filter ) return _results_to_docs(results) [docs] def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Run similarity search with Chroma with distance. Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text with distance in float. """ if self._embedding_function is None: results = self._collection.query(
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
8b1de501dd51-6
results = self._collection.query( query_texts=[query], n_results=k, where=filter ) else: query_embedding = self._embedding_function.embed_query(query) results = self._collection.query( query_embeddings=[query_embedding], n_results=k, where=filter ) return _results_to_docs_and_scores(results) [docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, filter: Optional[Dict[str, str]] = None, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. filter
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
8b1de501dd51-7
fetch to pass to MMR algorithm. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ results = self._collection.query( query_embeddings=embedding, n_results=fetch_k, where=filter, include=["metadatas", "documents", "distances", "embeddings"], ) mmr_selected = maximal_marginal_relevance( np.array(embedding, dtype=np.float32), results["embeddings"][0], k=k ) candidates = _results_to_docs(results) selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected] return selected_results [docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, filter: Optional[Dict[str, str]] = None, ) -> List[Document]: """Return docs selected using the maximal marginal relevance.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
8b1de501dd51-8
"""Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ if self._embedding_function is None: raise ValueError( "For MMR search, you must specify an embedding function on" "creation." ) embedding = self._embedding_function.embed_query(query) docs = self.max_marginal_relevance_search_by_vector( embedding, k, fetch_k, filter ) return docs [docs] def delete_collection(self) -> None: """Delete the collection.""" self._client.delete_collection(self._collection.name) [docs] def persist(self) -> None:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
8b1de501dd51-9
def persist(self) -> None: """Persist the collection. This can be used to explicitly persist the data to disk. It will also be called automatically when the object is destroyed. """ if self._persist_directory is None: raise ValueError( "You must specify a persist_directory on" "creation to persist the collection." ) self._client.persist() [docs] @classmethod def from_texts( cls: Type[Chroma], texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, **kwargs: Any, ) -> Chroma: """Create a Chroma vectorstore from a raw documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
8b1de501dd51-10
Otherwise, the data will be ephemeral in-memory. Args: texts (List[str]): List of texts to add to the collection. collection_name (str): Name of the collection to create. persist_directory (Optional[str]): Directory to persist the collection. embedding (Optional[Embeddings]): Embedding function. Defaults to None. metadatas (Optional[List[dict]]): List of metadatas. Defaults to None. ids (Optional[List[str]]): List of document IDs. Defaults to None. client_settings (Optional[chromadb.config.Settings]): Chroma client settings Returns: Chroma: Chroma vectorstore. """ chroma_collection = cls( collection_name=collection_name, embedding_function=embedding, persist_directory=persist_directory, client_settings=client_settings, ) chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids) return chroma_collection [docs] @classmethod def from_documents( cls: Type[Chroma],
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
8b1de501dd51-11
def from_documents( cls: Type[Chroma], documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None, collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, **kwargs: Any, ) -> Chroma: """Create a Chroma vectorstore from a list of documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Args: collection_name (str): Name of the collection to create. persist_directory (Optional[str]): Directory to persist the collection. ids (Optional[List[str]]): List of document IDs. Defaults to None. documents (List[Document]): List of documents to add to the vectorstore. embedding (Optional[Embeddings]): Embedding function. Defaults to None. client_settings (Optional[chromadb.config.Settings]): Chroma client settings Returns: Chroma: Chroma vectorstore. """
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
8b1de501dd51-12
Chroma: Chroma vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( texts=texts, embedding=embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, persist_directory=persist_directory, client_settings=client_settings, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/chroma.html
ac7d4cf5ea34-0
Source code for langchain.vectorstores.deeplake """Wrapper around Activeloop Deep Lake.""" from __future__ import annotations import logging import uuid from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance logger = logging.getLogger() distance_metric_map = { "l2": lambda a, b: np.linalg.norm(a - b, axis=1, ord=2), "l1": lambda a, b: np.linalg.norm(a - b, axis=1, ord=1), "max": lambda a, b: np.linalg.norm(a - b, axis=1, ord=np.inf), "cos": lambda a, b: np.dot(a, b.T) / (np.linalg.norm(a) * np.linalg.norm(b, axis=1)), "dot": lambda a, b: np.dot(a, b.T), } def vector_search( query_embedding: np.ndarray, data_vectors: np.ndarray, distance_metric: str = "L2", k: Optional[int] = 4, ) -> Tuple[List, List]: """Naive search for nearest neighbors args: query_embedding: np.ndarray data_vectors: np.ndarray k (int): number of nearest neighbors distance_metric: distance function 'L2' for Euclidean, 'L1' for Nuclear, 'Max'
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
ac7d4cf5ea34-1
for Euclidean, 'L1' for Nuclear, 'Max' l-infinity distnace, 'cos' for cosine similarity, 'dot' for dot product returns: nearest_indices: List, indices of nearest neighbors """ # Calculate the distance between the query_vector and all data_vectors distances = distance_metric_map[distance_metric](query_embedding, data_vectors) nearest_indices = np.argsort(distances) nearest_indices = ( nearest_indices[::-1][:k] if distance_metric in ["cos"] else nearest_indices[:k] ) return nearest_indices.tolist(), distances[nearest_indices].tolist() def dp_filter(x: dict, filter: Dict[str, str]) -> bool: """Filter helper function for Deep Lake""" metadata = x["metadata"].data()["value"] return all(k in metadata and v == metadata[k] for k, v in filter.items()) [docs]class DeepLake(VectorStore): """Wrapper around Deep Lake, a data lake for deep learning applications. We implement naive similarity search and filtering for fast prototyping, but it can be extended with Tensor Query Language (TQL) for production use cases over billion rows. Why Deep Lake? - Not only stores embeddings, but also the original data with version control. - Serverless, doesn't require another service and can be used with major cloud providers (S3, GCS, etc.) - More than just a multi-modal vector store. You can use the dataset to fine-tune your own LLM models.
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
ac7d4cf5ea34-2
the dataset to fine-tune your own LLM models. To use, you should have the ``deeplake`` python package installed. Example: .. code-block:: python from langchain.vectorstores import DeepLake from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = DeepLake("langchain_store", embeddings.embed_query) """ _LANGCHAIN_DEFAULT_DEEPLAKE_PATH = "mem://langchain" def __init__( self, dataset_path: str = _LANGCHAIN_DEFAULT_DEEPLAKE_PATH, token: Optional[str] = None, embedding_function: Optional[Embeddings] = None, read_only: Optional[bool] = False, ingestion_batch_size: int = 1024, num_workers: int = 4, ) -> None: """Initialize with Deep Lake client.""" self.ingestion_batch_size = ingestion_batch_size self.num_workers = num_workers try: import deeplake from deeplake.constants import MB
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
ac7d4cf5ea34-3
from deeplake.constants import MB except ImportError: raise ValueError( "Could not import deeplake python package. " "Please install it with `pip install deeplake`." ) self._deeplake = deeplake if deeplake.exists(dataset_path, token=token): self.ds = deeplake.load(dataset_path, token=token, read_only=read_only) logger.warning( f"Deep Lake Dataset in {dataset_path} already exists, " f"loading from the storage" ) self.ds.summary() else: self.ds = deeplake.empty(dataset_path, token=token, overwrite=True) with self.ds: self.ds.create_tensor( "text", htype="text",
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
ac7d4cf5ea34-4
htype="text", create_id_tensor=False, create_sample_info_tensor=False, create_shape_tensor=False, chunk_compression="lz4", ) self.ds.create_tensor( "metadata", htype="json", create_id_tensor=False, create_sample_info_tensor=False, create_shape_tensor=False, chunk_compression="lz4", ) self.ds.create_tensor( "embedding", htype="generic", dtype=np.float32,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
ac7d4cf5ea34-5
dtype=np.float32, create_id_tensor=False, create_sample_info_tensor=False, max_chunk_size=64 * MB, create_shape_tensor=True, ) self.ds.create_tensor( "ids", htype="text", create_id_tensor=False, create_sample_info_tensor=False, create_shape_tensor=False, chunk_compression="lz4", ) self._embedding_function = embedding_function [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
ac7d4cf5ea34-6
ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. Returns: List[str]: List of IDs of the added texts. """ if ids is None: ids = [str(uuid.uuid1()) for _ in texts] text_list = list(texts) if metadatas is None: metadatas = [{}] * len(text_list) elements = list(zip(text_list, metadatas, ids)) @self._deeplake.compute def ingest(sample_in: list, sample_out: list) -> None: text_list = [s[0] for s in sample_in] embeds: Sequence[Optional[np.ndarray]] = [] if self._embedding_function is not None:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
ac7d4cf5ea34-7
is not None: embeddings = self._embedding_function.embed_documents(text_list) embeds = [np.array(e, dtype=np.float32) for e in embeddings] else: embeds = [None] * len(text_list) for s, e in zip(sample_in, embeds): sample_out.append( { "text": s[0], "metadata": s[1], "ids": s[2], "embedding": e, } ) batch_size = min(self.ingestion_batch_size, len(elements)) batched = [ elements[i : i + batch_size] for i in range(0, len(elements), batch_size) ]
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
ac7d4cf5ea34-8
batch_size) ] ingest().eval( batched, self.ds, num_workers=min(self.num_workers, len(batched) // self.num_workers), ) self.ds.commit(allow_empty=True) self.ds.summary() return ids [docs] def search( self, query: Any[str, None] = None, embedding: Any[float, None] = None, k: int = 4, distance_metric: str = "L2", use_maximal_marginal_relevance: Optional[bool] = False, fetch_k: Optional[int] = 20, filter: Optional[Any[Dict[str, str], Callable, str]] = None, return_score: Optional[bool] = False, **kwargs: Any, ) -> Any[List[Document], List[Tuple[Document, float]]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. embedding: Embedding function to use. Defaults to None. k: Number of Documents to
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
ac7d4cf5ea34-9
to None. k: Number of Documents to return. Defaults to 4. distance_metric: `L2` for Euclidean, `L1` for Nuclear, `max` L-infinity distance, `cos` for cosine similarity, 'dot' for dot product. Defaults to `L2`. filter: Attribute filter by metadata example {'key': 'value'}. It can also take [Deep Lake filter] (https://docs.deeplake.ai/en/latest/deeplake.core.dataset.html#deeplake.core.dataset.Dataset.filter) Defaults to None. maximal_marginal_relevance: Whether to use maximal marginal relevance. Defaults to False. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. return_score: Whether to return the score. Defaults to False. Returns: List of Documents selected by the specified distance metric, if return_score True, return a tuple of (Document, score) """
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
ac7d4cf5ea34-10
of (Document, score) """ view = self.ds # attribute based filtering if filter is not None: if isinstance(filter, dict): filter = partial(dp_filter, filter=filter) view = view.filter(filter) if len(view) == 0: return [] if self._embedding_function is None: view = view.filter(lambda x: query in x["text"].data()["value"]) scores = [1.0] * len(view) if use_maximal_marginal_relevance: raise ValueError( "For MMR search, you must specify an embedding function on" "creation." ) else: emb = embedding or self._embedding_function.embed_query( query ) # type: ignore query_emb
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
ac7d4cf5ea34-11
) # type: ignore query_emb = np.array(emb, dtype=np.float32) embeddings = view.embedding.numpy(fetch_chunks=True) k_search = fetch_k if use_maximal_marginal_relevance else k indices, scores = vector_search( query_emb, embeddings, k=k_search, distance_metric=distance_metric.lower(), ) view = view[indices] if use_maximal_marginal_relevance: indices = maximal_marginal_relevance( query_emb, embeddings[indices], k=min(k, len(indices)) ) view = view[indices] scores = [scores[i] for i in indices] docs = [ Document( page_content=el["text"].data()["value"],
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
ac7d4cf5ea34-12
page_content=el["text"].data()["value"], metadata=el["metadata"].data()["value"], ) for el in view ] if return_score: return [(doc, score) for doc, score in zip(docs, scores)] return docs [docs] def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: text to embed and run the query on. k: Number of Documents to return. Defaults to 4. query: Text to look up documents similar to. embedding: Embedding function to use. Defaults to None. k: Number of Documents to return. Defaults to 4. distance_metric: `L2` for Euclidean, `L1` for Nuclear, `max` L-infinity distance,
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html
ac7d4cf5ea34-13
L-infinity distance, `cos` for cosine similarity, 'dot' for dot product Defaults to `L2`. filter: Attribute filter by metadata example {'key': 'value'}. Defaults to None. maximal_marginal_relevance: Whether to use maximal marginal relevance. Defaults to False. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. return_score: Whether to return the score. Defaults to False. Returns: List of Documents most similar to the query vector. """ return self.search(query=query, k=k, **kwargs) [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns:
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/vectorstores/deeplake.html