hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
8fa21bf9469d7e21ccf274eee48acfaab6db7cf7
13,315
py
Python
onnxsim/onnx_simplifier.py
Wheest/onnx-simplifier
70e3b52aadbc73fe01029dc7ba0d4965d8fc1a8c
[ "Apache-2.0" ]
2
2020-06-24T04:22:03.000Z
2020-08-04T08:32:04.000Z
onnxsim/onnx_simplifier.py
fedral/onnx-simplifier
70e3b52aadbc73fe01029dc7ba0d4965d8fc1a8c
[ "Apache-2.0" ]
null
null
null
onnxsim/onnx_simplifier.py
fedral/onnx-simplifier
70e3b52aadbc73fe01029dc7ba0d4965d8fc1a8c
[ "Apache-2.0" ]
null
null
null
from collections import OrderedDict from typing import List, Dict, Union, Optional, Tuple import copy import onnx # type: ignore import onnx.helper # type: ignore import onnx.optimizer # type: ignore import onnx.shape_inference # type: ignore import onnx.numpy_helper import onnxruntime as rt # type: ignore import numpy as np # type: ignore TensorShape = List[int] TensorShapes = Dict[Optional[str], TensorShape] def add_features_to_output(m: onnx.ModelProto, nodes: List[onnx.NodeProto]) -> None: """ Add features to output in pb, so that ONNX Runtime will output them. :param m: the model that will be run in ONNX Runtime :param nodes: nodes whose outputs will be added into the graph outputs """ for node in nodes: for output in node.output: m.graph.output.extend([onnx.ValueInfoProto(name=output)]) def get_shape_from_value_info_proto(v: onnx.ValueInfoProto) -> List[int]: return [dim.dim_value for dim in v.type.tensor_type.shape.dim] def get_value_info_all(m: onnx.ModelProto, name: str) -> Optional[onnx.ValueInfoProto]: for v in m.graph.value_info: if v.name == name: return v for v in m.graph.input: if v.name == name: return v for v in m.graph.output: if v.name == name: return v return None def get_shape(m: onnx.ModelProto, name: str) -> TensorShape: """ Note: This method relies on onnx shape inference, which is not reliable. So only use it on input or output tensors """ v = get_value_info_all(m, name) if v is not None: return get_shape_from_value_info_proto(v) raise RuntimeError('Cannot get shape of "{}"'.format(name)) def get_elem_type(m: onnx.ModelProto, name: str) -> Optional[int]: v = get_value_info_all(m, name) if v is not None: return v.type.tensor_type.elem_type return None def get_np_type_from_elem_type(elem_type: int) -> int: sizes = (None, np.float32, np.uint8, np.int8, np.uint16, np.int16, np.int32, np.int64, str, np.bool, np.float16, np.double, np.uint32, np.uint64, np.complex64, np.complex128, np.float16) assert len(sizes) == 17 size = sizes[elem_type] assert size is not None return size def get_input_names(model: onnx.ModelProto) -> List[str]: input_names = list(set([ipt.name for ipt in model.graph.input]) - set([x.name for x in model.graph.initializer])) return input_names def add_initializers_into_inputs(model: onnx.ModelProto) -> onnx.ModelProto: for x in model.graph.initializer: input_names = [x.name for x in model.graph.input] if x.name not in input_names: shape = onnx.TensorShapeProto() for dim in x.dims: shape.dim.extend([onnx.TensorShapeProto.Dimension(dim_value=dim)]) model.graph.input.extend( [onnx.ValueInfoProto(name=x.name, type=onnx.TypeProto(tensor_type=onnx.TypeProto.Tensor(elem_type=x.data_type, shape=shape)))]) return model def generate_rand_input(model, input_shapes: Optional[TensorShapes] = None): if input_shapes is None: input_shapes = {} input_names = get_input_names(model) full_input_shapes = {ipt: get_shape(model, ipt) for ipt in input_names} assert None not in input_shapes full_input_shapes.update(input_shapes) # type: ignore for key in full_input_shapes: if np.prod(full_input_shapes[key]) <= 0: raise RuntimeError( 'The shape of input "{}" has dynamic size, ' 'please determine the input size manually by --input-shape xxx'.format(key)) inputs = {ipt: np.array(np.random.rand(*full_input_shapes[ipt]), dtype=get_np_type_from_elem_type(get_elem_type(model, ipt))) for ipt in input_names} return inputs def get_constant_nodes(m: onnx.ModelProto) -> List[onnx.NodeProto]: const_nodes = [] const_tensors = [x.name for x in m.graph.initializer] const_tensors.extend([node.output[0] for node in m.graph.node if node.op_type == 'Constant']) # If one of the input of a node is produced (directly or indirectly) by nms, # we consider the output of this node doesn't have constant shape, # so we do not simplify a such node even if the node is Shape op tensors_nms = [] for node in m.graph.node: if any(x in tensors_nms for x in node.input): tensors_nms.extend(node.output) elif node.op_type == 'Shape': const_nodes.append(node) const_tensors.extend(node.output) elif node.op_type == 'NonMaxSuppression': tensors_nms.extend(node.output) elif all([x in const_tensors for x in node.input]): const_nodes.append(node) const_tensors.extend(node.output) return copy.deepcopy(const_nodes) def forward(model, inputs=None, input_shapes: Optional[TensorShapes] = None) -> Dict[str, np.ndarray]: if input_shapes is None: input_shapes = {} sess_options = rt.SessionOptions() sess_options.graph_optimization_level = rt.GraphOptimizationLevel(0) sess_options.log_severity_level = 3 sess = rt.InferenceSession(model.SerializeToString(), sess_options=sess_options, providers=['CPUExecutionProvider']) if inputs is None: inputs = generate_rand_input(model, input_shapes=input_shapes) outputs = [x.name for x in sess.get_outputs()] run_options = rt.RunOptions() run_options.log_severity_level = 3 res = OrderedDict(zip(outputs, sess.run(outputs, inputs, run_options=run_options))) return res def forward_for_node_outputs(model: onnx.ModelProto, nodes: List[onnx.NodeProto], input_shapes: Optional[TensorShapes] = None) -> Dict[str, np.ndarray]: if input_shapes is None: input_shapes = {} model = copy.deepcopy(model) add_features_to_output(model, nodes) res = forward(model, input_shapes=input_shapes) return res def insert_elem(repeated_container, index: int, element): repeated_container.extend([repeated_container[-1]]) for i in reversed(range(index + 1, len(repeated_container) - 1)): repeated_container[i].CopyFrom(repeated_container[i - 1]) repeated_container[index].CopyFrom(element) def eliminate_const_nodes(model: onnx.ModelProto, const_nodes: List[onnx.NodeProto], res: Dict[str, np.ndarray]) -> onnx.ModelProto: """ :param model: the original onnx model :param const_nodes: const nodes detected by `get_constant_nodes` :param res: The dict containing all tensors, got by `forward_all` :return: the simplified onnx model. Redundant ops are all removed. """ for i, node in enumerate(model.graph.node): if node in const_nodes: for output in node.output: new_node = copy.deepcopy(node) new_node.name = "node_" + output new_node.op_type = 'Constant' new_attr = onnx.helper.make_attribute( 'value', onnx.numpy_helper.from_array(res[output], name=output) ) del new_node.input[:] del new_node.attribute[:] del new_node.output[:] new_node.output.extend([output]) new_node.attribute.extend([new_attr]) insert_elem(model.graph.node, i + 1, new_node) del model.graph.node[i] return model def optimize(model: onnx.ModelProto, skip_fuse_bn: bool) -> onnx.ModelProto: """ :param model: The onnx model. :return: The optimized onnx model. Before simplifying, use this method to generate value_info, which is used in `forward_all` After simplifying, use this method to fold constants generated in previous step into initializer, and eliminate unused constants. """ # Due to a onnx bug, https://github.com/onnx/onnx/issues/2417, we need to add missing initializers into inputs onnx.checker.check_model(model) input_num = len(model.graph.input) model = add_initializers_into_inputs(model) onnx.helper.strip_doc_string(model) onnx.checker.check_model(model) optimizers_list = ['eliminate_deadend', 'eliminate_identity', 'eliminate_nop_dropout', 'eliminate_nop_monotone_argmax', 'eliminate_nop_pad', 'extract_constant_to_initializer', 'eliminate_unused_initializer', 'eliminate_nop_transpose', 'fuse_add_bias_into_conv', # https://github.com/daquexian/onnx-simplifier/issues/31 # 'fuse_consecutive_concats', 'fuse_consecutive_log_softmax', 'fuse_consecutive_reduce_unsqueeze', 'fuse_consecutive_squeezes', 'fuse_consecutive_transposes', 'fuse_matmul_add_bias_into_gemm', 'fuse_pad_into_conv', 'fuse_transpose_into_gemm'] if not skip_fuse_bn: optimizers_list.append('fuse_bn_into_conv') model = onnx.optimizer.optimize(model, optimizers_list, fixed_point=True) del model.graph.input[input_num:] onnx.checker.check_model(model) return model def check(model_opt: onnx.ModelProto, model_ori: onnx.ModelProto, n_times: int = 5, input_shapes: Optional[TensorShapes] = None) -> bool: """ Warning: Some models (e.g., MobileNet) may fail this check by a small magnitude. Just ignore if it happens. :param input_shapes: Shapes of generated random inputs :param model_opt: The simplified ONNX model :param model_ori: The original ONNX model :param n_times: Generate n random inputs """ if input_shapes is None: input_shapes = {} onnx.checker.check_model(model_opt) for i in range(n_times): print("Checking {}/{}...".format(i, n_times)) rand_input = generate_rand_input(model_opt, input_shapes=input_shapes) res_opt = forward(model_opt, inputs=rand_input) res_ori = forward(model_ori, inputs=rand_input) for name in res_opt.keys(): if not np.allclose(res_opt[name], res_ori[name], rtol=1e-4, atol=1e-5): print("Tensor {} changes after simplifying. The max diff is {}.".format( name, np.max(np.abs(res_opt[name] - res_ori[name])))) print("Note that the checking is not always correct.") print("After simplifying:") print(res_opt[name]) print("Before simplifying:") print(res_ori[name]) print("----------------") return False return True def clean_constant_nodes(const_nodes: List[onnx.NodeProto], res: Dict[str, np.ndarray]): """ It seems not needed since commit 6f2a72, but maybe it still prevents some unknown bug :param const_nodes: const nodes detected by `get_constant_nodes` :param res: The dict containing all tensors, got by `forward_all` :return: The constant nodes which have an output in res """ return [node for node in const_nodes if node.output[0] in res] def check_and_update_input_shapes(model: onnx.ModelProto, input_shapes: TensorShapes) -> TensorShapes: input_names = get_input_names(model) if None in input_shapes: if len(input_names) == 1: input_shapes[input_names[0]] = input_shapes[None] del input_shapes[None] else: raise RuntimeError( 'The model has more than 1 inputs, please use the format "input_name:dim0,dim1,...,dimN" in --input-shape') for x in input_shapes: if x not in input_names: raise RuntimeError( 'The model doesn\'t have input named "{}"'.format(x)) return input_shapes def simplify(model: Union[str, onnx.ModelProto], check_n: int = 0, perform_optimization: bool = True, skip_fuse_bn: bool = False, input_shapes: Optional[TensorShapes] = None) \ -> Tuple[onnx.ModelProto, bool]: if input_shapes is None: input_shapes = {} if type(model) == str: model = onnx.load(model) onnx.checker.check_model(model) model_ori = copy.deepcopy(model) model = onnx.shape_inference.infer_shapes(model) input_shapes = check_and_update_input_shapes(model, input_shapes) if perform_optimization: model = optimize(model, skip_fuse_bn) const_nodes = get_constant_nodes(model) res = forward_for_node_outputs(model, const_nodes, input_shapes=input_shapes) const_nodes = clean_constant_nodes(const_nodes, res) model = eliminate_const_nodes(model, const_nodes, res) onnx.checker.check_model(model) if perform_optimization: model = optimize(model, skip_fuse_bn) check_ok = check(model_ori, model, check_n, input_shapes=input_shapes) return model, check_ok
41.350932
123
0.646113
5054b8981bd6ac93ad63782b615a7b2198ba4051
5,258
py
Python
userbot/modules/qrcode.py
AlhamFadilah/UserBotTG
23a7d7d0500d3dc86c240636c3e5b93a376d0df6
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
userbot/modules/qrcode.py
AlhamFadilah/UserBotTG
23a7d7d0500d3dc86c240636c3e5b93a376d0df6
[ "Naumen", "Condor-1.1", "MS-PL" ]
1
2020-07-31T10:28:19.000Z
2020-07-31T10:28:19.000Z
userbot/modules/qrcode.py
AlhamFadilah/UserBotTG
23a7d7d0500d3dc86c240636c3e5b93a376d0df6
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
# Copyright (C) 2019 The Raphielscape Company LLC. # # Licensed under the Raphielscape Public License, Version 1.c (the "License"); # you may not use this file except in compliance with the License. # # The entire source code is OSSRPL except 'makeqr and getqr' which is MPL # License: MPL and OSSRPL """Userbot module containing commands related to QR Codes.""" import os import asyncio import qrcode import barcode from barcode.writer import ImageWriter from bs4 import BeautifulSoup from userbot import CMD_HELP, LOGS from userbot.events import register @register(pattern=r"^\.decode$", outgoing=True) async def parseqr(qr_e): """For .decode command, get QR Code/BarCode content from the replied photo.""" downloaded_file_name = await qr_e.client.download_media( await qr_e.get_reply_message()) # parse the Official ZXing webpage to decode the QRCode command_to_exec = [ "curl", "-X", "POST", "-F", "f=@" + downloaded_file_name + "", "https://zxing.org/w/decode" ] process = await asyncio.create_subprocess_exec( *command_to_exec, # stdout must a pipe to be accessible as process.stdout stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, ) # Wait for the subprocess to finish stdout, stderr = await process.communicate() e_response = stderr.decode().strip() t_response = stdout.decode().strip() os.remove(downloaded_file_name) if not t_response: LOGS.info(e_response) LOGS.info(t_response) return await qr_e.edit("Failed to decode.") soup = BeautifulSoup(t_response, "html.parser") qr_contents = soup.find_all("pre")[0].text await qr_e.edit(qr_contents) @register(pattern=r"\.barcode(?: |$)([\s\S]*)", outgoing=True) async def bq(event): """For .barcode command, genrate a barcode containing the given content.""" await event.edit("`Processing..`") input_str = event.pattern_match.group(1) message = "SYNTAX: `.barcode <long text to include>`" reply_msg_id = event.message.id if input_str: message = input_str elif event.reply_to_msg_id: previous_message = await event.get_reply_message() reply_msg_id = previous_message.id if previous_message.media: downloaded_file_name = await event.client.download_media( previous_message) m_list = None with open(downloaded_file_name, "rb") as fd: m_list = fd.readlines() message = "" for m in m_list: message += m.decode("UTF-8") + "\r\n" os.remove(downloaded_file_name) else: message = previous_message.message else: return event.edit("SYNTAX: `.barcode <long text to include>`") bar_code_type = "code128" try: bar_code_mode_f = barcode.get(bar_code_type, message, writer=ImageWriter()) filename = bar_code_mode_f.save(bar_code_type) await event.client.send_file(event.chat_id, filename, reply_to=reply_msg_id) os.remove(filename) except Exception as e: return await event.edit(str(e)) await event.delete() @register(pattern=r"\.makeqr(?: |$)([\s\S]*)", outgoing=True) async def make_qr(makeqr): """For .makeqr command, make a QR Code containing the given content.""" input_str = makeqr.pattern_match.group(1) message = "SYNTAX: `.makeqr <long text to include>`" reply_msg_id = None if input_str: message = input_str elif makeqr.reply_to_msg_id: previous_message = await makeqr.get_reply_message() reply_msg_id = previous_message.id if previous_message.media: downloaded_file_name = await makeqr.client.download_media( previous_message) m_list = None with open(downloaded_file_name, "rb") as file: m_list = file.readlines() message = "" for media in m_list: message += media.decode("UTF-8") + "\r\n" os.remove(downloaded_file_name) else: message = previous_message.message qr = qrcode.QRCode( version=1, error_correction=qrcode.constants.ERROR_CORRECT_L, box_size=10, border=4, ) qr.add_data(message) qr.make(fit=True) img = qr.make_image(fill_color="black", back_color="white") img.save("img_file.webp", "PNG") await makeqr.client.send_file(makeqr.chat_id, "img_file.webp", reply_to=reply_msg_id) os.remove("img_file.webp") await makeqr.delete() CMD_HELP.update({ "qr": ">`.makeqr <content>`" "\nUsage: Make a QR Code from the given content." "\nExample: .makeqr www.google.com" "\nNote: use `.decode <reply to barcode/qrcode>` to get decoded content.", "barcode": ">`.barcode <content>`" "\nUsage: Make a BarCode from the given content." "\nExample: .barcode www.google.com" "\nNote: use `.decode <reply to barcode/qrcode>` to get decoded content." })
35.527027
82
0.624952
1e6b314e68fb542dd7f77966135e6d01359a3871
1,185
py
Python
examples/federated_learning/yolov5_coco128_mistnet/aggregate.py
JoeyHwong-gk/sedna
e110ac77b1141b83eb72df3c49ab87682d7061f5
[ "Apache-2.0" ]
1
2021-06-15T02:08:45.000Z
2021-06-15T02:08:45.000Z
examples/federated_learning/yolov5_coco128_mistnet/aggregate.py
JoeyHwong-gk/sedna
e110ac77b1141b83eb72df3c49ab87682d7061f5
[ "Apache-2.0" ]
null
null
null
examples/federated_learning/yolov5_coco128_mistnet/aggregate.py
JoeyHwong-gk/sedna
e110ac77b1141b83eb72df3c49ab87682d7061f5
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 The KubeEdge Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from interface import mistnet, s3_transmitter, simple_chooser from interface import Dataset, Estimator from sedna.service.server import AggregationServerV2 from sedna.common.config import BaseConfig def run_server(): data = Dataset() estimator = Estimator() estimator.pretrained = BaseConfig.pretrained_model_url.replace("yolov5.pth", "") server = AggregationServerV2( data=data, estimator=estimator, aggregation=mistnet, transmitter=s3_transmitter, chooser=simple_chooser) server.start() if __name__ == '__main__': run_server()
31.184211
84
0.74346
5d89259cc27c5a14ab880086dfcd71eb41fbc74c
88
py
Python
nsq/sockets/deflate.py
dlecocq/nsq-py
d7698ffaea015ef291cc04b32f9cb45ed659125d
[ "MIT" ]
41
2015-03-29T18:19:51.000Z
2021-07-20T04:26:55.000Z
nsq/sockets/deflate.py
dlecocq/nsq-py
d7698ffaea015ef291cc04b32f9cb45ed659125d
[ "MIT" ]
13
2015-04-21T22:21:16.000Z
2021-06-02T00:29:13.000Z
nsq/sockets/deflate.py
dlecocq/nsq-py
d7698ffaea015ef291cc04b32f9cb45ed659125d
[ "MIT" ]
15
2015-04-21T20:36:05.000Z
2020-10-28T11:29:51.000Z
'''Wraps a socket in Deflate compression''' raise ImportError('Deflate not supported')
22
43
0.761364
25faa1441bafd84653f16905f5196becc099991f
401
py
Python
clean_kernels.py
DarkMatterAI/mrl
e000c3570d4461c3054c882697cce55217ede552
[ "MIT" ]
4
2021-11-16T09:29:55.000Z
2021-12-27T17:55:32.000Z
clean_kernels.py
DarkMatterAI/mrl
e000c3570d4461c3054c882697cce55217ede552
[ "MIT" ]
null
null
null
clean_kernels.py
DarkMatterAI/mrl
e000c3570d4461c3054c882697cce55217ede552
[ "MIT" ]
3
2021-11-16T09:41:41.000Z
2021-12-27T17:55:33.000Z
import json import os paths = ['nbs/tutorials/', 'nbs/'] for path in paths: files = [i for i in os.listdir(path) if i[-5:]=='ipynb'] for file in files: j = json.load(open(f'{path}{file}')) j['metadata']['kernelspec'] = {'display_name': 'Python 3', 'language': 'python', 'name': 'python3'} with open(f'{path}{file}', 'w') as f: json.dump(j, f)
25.0625
107
0.538653
beb4327bff90332bf13b33c0207e15bffdc0634e
622
py
Python
Cards/templatetags/custom_tags.py
vabene1111/LearningCards
00539c8d5d3063eecc306dd68eb3eeeac89dba9f
[ "MIT" ]
1
2020-03-18T15:10:42.000Z
2020-03-18T15:10:42.000Z
Cards/templatetags/custom_tags.py
vabene1111/LearningCards
00539c8d5d3063eecc306dd68eb3eeeac89dba9f
[ "MIT" ]
1
2020-02-22T20:03:02.000Z
2020-02-23T16:31:56.000Z
Cards/templatetags/custom_tags.py
vabene1111/LearningCards
00539c8d5d3063eecc306dd68eb3eeeac89dba9f
[ "MIT" ]
null
null
null
from django import template import markdown as md import bleach from bleach_whitelist import markdown_tags, markdown_attrs from Cards.helper.mdx_extension import MarkdownFormatExtension register = template.Library() @register.filter(name='get_class') def get_class(value): return value.__class__.__name__ @register.filter() def markdown(value): tags = markdown_tags + ['pre', 'table', 'td', 'tr', 'th', 'tbody', 'style', 'thead'] parsed_md = md.markdown(value, extensions=['markdown.extensions.fenced_code', 'tables', MarkdownFormatExtension()]) return bleach.clean(parsed_md, tags, markdown_attrs)
28.272727
119
0.757235
e8598a551df5a465963471a238131a7e37ba54e1
8,010
py
Python
axelrod/plot.py
mattshirtliffe/Axelrod
367a787e16541fda6e6076200805f5bb6a863973
[ "MIT" ]
null
null
null
axelrod/plot.py
mattshirtliffe/Axelrod
367a787e16541fda6e6076200805f5bb6a863973
[ "MIT" ]
null
null
null
axelrod/plot.py
mattshirtliffe/Axelrod
367a787e16541fda6e6076200805f5bb6a863973
[ "MIT" ]
1
2018-10-07T19:07:18.000Z
2018-10-07T19:07:18.000Z
from numpy import arange, median, nan_to_num import warnings matplotlib_installed = True try: import matplotlib import matplotlib.pyplot as plt import matplotlib.transforms as transforms from mpl_toolkits.axes_grid1 import make_axes_locatable except ImportError: matplotlib_installed = False except RuntimeError: matplotlib_installed = False warnings.warn( 'Matplotlib failed to import and so no plots will be produced. This ' + 'could be caused by using a virtual environment on OSX. See ' + 'http://matplotlib.org/faq/virtualenv_faq.html for details.') def default_cmap(): """Sets a default matplotlib colormap based on the version.""" s = matplotlib.__version__.split('.') if int(s[0]) >= 1 and int(s[1]) >= 5: return "viridis" else: return 'YlGnBu' class Plot(object): def __init__(self, result_set): self.result_set = result_set self.matplotlib_installed = matplotlib_installed def _violinplot(self, data, names, title=None): """For making violinplots.""" if not self.matplotlib_installed: return None nplayers = self.result_set.nplayers width = max(nplayers / 3, 12) height = width / 2 figure = plt.figure(figsize=(width, height)) spacing = 4 positions = spacing * arange(1, nplayers + 1, 1) plt.violinplot(data, positions=positions, widths=spacing / 2, showmedians=True, showextrema=False) plt.xticks(positions, names, rotation=90) plt.xlim(0, spacing * (nplayers + 1)) plt.tick_params(axis='both', which='both', labelsize=8) if title: plt.title(title) return figure # Box and Violin plots for mean score, score differences, wins, and match # lengths @property def _boxplot_dataset(self): return [list(nan_to_num(self.result_set.normalised_scores[ir])) for ir in self.result_set.ranking] @property def _boxplot_xticks_locations(self): return list(range(1, len(self.result_set.ranked_names) + 2)) @property def _boxplot_xticks_labels(self): return [str(n) for n in self.result_set.ranked_names] def boxplot(self, title=None): """For the specific mean score boxplot.""" data = self._boxplot_dataset names = self._boxplot_xticks_labels figure = self._violinplot(data, names, title=title) return figure @property def _winplot_dataset(self): # Sort wins by median wins = self.result_set.wins players = self.result_set.players medians = map(median, wins) medians = sorted( [(m, i) for (i, m) in enumerate(medians)], reverse=True) # Reorder and grab names wins = [wins[x[-1]] for x in medians] ranked_names = [str(players[x[-1]]) for x in medians] return wins, ranked_names def winplot(self, title=None): """Plots the distributions for the number of wins for each strategy.""" if not self.matplotlib_installed: return None data, names = self._winplot_dataset figure = self._violinplot(data, names, title) # Expand ylim a bit maximum = max(max(w) for w in data) plt.ylim(-0.5, 0.5 + maximum) return figure @property def _sd_ordering(self): return self.result_set.ranking @property def _sdv_plot_dataset(self): ordering = self._sd_ordering diffs = self.result_set.score_diffs players = self.result_set.players # Reorder and grab names diffs = [diffs[i] for i in ordering] ranked_names = [str(players[i]) for i in ordering] return diffs, ranked_names def sdvplot(self, title=None): """Score difference violinplots to visualize the distributions of how players attain their payoffs.""" diffs, ranked_names = self._sdv_plot_dataset figure = self._violinplot(diffs, ranked_names, title) return figure @property def _lengthplot_dataset(self): match_lengths = self.result_set.match_lengths return [[length for rep in match_lengths for length in rep[playeri]] for playeri in self.result_set.ranking] def lengthplot(self, title=None): """For the specific match length boxplot.""" data = self._lengthplot_dataset names = self._boxplot_xticks_labels figure = self._violinplot(data, names, title=title) return figure # Payoff heatmaps @property def _payoff_dataset(self): pm = self.result_set.payoff_matrix return [[pm[r1][r2] for r2 in self.result_set.ranking] for r1 in self.result_set.ranking] @property def _pdplot_dataset(self): # Order like the sdv_plot ordering = self._sd_ordering pdm = self.result_set.payoff_diffs_means # Reorder and grab names matrix = [[pdm[r1][r2] for r2 in ordering] for r1 in ordering] players = self.result_set.players ranked_names = [str(players[i]) for i in ordering] return matrix, ranked_names def _payoff_heatmap(self, data, names, title=None): """Generic heatmap plot""" if not self.matplotlib_installed: return None nplayers = self.result_set.nplayers width = max(nplayers / 4, 12) height = width figure, ax = plt.subplots() figure.set_figwidth(width) figure.set_figheight(height) cmap = default_cmap() mat = ax.matshow(data, cmap=cmap) plt.xticks(range(self.result_set.nplayers)) plt.yticks(range(self.result_set.nplayers)) ax.set_xticklabels(names, rotation=90) ax.set_yticklabels(names) plt.tick_params(axis='both', which='both', labelsize=16) if title: plt.xlabel(title) # Make the colorbar match up with the plot divider = make_axes_locatable(plt.gca()) cax = divider.append_axes("right", "5%", pad="3%") plt.colorbar(mat, cax=cax) return figure def pdplot(self, title=None): """Payoff difference heatmap to visualize the distributions of how players attain their payoffs.""" matrix, names = self._pdplot_dataset return self._payoff_heatmap(matrix, names, title) def payoff(self, title=None): """Payoff heatmap to visualize the distributions of how players attain their payoffs.""" data = self._payoff_dataset names = self.result_set.ranked_names return self._payoff_heatmap(data, names, title) # Ecological Plot def stackplot(self, eco, title=None, logscale=True): if not self.matplotlib_installed: return None populations = eco.population_sizes figure, ax = plt.subplots() turns = range(len(populations)) pops = [[populations[iturn][ir] for iturn in turns] for ir in self.result_set.ranking] ax.stackplot(turns, *pops) ax.yaxis.tick_left() ax.yaxis.set_label_position("right") ax.yaxis.labelpad = 25.0 plt.ylim([0.0, 1.0]) plt.ylabel('Relative population size') plt.xlabel('Turn') if title is not None: plt.title(title) trans = transforms.blended_transform_factory(ax.transAxes, ax.transData) ticks = [] for i, n in enumerate(self.result_set.ranked_names): x = -0.01 y = (i + 0.5) * 1.0 / self.result_set.nplayers ax.annotate(n, xy=(x, y), xycoords=trans, clip_on=False, va='center', ha='right', fontsize=5) ticks.append(y) ax.set_yticks(ticks) ax.tick_params(direction='out') ax.set_yticklabels([]) if logscale: ax.set_xscale('log') return figure
33.797468
94
0.625094
559f9744d62b2642e3658d52d429a977ac7b2c05
994
py
Python
sdks/python/test/test_EmailVerificationRequest.py
Brantone/appcenter-sdks
eeb063ecf79908b6e341fb00196d2cd9dc8f3262
[ "MIT" ]
null
null
null
sdks/python/test/test_EmailVerificationRequest.py
Brantone/appcenter-sdks
eeb063ecf79908b6e341fb00196d2cd9dc8f3262
[ "MIT" ]
6
2019-10-23T06:38:53.000Z
2022-01-22T07:57:58.000Z
sdks/python/test/test_EmailVerificationRequest.py
Brantone/appcenter-sdks
eeb063ecf79908b6e341fb00196d2cd9dc8f3262
[ "MIT" ]
2
2019-10-23T06:31:05.000Z
2021-08-21T17:32:47.000Z
# coding: utf-8 """ App Center Client Microsoft Visual Studio App Center API # noqa: E501 OpenAPI spec version: preview Contact: [email protected] Project Repository: https://github.com/b3nab/appcenter-sdks """ from __future__ import absolute_import import unittest import appcenter_sdk from EmailVerificationRequest.clsEmailVerificationRequest import EmailVerificationRequest # noqa: E501 from appcenter_sdk.rest import ApiException class TestEmailVerificationRequest(unittest.TestCase): """EmailVerificationRequest unit test stubs""" def setUp(self): pass def tearDown(self): pass def testEmailVerificationRequest(self): """Test EmailVerificationRequest""" # FIXME: construct object with mandatory attributes with example values # model = appcenter_sdk.models.clsEmailVerificationRequest.EmailVerificationRequest() # noqa: E501 pass if __name__ == '__main__': unittest.main()
24.85
107
0.738431
b3e02eabff5ece3165aaa93e5b0fa4ab2e1aba2e
3,171
py
Python
examples/pendulum3.py
birkenfeld/python-gr
1d6cd36616a73c8e569b8348869e6e30f3830ec4
[ "RSA-MD" ]
null
null
null
examples/pendulum3.py
birkenfeld/python-gr
1d6cd36616a73c8e569b8348869e6e30f3830ec4
[ "RSA-MD" ]
null
null
null
examples/pendulum3.py
birkenfeld/python-gr
1d6cd36616a73c8e569b8348869e6e30f3830ec4
[ "RSA-MD" ]
null
null
null
#!/usr/bin/env python # -*- animation -*- """ 3D animation of a pendulum """ from numpy import sin, cos, sqrt, pi, array import time import gr import gr3 try: from time import perf_counter except ImportError: from time import clock as perf_counter g = 9.8 # gravitational constant def rk4(x, h, y, f): k1 = h * f(x, y) k2 = h * f(x + 0.5 * h, y + 0.5 * k1) k3 = h * f(x + 0.5 * h, y + 0.5 * k2) k4 = h * f(x + h, y + k3) return x + h, y + (k1 + 2 * (k2 + k3) + k4) / 6.0 def damped_pendulum_deriv(t, state): theta, omega = state return array([omega, -gamma * omega -g / L * sin(theta)]) def sign(x): if x > 0: return 1 elif x < 0: return -1 else: return 0 def pendulum(t, theta, omega, acceleration): gr.clearws() gr.setviewport(0, 1, 0, 1) x, y = (sin(theta) * 3.0, -cos(theta) * 3.0) gr3.clear() # draw pivot point gr3.drawspheremesh(1, (0, 0, 0), (0.4, 0.4, 0.4), 0.1) # draw rod gr3.drawcylindermesh(1, (0, 0, 0), (x, y, 0), (0.6, 0.6, 0.6), 0.05, 3.0) # draw sphere gr3.drawspheremesh(1, (x, y, 0), (1, 1, 1), 0.25) # show angular velocity V = 0.3 * omega - sign(omega) * 0.15 gr3.drawcylindermesh(1, (x, y, 0), (cos(theta), sin(theta), 0), (0, 0, 1), 0.05, V) gr3.drawconemesh(1, (x + cos(theta) * V, y + sin(theta) * V, 0), (-y, x, 0), (0, 0, 1), 0.1, sign(omega) * 0.25) # show angular acceleration A = 0.3 * acceleration gr3.drawcylindermesh(1, (x, y, 0), (sin(theta), cos(theta), 0), (1, 0, 0), 0.05, A) gr3.drawconemesh(1, (x + sin(theta) * A, y + cos(theta) * A, 0), (x, -y, 0), (1, 0, 0), 0.1, 0.25) # draw GR3 objects gr3.drawimage(0, 1, 0.15, 0.85, 500, 350, gr3.GR3_Drawable.GR3_DRAWABLE_GKS) gr.settextfontprec(2, gr.TEXT_PRECISION_STRING) gr.setcharheight(0.024) gr.settextcolorind(1) gr.textext(0.05, 0.96, 'Damped Pendulum') gr.mathtex(0.05, 0.9, '\\omega=\\dot{\\theta}') gr.mathtex(0.05, 0.83, '\\dot{\\omega}=-\\gamma\\omega-\\frac{g}{l}sin(\\theta)') gr.setcharheight(0.020) gr.textext(0.05, 0.20, 't:%7.2f' % t) gr.textext(0.05, 0.16, '\\theta:%7.2f' % (theta / pi * 180)) gr.settextcolorind(4) gr.textext(0.05, 0.12, '\\omega:%7.2f' % omega) gr.settextcolorind(2) gr.textext(0.05, 0.08, 'y_{A}:%6.2f' % acceleration) gr.updatews() return theta = 110.0 # initial angle gamma = 0.1 # damping coefficient L = 1 # pendulum length t = 0 dt = 0.04 state = array([theta * pi / 180, 0]) gr3.init() gr3.setcameraprojectionparameters(45, 1, 100) gr3.cameralookat(0, -2, 6, 0, -2, 0, 0, 1, 0) gr3.setbackgroundcolor(1, 1, 1, 1) gr3.setlightdirection(1, 1, 10) now = perf_counter() while t < 30: start = now t, state = rk4(t, dt, state, damped_pendulum_deriv) theta, omega = state acceleration = sqrt(2 * g * L * (1 - cos(theta))) pendulum(t, theta, omega, acceleration) now = perf_counter() if start + dt > now: time.sleep(start + dt - now) gr3.terminate()
28.567568
85
0.548407
89d66b348594f057da46376ff87c325aec69f94b
158
py
Python
tests/file_error.py
dionboles/cda-python
2e00d29931801bb977d20028cb4795195d550aa4
[ "Apache-2.0" ]
null
null
null
tests/file_error.py
dionboles/cda-python
2e00d29931801bb977d20028cb4795195d550aa4
[ "Apache-2.0" ]
null
null
null
tests/file_error.py
dionboles/cda-python
2e00d29931801bb977d20028cb4795195d550aa4
[ "Apache-2.0" ]
null
null
null
from cdapython import Q q1 = Q("identifier.system = 'GDC'") q6 = Q("File.identifier.system = 'GDC'") q16 = q6 print(q16.run(host="http://localhost:8080"))
17.555556
44
0.664557
c57dad39fffb31a8ef0d668578254f6ade10e240
602
py
Python
tests/unit/test_unpack_payload.py
ralphribeiro/facilita-DOU
e695ac0f58369d61fad2723bd5e52ecd80d0b33f
[ "MIT" ]
null
null
null
tests/unit/test_unpack_payload.py
ralphribeiro/facilita-DOU
e695ac0f58369d61fad2723bd5e52ecd80d0b33f
[ "MIT" ]
null
null
null
tests/unit/test_unpack_payload.py
ralphribeiro/facilita-DOU
e695ac0f58369d61fad2723bd5e52ecd80d0b33f
[ "MIT" ]
null
null
null
from os.path import exists, join from os import remove from zipfile import ZipFile from src.app.payload import unpack_payload def test_unpack_payload_given_path(temp_dir): file_name = 'file.txt' content = b'data test' path = join(temp_dir, file_name) with open(path, 'wb') as f: f.write(content) path_zip = join(temp_dir, 'file.zip') with ZipFile(path_zip, 'x') as z: z.write(path, file_name) remove(path) assert exists(path_zip) unpack_payload(path_zip) assert exists(path) with open(path, 'rb') as f: assert f.read() == content
25.083333
45
0.672757
cf2f985a2d3383539537ef215ce190dc7eb7107d
37,079
py
Python
storage/tests/system.py
sorced-jim/google-cloud-python
239907085564ae5de8df6f7358b1379252516631
[ "Apache-2.0" ]
1
2021-07-15T14:09:37.000Z
2021-07-15T14:09:37.000Z
storage/tests/system.py
sorced-jim/google-cloud-python
239907085564ae5de8df6f7358b1379252516631
[ "Apache-2.0" ]
1
2021-06-25T15:16:57.000Z
2021-06-25T15:16:57.000Z
storage/tests/system.py
y1ngyang/google-cloud-python
1acc8c22664229b6681ff91654932998e611e1c2
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import time import unittest import requests import six from google.cloud import exceptions from google.cloud import storage from google.cloud.storage._helpers import _base64_md5hash from test_utils.retry import RetryErrors from test_utils.system import unique_resource_id USER_PROJECT = os.environ.get('GOOGLE_CLOUD_TESTS_USER_PROJECT') def _bad_copy(bad_request): """Predicate: pass only exceptions for a failed copyTo.""" err_msg = bad_request.message return (err_msg.startswith('No file found in request. (POST') and 'copyTo' in err_msg) retry_429 = RetryErrors(exceptions.TooManyRequests) retry_bad_copy = RetryErrors(exceptions.BadRequest, error_predicate=_bad_copy) def _empty_bucket(bucket): """Empty a bucket of all existing blobs. This accounts (partially) for the eventual consistency of the list blobs API call. """ for blob in bucket.list_blobs(): try: blob.delete() except exceptions.NotFound: # eventual consistency pass class Config(object): """Run-time configuration to be modified at set-up. This is a mutable stand-in to allow test set-up to modify global state. """ CLIENT = None TEST_BUCKET = None def setUpModule(): Config.CLIENT = storage.Client() bucket_name = 'new' + unique_resource_id() # In the **very** rare case the bucket name is reserved, this # fails with a ConnectionError. Config.TEST_BUCKET = Config.CLIENT.bucket(bucket_name) retry_429(Config.TEST_BUCKET.create)() def tearDownModule(): retry = RetryErrors(exceptions.Conflict) retry(Config.TEST_BUCKET.delete)(force=True) class TestStorageBuckets(unittest.TestCase): def setUp(self): self.case_buckets_to_delete = [] def tearDown(self): for bucket_name in self.case_buckets_to_delete: bucket = Config.CLIENT.bucket(bucket_name) retry_429(bucket.delete)() def test_create_bucket(self): new_bucket_name = 'a-new-bucket' + unique_resource_id('-') self.assertRaises(exceptions.NotFound, Config.CLIENT.get_bucket, new_bucket_name) created = Config.CLIENT.create_bucket(new_bucket_name) self.case_buckets_to_delete.append(new_bucket_name) self.assertEqual(created.name, new_bucket_name) def test_list_buckets(self): buckets_to_create = [ 'new' + unique_resource_id(), 'newer' + unique_resource_id(), 'newest' + unique_resource_id(), ] created_buckets = [] for bucket_name in buckets_to_create: bucket = Config.CLIENT.bucket(bucket_name) retry_429(bucket.create)() self.case_buckets_to_delete.append(bucket_name) # Retrieve the buckets. all_buckets = Config.CLIENT.list_buckets() created_buckets = [bucket for bucket in all_buckets if bucket.name in buckets_to_create] self.assertEqual(len(created_buckets), len(buckets_to_create)) def test_bucket_update_labels(self): bucket_name = 'update-labels' + unique_resource_id('-') bucket = retry_429(Config.CLIENT.create_bucket)(bucket_name) self.case_buckets_to_delete.append(bucket_name) self.assertTrue(bucket.exists()) updated_labels = {'test-label': 'label-value'} bucket.labels = updated_labels bucket.update() self.assertEqual(bucket.labels, updated_labels) new_labels = {'another-label': 'another-value'} bucket.labels = new_labels bucket.patch() self.assertEqual(bucket.labels, new_labels) bucket.labels = {} bucket.update() self.assertEqual(bucket.labels, {}) @unittest.skipUnless(USER_PROJECT, 'USER_PROJECT not set in environment.') def test_crud_bucket_with_requester_pays(self): new_bucket_name = 'w-requester-pays' + unique_resource_id('-') created = Config.CLIENT.create_bucket( new_bucket_name, requester_pays=True) self.case_buckets_to_delete.append(new_bucket_name) self.assertEqual(created.name, new_bucket_name) self.assertTrue(created.requester_pays) with_user_project = Config.CLIENT.bucket( new_bucket_name, user_project=USER_PROJECT) # Bucket will be deleted in-line below. self.case_buckets_to_delete.remove(new_bucket_name) try: # Exercise 'buckets.get' w/ userProject. self.assertTrue(with_user_project.exists()) with_user_project.reload() self.assertTrue(with_user_project.requester_pays) # Exercise 'buckets.patch' w/ userProject. with_user_project.configure_website( main_page_suffix='index.html', not_found_page='404.html') with_user_project.patch() self.assertEqual( with_user_project._properties['website'], { 'mainPageSuffix': 'index.html', 'notFoundPage': '404.html', }) # Exercise 'buckets.update' w/ userProject. new_labels = {'another-label': 'another-value'} with_user_project.labels = new_labels with_user_project.update() self.assertEqual(with_user_project.labels, new_labels) finally: # Exercise 'buckets.delete' w/ userProject. with_user_project.delete() @unittest.skipUnless(USER_PROJECT, 'USER_PROJECT not set in environment.') def test_bucket_acls_iam_with_user_project(self): new_bucket_name = 'acl-w-user-project' + unique_resource_id('-') Config.CLIENT.create_bucket( new_bucket_name, requester_pays=True) self.case_buckets_to_delete.append(new_bucket_name) with_user_project = Config.CLIENT.bucket( new_bucket_name, user_project=USER_PROJECT) # Exercise bucket ACL w/ userProject acl = with_user_project.acl acl.reload() acl.all().grant_read() acl.save() self.assertIn('READER', acl.all().get_roles()) del acl.entities['allUsers'] acl.save() self.assertFalse(acl.has_entity('allUsers')) # Exercise default object ACL w/ userProject doa = with_user_project.default_object_acl doa.reload() doa.all().grant_read() doa.save() self.assertIn('READER', doa.all().get_roles()) # Exercise IAM w/ userProject test_permissions = ['storage.buckets.get'] self.assertEqual( with_user_project.test_iam_permissions(test_permissions), test_permissions) policy = with_user_project.get_iam_policy() viewers = policy.setdefault('roles/storage.objectViewer', set()) viewers.add(policy.all_users()) with_user_project.set_iam_policy(policy) @unittest.skipUnless(USER_PROJECT, 'USER_PROJECT not set in environment.') def test_copy_existing_file_with_user_project(self): new_bucket_name = 'copy-w-requester-pays' + unique_resource_id('-') created = Config.CLIENT.create_bucket( new_bucket_name, requester_pays=True) self.case_buckets_to_delete.append(new_bucket_name) self.assertEqual(created.name, new_bucket_name) self.assertTrue(created.requester_pays) to_delete = [] blob = storage.Blob('simple', bucket=created) blob.upload_from_string(b'DEADBEEF') to_delete.append(blob) try: with_user_project = Config.CLIENT.bucket( new_bucket_name, user_project=USER_PROJECT) new_blob = retry_bad_copy(with_user_project.copy_blob)( blob, with_user_project, 'simple-copy') to_delete.append(new_blob) base_contents = blob.download_as_string() copied_contents = new_blob.download_as_string() self.assertEqual(base_contents, copied_contents) finally: for blob in to_delete: retry_429(blob.delete)() @unittest.skipUnless(USER_PROJECT, 'USER_PROJECT not set in environment.') def test_bucket_get_blob_with_user_project(self): new_bucket_name = 'w-requester-pays' + unique_resource_id('-') data = b'DEADBEEF' created = Config.CLIENT.create_bucket( new_bucket_name, requester_pays=True) self.case_buckets_to_delete.append(new_bucket_name) self.assertEqual(created.name, new_bucket_name) self.assertTrue(created.requester_pays) with_user_project = Config.CLIENT.bucket( new_bucket_name, user_project=USER_PROJECT) self.assertIsNone(with_user_project.get_blob('nonesuch')) to_add = created.blob('blob-name') to_add.upload_from_string(data) try: found = with_user_project.get_blob('blob-name') self.assertEqual(found.download_as_string(), data) finally: to_add.delete() class TestStorageFiles(unittest.TestCase): DIRNAME = os.path.realpath(os.path.dirname(__file__)) FILES = { 'logo': { 'path': DIRNAME + '/data/CloudPlatform_128px_Retina.png', }, 'big': { 'path': DIRNAME + '/data/five-point-one-mb-file.zip', }, 'simple': { 'path': DIRNAME + '/data/simple.txt', } } @classmethod def setUpClass(cls): super(TestStorageFiles, cls).setUpClass() for file_data in cls.FILES.values(): with open(file_data['path'], 'rb') as file_obj: file_data['hash'] = _base64_md5hash(file_obj) cls.bucket = Config.TEST_BUCKET def setUp(self): self.case_blobs_to_delete = [] def tearDown(self): for blob in self.case_blobs_to_delete: blob.delete() class TestStorageWriteFiles(TestStorageFiles): ENCRYPTION_KEY = 'b23ff11bba187db8c37077e6af3b25b8' def test_large_file_write_from_stream(self): blob = self.bucket.blob('LargeFile') file_data = self.FILES['big'] with open(file_data['path'], 'rb') as file_obj: blob.upload_from_file(file_obj) self.case_blobs_to_delete.append(blob) md5_hash = blob.md5_hash if not isinstance(md5_hash, six.binary_type): md5_hash = md5_hash.encode('utf-8') self.assertEqual(md5_hash, file_data['hash']) def test_large_encrypted_file_write_from_stream(self): blob = self.bucket.blob('LargeFile', encryption_key=self.ENCRYPTION_KEY) file_data = self.FILES['big'] with open(file_data['path'], 'rb') as file_obj: blob.upload_from_file(file_obj) self.case_blobs_to_delete.append(blob) md5_hash = blob.md5_hash if not isinstance(md5_hash, six.binary_type): md5_hash = md5_hash.encode('utf-8') self.assertEqual(md5_hash, file_data['hash']) temp_filename = tempfile.mktemp() with open(temp_filename, 'wb') as file_obj: blob.download_to_file(file_obj) with open(temp_filename, 'rb') as file_obj: md5_temp_hash = _base64_md5hash(file_obj) self.assertEqual(md5_temp_hash, file_data['hash']) def test_small_file_write_from_filename(self): blob = self.bucket.blob('SmallFile') file_data = self.FILES['simple'] blob.upload_from_filename(file_data['path']) self.case_blobs_to_delete.append(blob) md5_hash = blob.md5_hash if not isinstance(md5_hash, six.binary_type): md5_hash = md5_hash.encode('utf-8') self.assertEqual(md5_hash, file_data['hash']) @unittest.skipUnless(USER_PROJECT, 'USER_PROJECT not set in environment.') def test_crud_blob_w_user_project(self): with_user_project = Config.CLIENT.bucket( self.bucket.name, user_project=USER_PROJECT) blob = with_user_project.blob('SmallFile') file_data = self.FILES['simple'] with open(file_data['path'], mode='rb') as to_read: file_contents = to_read.read() # Exercise 'objects.insert' w/ userProject. blob.upload_from_filename(file_data['path']) try: # Exercise 'objects.get' (metadata) w/ userProject. self.assertTrue(blob.exists()) blob.reload() # Exercise 'objects.get' (media) w/ userProject. downloaded = blob.download_as_string() self.assertEqual(downloaded, file_contents) # Exercise 'objects.patch' w/ userProject. blob.content_language = 'en' blob.patch() self.assertEqual(blob.content_language, 'en') # Exercise 'objects.update' w/ userProject. metadata = { 'foo': 'Foo', 'bar': 'Bar', } blob.metadata = metadata blob.update() self.assertEqual(blob.metadata, metadata) finally: # Exercise 'objects.delete' (metadata) w/ userProject. blob.delete() @unittest.skipUnless(USER_PROJECT, 'USER_PROJECT not set in environment.') def test_blob_acl_w_user_project(self): with_user_project = Config.CLIENT.bucket( self.bucket.name, user_project=USER_PROJECT) blob = with_user_project.blob('SmallFile') file_data = self.FILES['simple'] blob.upload_from_filename(file_data['path']) self.case_blobs_to_delete.append(blob) # Exercise bucket ACL w/ userProject acl = blob.acl acl.reload() acl.all().grant_read() acl.save() self.assertIn('READER', acl.all().get_roles()) del acl.entities['allUsers'] acl.save() self.assertFalse(acl.has_entity('allUsers')) def test_upload_blob_acl(self): control = self.bucket.blob('logo') control_data = self.FILES['logo'] blob = self.bucket.blob('SmallFile') file_data = self.FILES['simple'] try: control.upload_from_filename(control_data['path']) blob.upload_from_filename(file_data['path'], predefined_acl='publicRead') finally: self.case_blobs_to_delete.append(blob) self.case_blobs_to_delete.append(control) control_acl = control.acl self.assertNotIn('READER', control_acl.all().get_roles()) acl = blob.acl self.assertIn('READER', acl.all().get_roles()) acl.all().revoke_read() self.assertSequenceEqual(acl.all().get_roles(), set([])) self.assertEqual(control_acl.all().get_roles(), acl.all().get_roles()) def test_write_metadata(self): filename = self.FILES['logo']['path'] blob_name = os.path.basename(filename) blob = storage.Blob(blob_name, bucket=self.bucket) blob.upload_from_filename(filename) self.case_blobs_to_delete.append(blob) # NOTE: This should not be necessary. We should be able to pass # it in to upload_file and also to upload_from_string. blob.content_type = 'image/png' self.assertEqual(blob.content_type, 'image/png') def test_direct_write_and_read_into_file(self): blob = self.bucket.blob('MyBuffer') file_contents = b'Hello World' blob.upload_from_string(file_contents) self.case_blobs_to_delete.append(blob) same_blob = self.bucket.blob('MyBuffer') same_blob.reload() # Initialize properties. temp_filename = tempfile.mktemp() with open(temp_filename, 'wb') as file_obj: same_blob.download_to_file(file_obj) with open(temp_filename, 'rb') as file_obj: stored_contents = file_obj.read() self.assertEqual(file_contents, stored_contents) def test_copy_existing_file(self): filename = self.FILES['logo']['path'] blob = storage.Blob('CloudLogo', bucket=self.bucket) blob.upload_from_filename(filename) self.case_blobs_to_delete.append(blob) new_blob = retry_bad_copy(self.bucket.copy_blob)( blob, self.bucket, 'CloudLogoCopy') self.case_blobs_to_delete.append(new_blob) base_contents = blob.download_as_string() copied_contents = new_blob.download_as_string() self.assertEqual(base_contents, copied_contents) class TestUnicode(unittest.TestCase): def test_fetch_object_and_check_content(self): client = storage.Client() bucket = client.bucket('storage-library-test-bucket') # Note: These files are public. # Normalization form C: a single character for e-acute; # URL should end with Cafe%CC%81 # Normalization Form D: an ASCII e followed by U+0301 combining # character; URL should end with Caf%C3%A9 test_data = { u'Caf\u00e9': b'Normalization Form C', u'Cafe\u0301': b'Normalization Form D', } for blob_name, file_contents in test_data.items(): blob = bucket.blob(blob_name) self.assertEqual(blob.name, blob_name) self.assertEqual(blob.download_as_string(), file_contents) class TestStorageListFiles(TestStorageFiles): FILENAMES = ('CloudLogo1', 'CloudLogo2', 'CloudLogo3') @classmethod def setUpClass(cls): super(TestStorageListFiles, cls).setUpClass() # Make sure bucket empty before beginning. _empty_bucket(cls.bucket) logo_path = cls.FILES['logo']['path'] blob = storage.Blob(cls.FILENAMES[0], bucket=cls.bucket) blob.upload_from_filename(logo_path) cls.suite_blobs_to_delete = [blob] # Copy main blob onto remaining in FILENAMES. for filename in cls.FILENAMES[1:]: new_blob = retry_bad_copy(cls.bucket.copy_blob)( blob, cls.bucket, filename) cls.suite_blobs_to_delete.append(new_blob) @classmethod def tearDownClass(cls): for blob in cls.suite_blobs_to_delete: blob.delete() @RetryErrors(unittest.TestCase.failureException) def test_list_files(self): all_blobs = list(self.bucket.list_blobs()) self.assertEqual(sorted(blob.name for blob in all_blobs), sorted(self.FILENAMES)) @unittest.skipUnless(USER_PROJECT, 'USER_PROJECT not set in environment.') @RetryErrors(unittest.TestCase.failureException) def test_list_files_with_user_project(self): with_user_project = Config.CLIENT.bucket( self.bucket.name, user_project=USER_PROJECT) all_blobs = list(with_user_project.list_blobs()) self.assertEqual(sorted(blob.name for blob in all_blobs), sorted(self.FILENAMES)) @RetryErrors(unittest.TestCase.failureException) def test_paginate_files(self): truncation_size = 1 count = len(self.FILENAMES) - truncation_size iterator = self.bucket.list_blobs(max_results=count) page_iter = iterator.pages page1 = six.next(page_iter) blobs = list(page1) self.assertEqual(len(blobs), count) self.assertIsNotNone(iterator.next_page_token) # Technically the iterator is exhausted. self.assertEqual(iterator.num_results, iterator.max_results) # But we modify the iterator to continue paging after # articially stopping after ``count`` items. iterator.max_results = None page2 = six.next(page_iter) last_blobs = list(page2) self.assertEqual(len(last_blobs), truncation_size) class TestStoragePseudoHierarchy(TestStorageFiles): FILENAMES = ( 'file01.txt', 'parent/file11.txt', 'parent/child/file21.txt', 'parent/child/file22.txt', 'parent/child/grand/file31.txt', 'parent/child/other/file32.txt', ) @classmethod def setUpClass(cls): super(TestStoragePseudoHierarchy, cls).setUpClass() # Make sure bucket empty before beginning. _empty_bucket(cls.bucket) cls.suite_blobs_to_delete = [] simple_path = cls.FILES['simple']['path'] for filename in cls.FILENAMES: blob = storage.Blob(filename, bucket=cls.bucket) blob.upload_from_filename(simple_path) cls.suite_blobs_to_delete.append(blob) @classmethod def tearDownClass(cls): for blob in cls.suite_blobs_to_delete: blob.delete() @RetryErrors(unittest.TestCase.failureException) def test_blob_get_w_delimiter(self): for filename in self.FILENAMES: blob = self.bucket.blob(filename) self.assertTrue(blob.exists(), filename) @RetryErrors(unittest.TestCase.failureException) def test_root_level_w_delimiter(self): iterator = self.bucket.list_blobs(delimiter='/') page = six.next(iterator.pages) blobs = list(page) self.assertEqual([blob.name for blob in blobs], ['file01.txt']) self.assertIsNone(iterator.next_page_token) self.assertEqual(iterator.prefixes, set(['parent/'])) @RetryErrors(unittest.TestCase.failureException) def test_first_level(self): iterator = self.bucket.list_blobs(delimiter='/', prefix='parent/') page = six.next(iterator.pages) blobs = list(page) self.assertEqual([blob.name for blob in blobs], ['parent/file11.txt']) self.assertIsNone(iterator.next_page_token) self.assertEqual(iterator.prefixes, set(['parent/child/'])) @RetryErrors(unittest.TestCase.failureException) def test_second_level(self): expected_names = [ 'parent/child/file21.txt', 'parent/child/file22.txt', ] iterator = self.bucket.list_blobs(delimiter='/', prefix='parent/child/') page = six.next(iterator.pages) blobs = list(page) self.assertEqual([blob.name for blob in blobs], expected_names) self.assertIsNone(iterator.next_page_token) self.assertEqual(iterator.prefixes, set(['parent/child/grand/', 'parent/child/other/'])) @RetryErrors(unittest.TestCase.failureException) def test_third_level(self): # Pseudo-hierarchy can be arbitrarily deep, subject to the limit # of 1024 characters in the UTF-8 encoded name: # https://cloud.google.com/storage/docs/bucketnaming#objectnames # Exercise a layer deeper to illustrate this. iterator = self.bucket.list_blobs(delimiter='/', prefix='parent/child/grand/') page = six.next(iterator.pages) blobs = list(page) self.assertEqual([blob.name for blob in blobs], ['parent/child/grand/file31.txt']) self.assertIsNone(iterator.next_page_token) self.assertEqual(iterator.prefixes, set()) class TestStorageSignURLs(TestStorageFiles): def setUp(self): super(TestStorageSignURLs, self).setUp() logo_path = self.FILES['logo']['path'] with open(logo_path, 'rb') as file_obj: self.LOCAL_FILE = file_obj.read() blob = self.bucket.blob('LogoToSign.jpg') blob.upload_from_string(self.LOCAL_FILE) self.case_blobs_to_delete.append(blob) def tearDown(self): for blob in self.case_blobs_to_delete: if blob.exists(): blob.delete() def test_create_signed_read_url(self): blob = self.bucket.blob('LogoToSign.jpg') expiration = int(time.time() + 10) signed_url = blob.generate_signed_url(expiration, method='GET', client=Config.CLIENT) response = requests.get(signed_url) self.assertEqual(response.status_code, 200) self.assertEqual(response.content, self.LOCAL_FILE) def test_create_signed_delete_url(self): blob = self.bucket.blob('LogoToSign.jpg') expiration = int(time.time() + 283473274) signed_delete_url = blob.generate_signed_url(expiration, method='DELETE', client=Config.CLIENT) response = requests.request('DELETE', signed_delete_url) self.assertEqual(response.status_code, 204) self.assertEqual(response.content, b'') # Check that the blob has actually been deleted. self.assertFalse(blob.exists()) class TestStorageCompose(TestStorageFiles): FILES = {} def test_compose_create_new_blob(self): SOURCE_1 = b'AAA\n' source_1 = self.bucket.blob('source-1') source_1.upload_from_string(SOURCE_1) self.case_blobs_to_delete.append(source_1) SOURCE_2 = b'BBB\n' source_2 = self.bucket.blob('source-2') source_2.upload_from_string(SOURCE_2) self.case_blobs_to_delete.append(source_2) destination = self.bucket.blob('destination') destination.content_type = 'text/plain' destination.compose([source_1, source_2]) self.case_blobs_to_delete.append(destination) composed = destination.download_as_string() self.assertEqual(composed, SOURCE_1 + SOURCE_2) def test_compose_replace_existing_blob(self): BEFORE = b'AAA\n' original = self.bucket.blob('original') original.content_type = 'text/plain' original.upload_from_string(BEFORE) self.case_blobs_to_delete.append(original) TO_APPEND = b'BBB\n' to_append = self.bucket.blob('to_append') to_append.upload_from_string(TO_APPEND) self.case_blobs_to_delete.append(to_append) original.compose([original, to_append]) composed = original.download_as_string() self.assertEqual(composed, BEFORE + TO_APPEND) @unittest.skipUnless(USER_PROJECT, 'USER_PROJECT not set in environment.') def test_compose_with_user_project(self): new_bucket_name = 'compose-user-project' + unique_resource_id('-') created = Config.CLIENT.create_bucket( new_bucket_name, requester_pays=True) try: SOURCE_1 = b'AAA\n' source_1 = created.blob('source-1') source_1.upload_from_string(SOURCE_1) SOURCE_2 = b'BBB\n' source_2 = created.blob('source-2') source_2.upload_from_string(SOURCE_2) with_user_project = Config.CLIENT.bucket( new_bucket_name, user_project=USER_PROJECT) destination = with_user_project.blob('destination') destination.content_type = 'text/plain' destination.compose([source_1, source_2]) composed = destination.download_as_string() self.assertEqual(composed, SOURCE_1 + SOURCE_2) finally: retry_429(created.delete)(force=True) class TestStorageRewrite(TestStorageFiles): FILENAMES = ( 'file01.txt', ) def test_rewrite_create_new_blob_add_encryption_key(self): file_data = self.FILES['simple'] source = self.bucket.blob('source') source.upload_from_filename(file_data['path']) self.case_blobs_to_delete.append(source) source_data = source.download_as_string() KEY = os.urandom(32) dest = self.bucket.blob('dest', encryption_key=KEY) token, rewritten, total = dest.rewrite(source) self.case_blobs_to_delete.append(dest) self.assertEqual(token, None) self.assertEqual(rewritten, len(source_data)) self.assertEqual(total, len(source_data)) self.assertEqual(source.download_as_string(), dest.download_as_string()) def test_rewrite_rotate_encryption_key(self): BLOB_NAME = 'rotating-keys' file_data = self.FILES['simple'] SOURCE_KEY = os.urandom(32) source = self.bucket.blob(BLOB_NAME, encryption_key=SOURCE_KEY) source.upload_from_filename(file_data['path']) self.case_blobs_to_delete.append(source) source_data = source.download_as_string() DEST_KEY = os.urandom(32) dest = self.bucket.blob(BLOB_NAME, encryption_key=DEST_KEY) token, rewritten, total = dest.rewrite(source) # Not adding 'dest' to 'self.case_blobs_to_delete': it is the # same object as 'source'. self.assertIsNone(token) self.assertEqual(rewritten, len(source_data)) self.assertEqual(total, len(source_data)) self.assertEqual(dest.download_as_string(), source_data) @unittest.skipUnless(USER_PROJECT, 'USER_PROJECT not set in environment.') def test_rewrite_add_key_with_user_project(self): file_data = self.FILES['simple'] new_bucket_name = 'rewrite-key-up' + unique_resource_id('-') created = Config.CLIENT.create_bucket( new_bucket_name, requester_pays=True) try: with_user_project = Config.CLIENT.bucket( new_bucket_name, user_project=USER_PROJECT) source = with_user_project.blob('source') source.upload_from_filename(file_data['path']) source_data = source.download_as_string() KEY = os.urandom(32) dest = with_user_project.blob('dest', encryption_key=KEY) token, rewritten, total = dest.rewrite(source) self.assertEqual(token, None) self.assertEqual(rewritten, len(source_data)) self.assertEqual(total, len(source_data)) self.assertEqual(source.download_as_string(), dest.download_as_string()) finally: retry_429(created.delete)(force=True) @unittest.skipUnless(USER_PROJECT, 'USER_PROJECT not set in environment.') def test_rewrite_rotate_with_user_project(self): BLOB_NAME = 'rotating-keys' file_data = self.FILES['simple'] new_bucket_name = 'rewrite-rotate-up' + unique_resource_id('-') created = Config.CLIENT.create_bucket( new_bucket_name, requester_pays=True) try: with_user_project = Config.CLIENT.bucket( new_bucket_name, user_project=USER_PROJECT) SOURCE_KEY = os.urandom(32) source = with_user_project.blob( BLOB_NAME, encryption_key=SOURCE_KEY) source.upload_from_filename(file_data['path']) source_data = source.download_as_string() DEST_KEY = os.urandom(32) dest = with_user_project.blob(BLOB_NAME, encryption_key=DEST_KEY) token, rewritten, total = dest.rewrite(source) self.assertEqual(token, None) self.assertEqual(rewritten, len(source_data)) self.assertEqual(total, len(source_data)) self.assertEqual(dest.download_as_string(), source_data) finally: retry_429(created.delete)(force=True) class TestStorageNotificationCRUD(unittest.TestCase): topic = None TOPIC_NAME = 'notification' + unique_resource_id('-') CUSTOM_ATTRIBUTES = { 'attr1': 'value1', 'attr2': 'value2', } BLOB_NAME_PREFIX = 'blob-name-prefix/' @property def topic_path(self): return 'projects/{}/topics/{}'.format( Config.CLIENT.project, self.TOPIC_NAME) def _intialize_topic(self): try: from google.cloud.pubsub_v1 import PublisherClient except ImportError: raise unittest.SkipTest("Cannot import pubsub") self.publisher_client = PublisherClient() retry_429(self.publisher_client.create_topic)(self.topic_path) policy = self.publisher_client.get_iam_policy(self.topic_path) binding = policy.bindings.add() binding.role = 'roles/pubsub.publisher' binding.members.append( 'serviceAccount:{}' '@gs-project-accounts.iam.gserviceaccount.com'.format( Config.CLIENT.project)) self.publisher_client.set_iam_policy(self.topic_path, policy) def setUp(self): self.case_buckets_to_delete = [] self._intialize_topic() def tearDown(self): retry_429(self.publisher_client.delete_topic)(self.topic_path) with Config.CLIENT.batch(): for bucket_name in self.case_buckets_to_delete: bucket = Config.CLIENT.bucket(bucket_name) retry_429(bucket.delete)() @staticmethod def event_types(): from google.cloud.storage.notification import ( OBJECT_FINALIZE_EVENT_TYPE, OBJECT_DELETE_EVENT_TYPE) return [OBJECT_FINALIZE_EVENT_TYPE, OBJECT_DELETE_EVENT_TYPE] @staticmethod def payload_format(): from google.cloud.storage.notification import ( JSON_API_V1_PAYLOAD_FORMAT) return JSON_API_V1_PAYLOAD_FORMAT def test_notification_minimal(self): new_bucket_name = 'notification-minimal' + unique_resource_id('-') bucket = retry_429(Config.CLIENT.create_bucket)(new_bucket_name) self.case_buckets_to_delete.append(new_bucket_name) self.assertEqual(list(bucket.list_notifications()), []) notification = bucket.notification(self.TOPIC_NAME) retry_429(notification.create)() try: self.assertTrue(notification.exists()) self.assertIsNotNone(notification.notification_id) notifications = list(bucket.list_notifications()) self.assertEqual(len(notifications), 1) self.assertEqual(notifications[0].topic_name, self.TOPIC_NAME) finally: notification.delete() def test_notification_explicit(self): new_bucket_name = 'notification-explicit' + unique_resource_id('-') bucket = retry_429(Config.CLIENT.create_bucket)(new_bucket_name) self.case_buckets_to_delete.append(new_bucket_name) notification = bucket.notification( self.TOPIC_NAME, custom_attributes=self.CUSTOM_ATTRIBUTES, event_types=self.event_types(), blob_name_prefix=self.BLOB_NAME_PREFIX, payload_format=self.payload_format(), ) retry_429(notification.create)() try: self.assertTrue(notification.exists()) self.assertIsNotNone(notification.notification_id) self.assertEqual( notification.custom_attributes, self.CUSTOM_ATTRIBUTES) self.assertEqual(notification.event_types, self.event_types()) self.assertEqual( notification.blob_name_prefix, self.BLOB_NAME_PREFIX) self.assertEqual( notification.payload_format, self.payload_format()) finally: notification.delete() @unittest.skipUnless(USER_PROJECT, 'USER_PROJECT not set in environment.') def test_notification_w_user_project(self): new_bucket_name = 'notification-minimal' + unique_resource_id('-') retry_429(Config.CLIENT.create_bucket)( new_bucket_name, requester_pays=True) self.case_buckets_to_delete.append(new_bucket_name) with_user_project = Config.CLIENT.bucket( new_bucket_name, user_project=USER_PROJECT) self.assertEqual(list(with_user_project.list_notifications()), []) notification = with_user_project.notification(self.TOPIC_NAME) retry_429(notification.create)() try: self.assertTrue(notification.exists()) self.assertIsNotNone(notification.notification_id) notifications = list(with_user_project.list_notifications()) self.assertEqual(len(notifications), 1) self.assertEqual(notifications[0].topic_name, self.TOPIC_NAME) finally: notification.delete() class TestAnonymousClient(unittest.TestCase): PUBLIC_BUCKET = 'gcp-public-data-landsat' def test_access_to_public_bucket(self): anonymous = storage.Client.create_anonymous_client() bucket = anonymous.bucket(self.PUBLIC_BUCKET) blob, = bucket.list_blobs(max_results=1) with tempfile.TemporaryFile() as stream: blob.download_to_file(stream)
37.340383
78
0.650287
c4f478ca4f9cf10ef8452424466ba4ad9e9d3a0a
33
py
Python
__init__.py
YusukeKambara/japan_horse_racing
05c2e06fe265c5744b908b8575df260db18a115b
[ "MIT" ]
null
null
null
__init__.py
YusukeKambara/japan_horse_racing
05c2e06fe265c5744b908b8575df260db18a115b
[ "MIT" ]
1
2021-12-13T20:32:18.000Z
2021-12-13T20:32:18.000Z
__init__.py
YusukeKambara/japan_horse_racing
05c2e06fe265c5744b908b8575df260db18a115b
[ "MIT" ]
null
null
null
from japan_horse_racing import *
16.5
32
0.848485
34d425dee737455cd36ac9ef2f462358c7ee8f1f
666
py
Python
src/cmcandy/Python_language_Answers/_0021.py
ch98road/leetcode
a9b4be54a169b30f6711809b892dd1f79f2a17e7
[ "MIT" ]
null
null
null
src/cmcandy/Python_language_Answers/_0021.py
ch98road/leetcode
a9b4be54a169b30f6711809b892dd1f79f2a17e7
[ "MIT" ]
null
null
null
src/cmcandy/Python_language_Answers/_0021.py
ch98road/leetcode
a9b4be54a169b30f6711809b892dd1f79f2a17e7
[ "MIT" ]
1
2020-11-26T03:01:12.000Z
2020-11-26T03:01:12.000Z
# Definition for singly-linked list. class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next class Solution: def mergeTwoLists(self, l1: ListNode, l2: ListNode) -> ListNode: head = ListNode() index = head while l1 is not None and l2 is not None: if l1.val <= l2.val: index.next = l1 l1 = l1.next else: index.next = l2 l2 = l2.next index = index.next if l1 is not None: index.next = l1 if l2 is not None: index.next = l2 return head.next
25.615385
68
0.5
9c887a55b2dbebd940cdc3a33a3692c47d3f96c4
2,341
py
Python
python-syn/pyformance/reporters/opentsdb_reporter.py
harnitsignalfx/tf-synthetics
059e10b4e22d40899d7784fdc48a6f04c8eec9ec
[ "MIT" ]
null
null
null
python-syn/pyformance/reporters/opentsdb_reporter.py
harnitsignalfx/tf-synthetics
059e10b4e22d40899d7784fdc48a6f04c8eec9ec
[ "MIT" ]
1
2018-12-24T16:51:01.000Z
2018-12-24T16:51:01.000Z
pyformance/reporters/opentsdb_reporter.py
michalten/pyformance
34af1f230e3013b07a484c107a87dc61c0d79f42
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import print_function import sys from .reporter import Reporter import base64 import json if sys.version_info[0] > 2: import urllib.request as urllib import urllib.error as urlerror else: import urllib2 as urllib import urllib2 as urlerror class OpenTSDBReporter(Reporter): """ This reporter requires a tuple (application_name, write_key) to put data to opentsdb database """ def __init__(self, application_name, write_key, url, registry=None, reporting_interval=10, clock=None, prefix="", tags={}): super(OpenTSDBReporter, self).__init__(registry=registry, reporting_interval=reporting_interval, clock=clock) self.url = url self.application_name = application_name self.write_key = write_key self.prefix = prefix self.tags = tags or {} def report_now(self, registry=None, timestamp=None): metrics = self._collect_metrics(registry or self.registry, timestamp) if metrics: try: request = urllib.Request(self.url, data=json.dumps(metrics).encode("utf-8"), headers={'content-type': "application/json"}) authentication_data = "{0}:{1}".format(self.application_name, self.write_key) auth_header = base64.b64encode(bytes(authentication_data.encode("utf-8"))) request.add_header("Authorization", "Basic {0}".format(auth_header)) urllib.urlopen(request) except Exception as e: sys.stderr.write("{0}\n".format(e)) def _collect_metrics(self, registry, timestamp=None): timestamp = timestamp or int(round(self.clock.time())) metrics = registry.dump_metrics() metrics_data = [] for key in metrics.keys(): for value_key in metrics[key].keys(): metrics_data.append({ 'metric': "{0}{1}.{2}".format(self.prefix, key, value_key), 'value': metrics[key][value_key], 'timestamp': timestamp, 'tags': self.tags, }) return metrics_data
39.016667
117
0.576677
b46b3eab09f637ca23ed2961cf78d56f51aa9450
4,997
py
Python
qa/rpc-tests/wallet-hd.py
JoeGruffins/absolute
7dc6a34acbca84391e57ee754418f8251f99396e
[ "MIT" ]
9
2018-02-14T16:09:39.000Z
2021-02-01T02:15:51.000Z
qa/rpc-tests/wallet-hd.py
JoeGruffins/absolute
7dc6a34acbca84391e57ee754418f8251f99396e
[ "MIT" ]
4
2018-02-22T05:05:42.000Z
2018-05-29T09:10:10.000Z
qa/rpc-tests/wallet-hd.py
JoeGruffins/absolute
7dc6a34acbca84391e57ee754418f8251f99396e
[ "MIT" ]
11
2018-02-14T17:13:38.000Z
2018-04-28T13:43:59.000Z
#!/usr/bin/env python2 # coding=utf-8 # ^^^^^^^^^^^^ TODO remove when supporting only Python3 # Copyright (c) 2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test Hierarchical Deterministic wallet function.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * class WalletHDTest(BitcoinTestFramework): def setup_chain(self): print("Initializing test directory "+self.options.tmpdir) initialize_chain_clean(self.options.tmpdir, 2) def setup_network(self): self.nodes = start_nodes(2, self.options.tmpdir, [['-usehd=0'], ['-usehd=1', '-keypool=0']]) self.is_network_split = False connect_nodes_bi(self.nodes, 0, 1) self.is_network_split=False self.sync_all() def run_test (self): tmpdir = self.options.tmpdir # Make sure can't switch off usehd after wallet creation stop_node(self.nodes[1],1) try: start_node(1, self.options.tmpdir, ['-usehd=0']) raise AssertionError("Must not allow to turn off HD on an already existing HD wallet") except Exception as e: assert("absoluted exited with status 1 during initialization" in str(e)) # assert_start_raises_init_error(1, self.options.tmpdir, ['-usehd=0'], 'already existing HD wallet') # self.nodes[1] = start_node(1, self.options.tmpdir, self.node_args[1]) self.nodes[1] = start_node(1, self.options.tmpdir, ['-usehd=1', '-keypool=0']) connect_nodes_bi(self.nodes, 0, 1) # Make sure we use hd, keep chainid chainid = self.nodes[1].getwalletinfo()['hdchainid'] assert_equal(len(chainid), 64) # create an internal key change_addr = self.nodes[1].getrawchangeaddress() change_addrV= self.nodes[1].validateaddress(change_addr); assert_equal(change_addrV["hdkeypath"], "m/44'/1'/0'/1/0") #first internal child key # Import a non-HD private key in the HD wallet non_hd_add = self.nodes[0].getnewaddress() self.nodes[1].importprivkey(self.nodes[0].dumpprivkey(non_hd_add)) # This should be enough to keep the master key and the non-HD key self.nodes[1].backupwallet(tmpdir + "/hd.bak") #self.nodes[1].dumpwallet(tmpdir + "/hd.dump") # Derive some HD addresses and remember the last # Also send funds to each add self.nodes[0].generate(101) hd_add = None num_hd_adds = 300 for i in range(num_hd_adds): hd_add = self.nodes[1].getnewaddress() hd_info = self.nodes[1].validateaddress(hd_add) assert_equal(hd_info["hdkeypath"], "m/44'/1'/0'/0/"+str(i+1)) assert_equal(hd_info["hdchainid"], chainid) self.nodes[0].sendtoaddress(hd_add, 1) self.nodes[0].generate(1) self.nodes[0].sendtoaddress(non_hd_add, 1) self.nodes[0].generate(1) # create an internal key (again) change_addr = self.nodes[1].getrawchangeaddress() change_addrV= self.nodes[1].validateaddress(change_addr); assert_equal(change_addrV["hdkeypath"], "m/44'/1'/0'/1/1") #second internal child key self.sync_all() assert_equal(self.nodes[1].getbalance(), num_hd_adds + 1) print("Restore backup ...") stop_node(self.nodes[1],1) os.remove(self.options.tmpdir + "/node1/regtest/wallet.dat") shutil.copyfile(tmpdir + "/hd.bak", tmpdir + "/node1/regtest/wallet.dat") self.nodes[1] = start_node(1, self.options.tmpdir, ['-usehd=1', '-keypool=0']) #connect_nodes_bi(self.nodes, 0, 1) # Assert that derivation is deterministic hd_add_2 = None for _ in range(num_hd_adds): hd_add_2 = self.nodes[1].getnewaddress() hd_info_2 = self.nodes[1].validateaddress(hd_add_2) assert_equal(hd_info_2["hdkeypath"], "m/44'/1'/0'/0/"+str(_+1)) assert_equal(hd_info_2["hdchainid"], chainid) assert_equal(hd_add, hd_add_2) # Needs rescan stop_node(self.nodes[1],1) self.nodes[1] = start_node(1, self.options.tmpdir, ['-usehd=1', '-keypool=0', '-rescan']) #connect_nodes_bi(self.nodes, 0, 1) assert_equal(self.nodes[1].getbalance(), num_hd_adds + 1) # send a tx and make sure its using the internal chain for the changeoutput txid = self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 1) outs = self.nodes[1].decoderawtransaction(self.nodes[1].gettransaction(txid)['hex'])['vout']; keypath = "" for out in outs: if out['value'] != 1: keypath = self.nodes[1].validateaddress(out['scriptPubKey']['addresses'][0])['hdkeypath'] assert_equal(keypath[0:13], "m/44'/1'/0'/1") if __name__ == '__main__': WalletHDTest().main ()
43.833333
108
0.638983
6458da4c4bc0bdec37b45dfafdd7fd32a7c8f500
276
py
Python
dataset/dataset.py
CyberFuffa/backtrader-binance-bot
d9497228281f4b62ea271960d4f36a7071cd28f8
[ "MIT" ]
237
2019-04-08T06:26:52.000Z
2022-03-26T17:14:33.000Z
dataset/dataset.py
CyberFuffa/backtrader-binance-bot
d9497228281f4b62ea271960d4f36a7071cd28f8
[ "MIT" ]
8
2019-04-20T14:01:46.000Z
2021-03-06T21:44:22.000Z
dataset/dataset.py
CyberFuffa/backtrader-binance-bot
d9497228281f4b62ea271960d4f36a7071cd28f8
[ "MIT" ]
119
2019-04-26T08:50:03.000Z
2022-03-24T16:09:42.000Z
import backtrader as bt class CustomDataset(bt.feeds.GenericCSVData): params = ( ('time', -1), ('datetime', 0), ('open', 1), ('high', 2), ('low', 3), ('close', 4), ('volume', 5), ('openinterest', 6), )
18.4
45
0.431159
a6e3b675dfa51a4789138f774930a5853e1b16e7
17,802
py
Python
runtime/hetdesrun/runtime/engine/plain/workflow.py
pka1024/hetida-designer
3a191c512dfb37a897b89ab06a9f6ac18b3d9110
[ "MIT" ]
null
null
null
runtime/hetdesrun/runtime/engine/plain/workflow.py
pka1024/hetida-designer
3a191c512dfb37a897b89ab06a9f6ac18b3d9110
[ "MIT" ]
null
null
null
runtime/hetdesrun/runtime/engine/plain/workflow.py
pka1024/hetida-designer
3a191c512dfb37a897b89ab06a9f6ac18b3d9110
[ "MIT" ]
null
null
null
from typing import ( Protocol, Dict, Tuple, Any, List, Callable, Coroutine, Optional, Union, ) import logging from inspect import signature, Parameter from cached_property import cached_property # async compatible variant from pydantic import ValidationError from hetdesrun.datatypes import NamedDataTypedValue, parse_dynamically_from_datatypes from hetdesrun.runtime import runtime_component_logger from hetdesrun.runtime.logging import execution_context_filter from hetdesrun.runtime.engine.plain.execution import run_func_or_coroutine from hetdesrun.runtime.exceptions import ( RuntimeExecutionError, CircularDependency, MissingOutputException, MissingInputSource, WorkflowInputDataValidationError, ) logger = logging.getLogger(__name__) logger.addFilter(execution_context_filter) runtime_component_logger.addFilter(execution_context_filter) class Node(Protocol): """Protocol for common structural type features for workflow (sub)nodes""" # Note: The result attribute should be defined to be a cached_property in actual implementations # to avoid recomputing the result several times when values are accessed as inputs for more than # one other node. _in_computation: bool = False operator_hierarchical_id: str = "UNKNOWN" operator_hierarchical_name: str = "UNKNOWN" @cached_property async def result(self) -> Dict[str, Any]: # Outputs can have any type ... def add_inputs(self, new_inputs: Dict[str, Tuple["Node", str]]) -> None: ... class ComputationNode: # pylint: disable=too-many-instance-attributes """Represents a function computation with multiple outputs together with input information Inputs and outputs are not made explicit here and the information where the inputs come from does not need to be complete at initialization time. To add input information later use the add_inputs method. Completeness of input is checked when starting a function computation and incomplete input information then leads to an appropriate exception. Which inputs are actually required depends implicitely on the actual function. This allows the function to have true optional (keyword) arguments. The result is a cached property such that computation only runs once during the node's lifetime. The computation collects result from other computation nodes result properties and therefore may trigger a self-organizing computation graph execution. Circular dependencies are detected during computation and an appropriate exception is raised. """ def __init__( self, func: Union[Coroutine, Callable], inputs: Optional[Dict[str, Tuple[Node, str]]] = None, operator_hierarchical_id: str = "UNKNOWN", component_id: str = "UNKNOWN", operator_hierarchical_name: str = "UNKNOWN", component_name: str = "UNKNOWN", ) -> None: """ inputs is a dict {input_name : (another_node, output_name)}, i.e. mapping input names to pairs (another_node, output_name). Inputs do not need to be provided at initialization. func is a function or coroutine function with the input_names as keyword arguments. It should output a dict of result values. operator_hierarchical_id, component_id, operator_hierarchical_name and component_name can be provided to enrich logging and exception messages. The computation node inputs may or may not be complete, i.e. all required inputs are given or not. If not complete, computation of result may simply fail, e.g. with TypeError: <lambda>() missing 1 required positional argument: 'base_value' or TypeError: f() missing 1 required keyword-only argument: 'base_value' However the availability of all inputs is checked during execution by inspecting the provided func and comparing to currently set inputs. MissingInputSource exception is raised if inputs are missing. """ self.inputs: Dict[str, Tuple[Node, str]] = {} if inputs is not None: self.add_inputs(inputs) self.func = func self.required_params = self._infer_required_params() self._in_computation = False # to detect cycles self.operator_hierarchical_id = operator_hierarchical_id self.operator_hierarchical_name = operator_hierarchical_name self.component_id = component_id self.component_name = component_name self._in_computation = False def add_inputs(self, new_inputs: Dict[str, Tuple[Node, str]]) -> None: self.inputs.update(new_inputs) def _infer_required_params(self) -> List[str]: """Infer the function params which are actually required (i.e. no default value)""" kwargable_params = [ param for param in signature(self.func).parameters.values() # type: ignore if (param.kind in (Parameter.POSITIONAL_OR_KEYWORD, Parameter.KEYWORD_ONLY)) ] # only non-default-valued params are required: return [ param.name for param in kwargable_params if param.default is Parameter.empty ] def all_required_inputs_set(self) -> bool: return set(self.required_params).issubset(set(self.inputs.keys())) def _check_inputs(self) -> None: """Check and handle missing inputs""" if not self.all_required_inputs_set(): logger.info("Computation node execution failed due to missing input source") raise MissingInputSource( f"Inputs of computation node operator {self.operator_hierarchical_id} are missing" ).set_context( operator_hierarchical_id=self.operator_hierarchical_id, operator_hierarchical_name=self.operator_hierarchical_name, ) async def _gather_data_from_inputs(self) -> Dict[str, Any]: """Get data from inputs and handle possible cycles""" input_value_dict: Dict[str, Any] = {} for (input_name, (another_node, output_name)) in self.inputs.items(): # Cycle detection logic if another_node._in_computation: # pylint: disable=protected-access msg = ( f"Circular Dependency detected at operator {self.operator_hierarchical_id}" f" whith input '{input_name}' pointing to output '{output_name}'" f" of operator {another_node.operator_hierarchical_id}" ) logger.info(msg) raise CircularDependency(msg).set_context( operator_hierarchical_id=self.operator_hierarchical_id, operator_hierarchical_name=self.operator_hierarchical_name, ) # actually get input data from other nodes try: input_value_dict[input_name] = (await another_node.result)[output_name] except KeyError as e: # possibly an output_name missing in the result dict of one of the providing nodes! logger.info( "Execution failed due to missing output of a node", exc_info=True, ) raise MissingOutputException( "Could not obtain output result from another node while preparing to " "run operator" ).set_context( operator_hierarchical_id=self.operator_hierarchical_id, operator_hierarchical_name=self.operator_hierarchical_name, ) from e return input_value_dict async def _run_comp_func(self, input_values: Dict[str, Any]) -> Dict[str, Any]: """Running the component func with exception handling""" try: function_result: Dict[str, Any] = await run_func_or_coroutine( self.func, input_values # type: ignore ) function_result = function_result if function_result is not None else {} except RuntimeExecutionError as e: # user code may raise runtime execution errors e.set_context( self.operator_hierarchical_id, self.operator_hierarchical_name ) logger.info( ( "User raised Runtime execution exception during component execution" " of operator %s with UUID %s of component %s with UUID %s" ), self.operator_hierarchical_name, self.operator_hierarchical_id, self.component_name, self.component_id, exc_info=True, ) raise except Exception as e: # uncaught exceptions from user code logger.info( "Exception during Component execution of component instance %s", self.operator_hierarchical_name, exc_info=True, ) raise RuntimeExecutionError( f"Exception during Component execution of " f"component instance {self.operator_hierarchical_name}" f" (operator hierarchical id: {self.operator_hierarchical_id}):\n{str(e)}" ).set_context( self.operator_hierarchical_id, self.operator_hierarchical_name ) from e if not isinstance( function_result, dict ): # user functions may return completely unknown type msg = ( f"Component function of component instance {self.operator_hierarchical_id} from " f"component {self.operator_hierarchical_name} did not return an output dict!" ) logger.info(msg) raise RuntimeExecutionError(msg).set_context( self.operator_hierarchical_id, self.operator_hierarchical_name ) return function_result async def _compute_result(self) -> Dict[str, Any]: # set filter for contextualized logging execution_context_filter.bind_context( currently_executed_instance_id=self.operator_hierarchical_id, currently_executed_component_id=self.component_id, currently_executed_component_node_name=self.operator_hierarchical_name, ) logger.info( "Starting computation for operator %s of type component with operator id %s", self.operator_hierarchical_name, self.operator_hierarchical_id, ) self._in_computation = True self._check_inputs() # Gather data from input sources (detects cycles): input_values = await self._gather_data_from_inputs() # Actual execution of current node function_result = await self._run_comp_func(input_values) # cleanup self._in_computation = False execution_context_filter.clear_context() return function_result @cached_property # compute each nodes result only once async def result(self) -> Dict[str, Any]: return await self._compute_result() class Workflow: """Grouping computation nodes and other workflows and handling common input/output interface This class does not ensure that the interface actually handles all lose ends. """ def __init__( self, sub_nodes: List[Node], input_mappings: Dict[str, Tuple[Node, str]], # map wf input to sub_node output_mappings: Dict[ str, Tuple[Node, str] ], # map sub_node outputs to wf outputs inputs: Optional[Dict[str, Tuple[Node, str]]] = None, operator_hierarchical_id: str = "UNKNOWN", operator_hierarchical_name: str = "UNKNOWN", ): """Initialize new Workflow Args: sub_nodes (List[Node]): The sub nodes of this Workflow. Workflows can have workflows as subnodes. input_mappings (Dict[str, Tuple[Node, str]]): How inputs of the workflow are mapped to inputs of sub nodes. Maps the workflow input name to a pair consisting of a Node (which should be subnode) and the name of an input of that node. output_mappings (Dict[str, Tuple[Node, str]]): How outputs of sub nodes are mapped to workflow outputs. Maps the workflow output name to a pair consisting of a Node (which should be a subnode) and the name of an output of that node. inputs: Optional[Dict[str, Tuple[Node, str]]]: Inputs which this workflow gets from outputs of other Nodes (possibly outside the workflow). This is for example used for workflows that are sub nodes of workflows. This does not need to be provided at initialization -- the add_inputs method may be used instead at a later point. Therefore defaults to None. operator_hierarchical_id (str, optional): Used in logging and exception messages. Defaults to "UNKNOWN". operator_name (str, optional): Used in logging and exception messages. Defaults to "UNKNOWN". """ self.sub_nodes = sub_nodes self.input_mappings = ( input_mappings # dict wf_input_name : (sub_node, sub_node_input_name) ) self.output_mappings = ( output_mappings # dict wf_output_name : (sub_node, sub_node_output_name) ) self.inputs: Dict[str, Tuple[Node, str]] = {} if inputs is not None: self.add_inputs(inputs) self._in_computation: bool = False self.operator_hierarchical_id = operator_hierarchical_id self.operator_hierarchical_name = operator_hierarchical_name def add_inputs(self, new_inputs: Dict[str, Tuple[Node, str]]) -> None: self.inputs.update(new_inputs) # wire them to the subnodes, eventually overwriting existing wirings for key, (another_node, output_name) in new_inputs.items(): sub_node, sub_node_input_name = self.input_mappings[key] sub_node.add_inputs({sub_node_input_name: (another_node, output_name)}) def add_constant_providing_node( self, values: List[NamedDataTypedValue], add_new_provider_node_to_workflow: bool = True, id_suffix: str = "", ) -> None: """Add a node with no inputs providing workflow input data""" try: parsed_values = parse_dynamically_from_datatypes(values).dict() except ValidationError as e: raise WorkflowInputDataValidationError( "The provided data or some constant values could not be parsed into the " "respective workflow input datatypes" ) from e Const_Node = ComputationNode( func=lambda: parsed_values, inputs={}, operator_hierarchical_name="constant_provider", operator_hierarchical_id=self.operator_hierarchical_id + ":constant_provider" + "_" + id_suffix, ) if add_new_provider_node_to_workflow: # make it part of the workflow self.sub_nodes.append(Const_Node) self.add_inputs({key: (Const_Node, key) for key in parsed_values.keys()}) def _wire_workflow_inputs(self) -> None: """Wire the current inputs via the current input mappings to the appropriate sub nodes""" for ( wf_inp_name, (sub_node, sub_node_input_name), ) in self.input_mappings.items(): sub_node.add_inputs({sub_node_input_name: self.inputs[wf_inp_name]}) @cached_property async def result(self) -> Dict[str, Any]: self._wire_workflow_inputs() execution_context_filter.bind_context( currently_executed_instance_id=self.operator_hierarchical_id, currently_executed_component_id=None, currently_executed_component_node_name=self.operator_hierarchical_name, ) logger.info( "Starting computation for operator %s of type workflow with operator id %s", self.operator_hierarchical_name, self.operator_hierarchical_id, ) # gather result from workflow operators results = {} for ( wf_output_name, ( sub_node, sub_node_output_name, ), ) in self.output_mappings.items(): try: results[wf_output_name] = (await sub_node.result)[sub_node_output_name] except KeyError as e: # possibly an output_name missing in the result dict of one of the providing nodes! logger.info( "Execution failed due to missing output of a node", exc_info=True, ) raise MissingOutputException( "Could not obtain output result from another node while preparing to " "run operator" ).set_context( operator_hierarchical_id=self.operator_hierarchical_id, operator_hierarchical_name="workflow", ) from e # cleanup execution_context_filter.clear_context() return results def obtain_all_nodes(wf: Workflow) -> List[ComputationNode]: all_nodes: List[ComputationNode] = [] for node in wf.sub_nodes: if isinstance(node, Workflow): all_nodes = all_nodes + obtain_all_nodes(node) else: assert isinstance(node, ComputationNode) # hint for mypy # nosec all_nodes.append(node) return all_nodes
41.018433
100
0.647849
bdf8804fea3a0f51e9ad5fda4690bb876a6be2af
1,144
py
Python
WoC/34/Magic Cards.py
BlackVS/Hackerrank
017159a2354673dbca14e409e088798c9a54d7e1
[ "MIT" ]
null
null
null
WoC/34/Magic Cards.py
BlackVS/Hackerrank
017159a2354673dbca14e409e088798c9a54d7e1
[ "MIT" ]
null
null
null
WoC/34/Magic Cards.py
BlackVS/Hackerrank
017159a2354673dbca14e409e088798c9a54d7e1
[ "MIT" ]
null
null
null
#!/bin/python3 import sys from collections import * from itertools import * from sys import stdin input = stdin.readline #sys.stdin = open('G:\hackerrank\WoC\\34\\5. Magic cards\\t0.txt', 'r') def solve(): N,M,Q=map(int,input().split()) CMAX = M*(M+1)*(2*M+1)//6 maxl = M.bit_length() cards=[] for _ in range(N): ci=map(int,input().split()) next(ci) cards.append( set(c-1 for c in ci) ) RES = dict() for a in range(N): mask = 1 cadrsMasks = [0]*M for b in range(a, min(a+maxl, N)): allres = [0] * (1<<(b-a+1)) for card in range(M): cardmask = cadrsMasks[card] if card in cards[b]: cardmask |= mask cadrsMasks[card] = cardmask allres[cardmask] += (card+1)*(card+1) res = min(allres) RES[a,b] = res mask<<= 1 for _ in range(Q): l,r=map(lambda x:int(x)-1,input().split()) l,r=min(l,r),max(l,r) if r-l+1 > maxl: print(CMAX) else: print(CMAX-RES[l,r]) solve()
25.422222
71
0.482517
14e25c187ac9d507547a8f8007ab34d29ac360f4
7,528
py
Python
kubernetes/client/models/v1beta1_controller_revision.py
iamneha/python
5b208a1a49a8d6f8bbab28bcc226b9ef793bcbd0
[ "Apache-2.0" ]
1
2019-02-17T15:28:39.000Z
2019-02-17T15:28:39.000Z
kubernetes/client/models/v1beta1_controller_revision.py
iamneha/python
5b208a1a49a8d6f8bbab28bcc226b9ef793bcbd0
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/v1beta1_controller_revision.py
iamneha/python
5b208a1a49a8d6f8bbab28bcc226b9ef793bcbd0
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.13.4 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1beta1ControllerRevision(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'api_version': 'str', 'data': 'RuntimeRawExtension', 'kind': 'str', 'metadata': 'V1ObjectMeta', 'revision': 'int' } attribute_map = { 'api_version': 'apiVersion', 'data': 'data', 'kind': 'kind', 'metadata': 'metadata', 'revision': 'revision' } def __init__(self, api_version=None, data=None, kind=None, metadata=None, revision=None): """ V1beta1ControllerRevision - a model defined in Swagger """ self._api_version = None self._data = None self._kind = None self._metadata = None self._revision = None self.discriminator = None if api_version is not None: self.api_version = api_version if data is not None: self.data = data if kind is not None: self.kind = kind if metadata is not None: self.metadata = metadata self.revision = revision @property def api_version(self): """ Gets the api_version of this V1beta1ControllerRevision. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources :return: The api_version of this V1beta1ControllerRevision. :rtype: str """ return self._api_version @api_version.setter def api_version(self, api_version): """ Sets the api_version of this V1beta1ControllerRevision. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources :param api_version: The api_version of this V1beta1ControllerRevision. :type: str """ self._api_version = api_version @property def data(self): """ Gets the data of this V1beta1ControllerRevision. Data is the serialized representation of the state. :return: The data of this V1beta1ControllerRevision. :rtype: RuntimeRawExtension """ return self._data @data.setter def data(self, data): """ Sets the data of this V1beta1ControllerRevision. Data is the serialized representation of the state. :param data: The data of this V1beta1ControllerRevision. :type: RuntimeRawExtension """ self._data = data @property def kind(self): """ Gets the kind of this V1beta1ControllerRevision. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds :return: The kind of this V1beta1ControllerRevision. :rtype: str """ return self._kind @kind.setter def kind(self, kind): """ Sets the kind of this V1beta1ControllerRevision. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds :param kind: The kind of this V1beta1ControllerRevision. :type: str """ self._kind = kind @property def metadata(self): """ Gets the metadata of this V1beta1ControllerRevision. Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#metadata :return: The metadata of this V1beta1ControllerRevision. :rtype: V1ObjectMeta """ return self._metadata @metadata.setter def metadata(self, metadata): """ Sets the metadata of this V1beta1ControllerRevision. Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#metadata :param metadata: The metadata of this V1beta1ControllerRevision. :type: V1ObjectMeta """ self._metadata = metadata @property def revision(self): """ Gets the revision of this V1beta1ControllerRevision. Revision indicates the revision of the state represented by Data. :return: The revision of this V1beta1ControllerRevision. :rtype: int """ return self._revision @revision.setter def revision(self, revision): """ Sets the revision of this V1beta1ControllerRevision. Revision indicates the revision of the state represented by Data. :param revision: The revision of this V1beta1ControllerRevision. :type: int """ if revision is None: raise ValueError("Invalid value for `revision`, must not be `None`") self._revision = revision def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1beta1ControllerRevision): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
31.366667
281
0.616897
9b9b36b5172eec6a60466972969fd09943dbabf9
5,296
py
Python
libraries/botbuilder-dialogs/botbuilder/dialogs/_user_token_access.py
andreikop/botbuilder-python
5e073e0c68fcbdc558133bdbd59a02453e597abe
[ "MIT" ]
388
2019-05-07T15:53:21.000Z
2022-03-28T20:29:46.000Z
libraries/botbuilder-dialogs/botbuilder/dialogs/_user_token_access.py
andreikop/botbuilder-python
5e073e0c68fcbdc558133bdbd59a02453e597abe
[ "MIT" ]
1,286
2019-05-07T23:38:19.000Z
2022-03-31T10:44:16.000Z
libraries/botbuilder-dialogs/botbuilder/dialogs/_user_token_access.py
andreikop/botbuilder-python
5e073e0c68fcbdc558133bdbd59a02453e597abe
[ "MIT" ]
168
2019-05-14T20:23:25.000Z
2022-03-16T06:49:14.000Z
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from abc import ABC from botbuilder.core import TurnContext from botbuilder.core.bot_framework_adapter import TokenExchangeRequest from botbuilder.core.oauth import ConnectorClientBuilder, ExtendedUserTokenProvider from botbuilder.schema import TokenResponse from botframework.connector import ConnectorClient from botframework.connector.auth import ClaimsIdentity, ConnectorFactory from botframework.connector.auth.user_token_client import UserTokenClient from botframework.connector.token_api.models import SignInUrlResponse from .prompts.oauth_prompt_settings import OAuthPromptSettings class _UserTokenAccess(ABC): @staticmethod async def get_user_token( turn_context: TurnContext, settings: OAuthPromptSettings, magic_code: str ) -> TokenResponse: user_token_client: UserTokenClient = turn_context.turn_state.get( UserTokenClient.__name__, None ) if user_token_client: return await user_token_client.get_user_token( turn_context.activity.from_property.id, settings.connection_name, turn_context.activity.channel_id, magic_code, ) if isinstance(turn_context.adapter, ExtendedUserTokenProvider): return await turn_context.adapter.get_user_token( turn_context, settings.connection_name, magic_code, settings.oath_app_credentials, ) raise TypeError("OAuthPrompt is not supported by the current adapter") @staticmethod async def get_sign_in_resource( turn_context: TurnContext, settings: OAuthPromptSettings ) -> SignInUrlResponse: user_token_client: UserTokenClient = turn_context.turn_state.get( UserTokenClient.__name__, None ) if user_token_client: return await user_token_client.get_sign_in_resource( settings.connection_name, turn_context.activity, None ) if isinstance(turn_context.adapter, ExtendedUserTokenProvider): return await turn_context.adapter.get_sign_in_resource_from_user_and_credentials( turn_context, settings.oath_app_credentials, settings.connection_name, turn_context.activity.from_property.id if turn_context.activity and turn_context.activity.from_property else None, ) raise TypeError("OAuthPrompt is not supported by the current adapter") @staticmethod async def sign_out_user(turn_context: TurnContext, settings: OAuthPromptSettings): user_token_client: UserTokenClient = turn_context.turn_state.get( UserTokenClient.__name__, None ) if user_token_client: return await user_token_client.sign_out_user( turn_context.activity.from_property.id, settings.connection_name, turn_context.activity.channel_id, ) if isinstance(turn_context.adapter, ExtendedUserTokenProvider): return await turn_context.adapter.sign_out_user( turn_context, settings.connection_name, turn_context.activity.from_property.id if turn_context.activity and turn_context.activity.from_property else None, settings.oath_app_credentials, ) raise TypeError("OAuthPrompt is not supported by the current adapter") @staticmethod async def exchange_token( turn_context: TurnContext, settings: OAuthPromptSettings, token_exchange_request: TokenExchangeRequest, ) -> TokenResponse: user_token_client: UserTokenClient = turn_context.turn_state.get( UserTokenClient.__name__, None ) user_id = turn_context.activity.from_property.id if user_token_client: channel_id = turn_context.activity.channel_id return await user_token_client.exchange_token( user_id, channel_id, token_exchange_request, ) if isinstance(turn_context.adapter, ExtendedUserTokenProvider): return await turn_context.adapter.exchange_token( turn_context, settings.connection_name, user_id, token_exchange_request, ) raise TypeError("OAuthPrompt is not supported by the current adapter") @staticmethod async def create_connector_client( turn_context: TurnContext, service_url: str, claims_identity: ClaimsIdentity, audience: str, ) -> ConnectorClient: connector_factory: ConnectorFactory = turn_context.turn_state.get( ConnectorFactory.__name__, None ) if connector_factory: return await connector_factory.create(service_url, audience) if isinstance(turn_context.adapter, ConnectorClientBuilder): return await turn_context.adapter.create_connector_client( service_url, claims_identity, audience, ) raise TypeError("OAuthPrompt is not supported by the current adapter")
41.054264
93
0.684101
03e2e3c2572281a7220cad71d31759826df4e371
2,993
py
Python
Assignment1/main.py
njucjc/machine-learning
1adcbad8d1e9f9a187036bec01d1a5ce798e44e0
[ "MIT" ]
null
null
null
Assignment1/main.py
njucjc/machine-learning
1adcbad8d1e9f9a187036bec01d1a5ce798e44e0
[ "MIT" ]
null
null
null
Assignment1/main.py
njucjc/machine-learning
1adcbad8d1e9f9a187036bec01d1a5ce798e44e0
[ "MIT" ]
null
null
null
import numpy as np import argparse, os from utils import load_data, make_path from pca import pca_train, pca_test from svd import svd_train, svd_test from isomap import isomap from knn import knn parser = argparse.ArgumentParser(description='Dimensionality Reduction') parser.add_argument('--mode', type=str, default='train', help='train/test') parser.add_argument('--train_data', type=str, default='sonar', help='train data source') parser.add_argument('--test_data', type=str, default='sonar', help='test data source') parser.add_argument('--alg', type=str, default='pca', help='pca/svd/isomap') parser.add_argument('--output', type=str, default='output', help='result output dir') parser.add_argument('--dim', type=int, default= 10, help='target dim') args = parser.parse_args() make_path(args.output) train_data_path = os.path.join('data', args.train_data + '-train.txt') test_data_path = os.path.join('data', args.test_data + '-test.txt') def train(): train_data, _ = load_data(train_data_path) if args.alg == 'pca': mean_vecs, eig_vecs = pca_train(np.array(train_data), args.dim) np.savez(os.path.join(args.output, 'pca' + str(args.dim) + '.npz'), mean_vecs=mean_vecs, eig_vecs=eig_vecs) elif args.alg == 'svd': v = svd_train(np.array(train_data), args.dim) np.savez(os.path.join(args.output, 'svd' + str(args.dim) + '.npz'), v=v) else: pass def test(): test_data, test_labels = load_data(test_data_path) train_data, train_labels = load_data(train_data_path) if args.alg == 'pca': saved_data = np.load(os.path.join(args.output, args.alg + str(args.dim) + '.npz')) mean_vecs = saved_data['mean_vecs'] eig_vecs = saved_data['eig_vecs'] reduction_test_data = pca_test(np.array(test_data), mean_vecs, eig_vecs) reduction_train_data = pca_test(np.array(train_data), mean_vecs, eig_vecs) elif args.alg == 'svd': saved_data = np.load(os.path.join(args.output, args.alg + str(args.dim) + '.npz')) v = saved_data['v'] reduction_test_data = svd_test(np.array(test_data), v) reduction_train_data = svd_test(np.array(train_data), v) else: merge_data = train_data + test_data result = isomap(np.array(merge_data), n=args.dim) reduction_test_data = result[len(train_data):] reduction_train_data = result[:len(train_data)] acc = eval(reduction_test_data, test_labels, reduction_train_data, train_labels) print('ACC = ' + str(acc)) def eval(test_data, test_data_label, train_data, train_data_label): predict_label = [] for x in test_data: label = knn(x, train_data, train_data_label, 1) predict_label.append(label) right = 0 size = len(test_data_label) for i in range(size): if predict_label[i] == test_data_label[i]: right = right + 1 return right / size if args.mode == 'train': train() elif args.mode == 'test': test()
34.402299
115
0.676245
b9b103ade05f6b45e8770fe779edea288e4788e3
2,959
py
Python
logger/visualization.py
dong100136/pytorch-template
dc67fbc93401767d73a9307626bbf24ef259ec17
[ "MIT" ]
null
null
null
logger/visualization.py
dong100136/pytorch-template
dc67fbc93401767d73a9307626bbf24ef259ec17
[ "MIT" ]
null
null
null
logger/visualization.py
dong100136/pytorch-template
dc67fbc93401767d73a9307626bbf24ef259ec17
[ "MIT" ]
null
null
null
import importlib from datetime import datetime class TensorboardWriter(): def __init__(self, log_dir, logger, enabled): self.writer = None self.selected_module = "" if enabled: log_dir = str(log_dir) # Retrieve vizualization writer. succeeded = False for module in ["torch.utils.tensorboard", "tensorboardX"]: try: self.writer = importlib.import_module(module).SummaryWriter(log_dir) succeeded = True break except ImportError: succeeded = False self.selected_module = module if not succeeded: message = "Warning: visualization (Tensorboard) is configured to use, but currently not installed on " \ "this machine. Please install TensorboardX with 'pip install tensorboardx', upgrade PyTorch to " \ "version >= 1.1 to use 'torch.utils.tensorboard' or turn off the option in the 'config.json' file." logger.warning(message) self.step = 0 self.mode = '' self.tb_writer_ftns = { 'add_scalar', 'add_scalars', 'add_image', 'add_images', 'add_audio', 'add_text', 'add_histogram', 'add_pr_curve', 'add_embedding' } self.tag_mode_exceptions = {'add_histogram', 'add_embedding'} self.timer = datetime.now() def set_step(self, step, mode='train'): self.mode = mode self.step = step if step == 0: self.timer = datetime.now() return 0 else: duration = datetime.now() - self.timer self.add_scalar('steps_per_sec', 1 / duration.total_seconds()) self.timer = datetime.now() return 1/duration.total_seconds() def __getattr__(self, name): """ If visualization is configured to use: return add_data() methods of tensorboard with additional information (step, tag) added. Otherwise: return a blank function handle that does nothing """ if name in self.tb_writer_ftns: add_data = getattr(self.writer, name, None) def wrapper(tag, data, *args, **kwargs): if add_data is not None: # add mode(train/valid) tag if name not in self.tag_mode_exceptions: tag = '{}/{}'.format(tag, self.mode) add_data(tag, data, self.step, *args, **kwargs) return wrapper else: # default action for returning methods defined in this class, set_step() for instance. try: attr = object.__getattr__(name) except AttributeError: raise AttributeError("type object '{}' has no attribute '{}'".format(self.selected_module, name)) return attr
38.934211
120
0.560662
9dc0c8ca8f459e1ea410aed70a6dee1f1ccb0c4c
1,254
py
Python
venus/conf/elasticsearch.py
openstack/venus
7c3ec56142620cb2b3ff1562947c65a266401d57
[ "Apache-2.0" ]
null
null
null
venus/conf/elasticsearch.py
openstack/venus
7c3ec56142620cb2b3ff1562947c65a266401d57
[ "Apache-2.0" ]
null
null
null
venus/conf/elasticsearch.py
openstack/venus
7c3ec56142620cb2b3ff1562947c65a266401d57
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Inspur # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg elasticsearch_group = cfg.OptGroup(name='elasticsearch', title='elasticsearch') elasticsearch_opts = [ cfg.StrOpt('url', default='', help='the es url'), cfg.StrOpt('username', default='', help='the es username'), cfg.StrOpt('password', default='', help='the es password'), cfg.IntOpt('es_index_days', default=30, help='the es log store days') ] def register_opts(conf): conf.register_group(elasticsearch_group) conf.register_opts(elasticsearch_opts, elasticsearch_group)
32.153846
75
0.652313
de2a1e997df75afd5b831cf696a403dbd6cf5d4a
16,113
py
Python
posthog/models/event.py
bmann/posthog-foss
c794bb2666ce85cdc4b87940d2cd14604db8172e
[ "MIT" ]
1
2020-12-08T04:04:52.000Z
2020-12-08T04:04:52.000Z
posthog/models/event.py
yaoshuyin/posthog
1835174c7b3015d0c47260dff98d4a752dc0abde
[ "MIT" ]
null
null
null
posthog/models/event.py
yaoshuyin/posthog
1835174c7b3015d0c47260dff98d4a752dc0abde
[ "MIT" ]
null
null
null
import copy import datetime import re from collections import defaultdict from typing import Any, Dict, List, Optional, Tuple, Union import celery from django.conf import settings from django.contrib.postgres.fields import JSONField from django.db import connection, models, transaction from django.db.models import Exists, F, OuterRef, Prefetch, Q, QuerySet, Subquery from django.forms.models import model_to_dict from django.utils import timezone from posthog.ee import is_ee_enabled from .action import Action from .action_step import ActionStep from .element import Element from .element_group import ElementGroup from .filters import Filter from .person import Person, PersonDistinctId from .team import Team from .utils import namedtuplefetchall attribute_regex = r"([a-zA-Z]*)\[(.*)=[\'|\"](.*)[\'|\"]\]" LAST_UPDATED_TEAM_ACTION: Dict[int, datetime.datetime] = {} TEAM_EVENT_ACTION_QUERY_CACHE: Dict[int, Dict[str, tuple]] = defaultdict(dict) # TEAM_EVENT_ACTION_QUERY_CACHE looks like team_id -> event ex('$pageview') -> query TEAM_ACTION_QUERY_CACHE: Dict[int, str] = {} class SelectorPart(object): direct_descendant = False unique_order = 0 def _unescape_class(self, class_name): # separate all double slashes "\\" (replace them with "\") and remove all single slashes between them return "\\".join([p.replace("\\", "") for p in class_name.split("\\\\")]) def __init__(self, tag: str, direct_descendant: bool, escape_slashes: bool): self.direct_descendant = direct_descendant self.data: Dict[str, Union[str, List]] = {} self.ch_attributes: Dict[str, Union[str, List]] = {} # attributes for CH result = re.search(attribute_regex, tag) if result and "[id=" in tag: self.data["attr_id"] = result[3] self.ch_attributes["attr_id"] = result[3] tag = result[1] if result and "[" in tag: self.data["attributes__attr__{}".format(result[2])] = result[3] self.ch_attributes[result[2]] = result[3] tag = result[1] if "nth-child(" in tag: parts = tag.split(":nth-child(") self.data["nth_child"] = parts[1].replace(")", "") self.ch_attributes["nth-child"] = self.data["nth_child"] tag = parts[0] if "." in tag: parts = tag.split(".") # strip all slashes that are not followed by another slash self.data["attr_class__contains"] = [self._unescape_class(p) if escape_slashes else p for p in parts[1:]] tag = parts[0] if tag: self.data["tag_name"] = tag @property def extra_query(self) -> Dict[str, List[Union[str, List[str]]]]: where: List[Union[str, List[str]]] = [] params: List[Union[str, List[str]]] = [] for key, value in self.data.items(): if "attr__" in key: where.append("(attributes ->> 'attr__{}') = %s".format(key.split("attr__")[1])) else: if "__contains" in key: where.append("{} @> %s::varchar(200)[]".format(key.replace("__contains", ""))) else: where.append("{} = %s".format(key)) params.append(value) return {"where": where, "params": params} class Selector(object): parts: List[SelectorPart] = [] def __init__(self, selector: str, escape_slashes=True): self.parts = [] # Sometimes people manually add *, just remove them as they don't do anything selector = selector.replace("> * > ", "").replace("> *", "") tags = re.split(" ", selector.strip()) tags.reverse() for index, tag in enumerate(tags): if tag == ">" or tag == "": continue direct_descendant = False if index > 0 and tags[index - 1] == ">": direct_descendant = True part = SelectorPart(tag, direct_descendant, escape_slashes) part.unique_order = len([p for p in self.parts if p.data == part.data]) self.parts.append(copy.deepcopy(part)) class EventManager(models.QuerySet): def _element_subquery(self, selector: Selector) -> Tuple[Dict[str, Subquery], Dict[str, Union[F, bool]]]: filter: Dict[str, Union[F, bool]] = {} subqueries = {} for index, tag in enumerate(selector.parts): subqueries["match_{}".format(index)] = Subquery( Element.objects.filter(group_id=OuterRef("pk")) .values("order") .order_by("order") .extra(**tag.extra_query) # type: ignore # If there's two of the same element, for the second one we need to shift one [tag.unique_order : tag.unique_order + 1] ) filter["match_{}__isnull".format(index)] = False if index > 0: # If direct descendant, the next element has to have order +1 if tag.direct_descendant: filter["match_{}".format(index)] = F("match_{}".format(index - 1)) + 1 else: # If not, it can have any order as long as it's bigger than current element filter["match_{}__gt".format(index)] = F("match_{}".format(index - 1)) return (subqueries, filter) def earliest_timestamp(self, team_id: int): return ( self.filter(team_id=team_id) .order_by("timestamp")[0] .timestamp.replace(hour=0, minute=0, second=0, microsecond=0) .isoformat() ) def filter_by_element(self, filters: Dict, team_id: int): groups = ElementGroup.objects.filter(team_id=team_id) if filters.get("selector"): selector = Selector(filters["selector"]) subqueries, filter = self._element_subquery(selector) groups = groups.annotate(**subqueries) # type: ignore else: filter = {} for key in ["tag_name", "text", "href"]: if filters.get(key): filter["element__{}".format(key)] = filters[key] if not filter: return {} groups = groups.filter(**filter) return {"elements_hash__in": groups.values_list("hash", flat=True)} def filter_by_url(self, action_step: ActionStep, subquery: QuerySet): if not action_step.url: return subquery if action_step.url_matching == ActionStep.EXACT: where, param = "properties->>'$current_url' = %s", action_step.url elif action_step.url_matching == ActionStep.REGEX: where, param = "properties->>'$current_url' ~ %s", action_step.url else: where, param = "properties->>'$current_url' LIKE %s", f"%{action_step.url}%" return subquery.extra(where=[where], params=[param]) def filter_by_event(self, action_step): if not action_step.event: return {} return {"event": action_step.event} def filter_by_period(self, start, end): if not start and not end: return {} if not start: return {"created_at__lte": end} if not end: return {"created_at__gte": start} return {"created_at__gte": start, "created_at__lte": end} def add_person_id(self, team_id: int): return self.annotate( person_id=Subquery( PersonDistinctId.objects.filter(team_id=team_id, distinct_id=OuterRef("distinct_id")) .order_by() .values("person_id")[:1] ) ) def query_db_by_action(self, action, order_by="-timestamp", start=None, end=None) -> models.QuerySet: events = self any_step = Q() steps = action.steps.all() if len(steps) == 0: return self.none() for step in steps: subquery = ( Event.objects.add_person_id(team_id=action.team_id) .filter( Filter(data={"properties": step.properties}).properties_to_Q(team_id=action.team_id), pk=OuterRef("id"), **self.filter_by_event(step), **self.filter_by_element(model_to_dict(step), team_id=action.team_id), **self.filter_by_period(start, end), ) .only("id") ) subquery = self.filter_by_url(step, subquery) any_step |= Q(Exists(subquery)) events = self.filter(team_id=action.team_id).filter(any_step) if order_by: events = events.order_by(order_by) return events def filter_by_action(self, action: Action, order_by: str = "-id") -> models.QuerySet: events = self.filter(action=action).add_person_id(team_id=action.team_id) if order_by: events = events.order_by(order_by) return events def filter_by_event_with_people(self, event, team_id: int, order_by: str = "-id") -> models.QuerySet: events = self.filter(team_id=team_id).filter(event=event).add_person_id(team_id=team_id) if order_by: events = events.order_by(order_by) return events def create(self, site_url: Optional[str] = None, *args: Any, **kwargs: Any): with transaction.atomic(): if kwargs.get("elements"): if kwargs.get("team"): kwargs["elements_hash"] = ElementGroup.objects.create( team=kwargs["team"], elements=kwargs.pop("elements") ).hash else: kwargs["elements_hash"] = ElementGroup.objects.create( team_id=kwargs["team_id"], elements=kwargs.pop("elements") ).hash event = super().create(*args, **kwargs) # Matching actions to events can get very expensive to do as events are streaming in # In a few cases we have had it OOM Postgres with the query it is running # Short term solution is to have this be configurable to be run in batch if not settings.ASYNC_EVENT_ACTION_MAPPING: should_post_webhook = False relations = [] for action in event.actions: relations.append(action.events.through(action_id=action.pk, event_id=event.pk)) action.on_perform(event) if action.post_to_slack: should_post_webhook = True Action.events.through.objects.bulk_create(relations, ignore_conflicts=True) team = kwargs.get("team", event.team) if ( should_post_webhook and team and team.slack_incoming_webhook and not is_ee_enabled() ): # ee will handle separately celery.current_app.send_task("posthog.tasks.webhooks.post_event_to_webhook", (event.pk, site_url)) return event class Event(models.Model): class Meta: indexes = [ models.Index(fields=["elements_hash"]), models.Index(fields=["timestamp", "team_id", "event"]), ] def _can_use_cached_query(self, last_updated_action_ts): if not self.team_id in LAST_UPDATED_TEAM_ACTION: return False if not self.team_id in TEAM_EVENT_ACTION_QUERY_CACHE: return False if not self.event in TEAM_EVENT_ACTION_QUERY_CACHE[self.team_id]: return False if not self.team_id in TEAM_ACTION_QUERY_CACHE: return False # Cache is expired because actions were updated if last_updated_action_ts > LAST_UPDATED_TEAM_ACTION[self.team_id]: return False return True @property def person(self): return Person.objects.get( team_id=self.team_id, persondistinctid__team_id=self.team_id, persondistinctid__distinct_id=self.distinct_id ) # This (ab)uses query_db_by_action to find which actions match this event # We can't use filter_by_action here, as we use this function when we create an event so # the event won't be in the Action-Event relationship yet. # We use query caching to reduce the time spent on generating redundant queries @property def actions(self) -> List: last_updated_action_ts = Action.objects.filter(team_id=self.team_id).aggregate(models.Max("updated_at"))[ "updated_at__max" ] actions = ( Action.objects.filter( team_id=self.team_id, steps__event=self.event, deleted=False, # filter by event name to narrow down ) .distinct("id") .prefetch_related(Prefetch("steps", queryset=ActionStep.objects.order_by("id"))) ) if not self._can_use_cached_query(last_updated_action_ts): TEAM_ACTION_QUERY_CACHE[self.team_id], _ = actions.query.sql_with_params() if len(actions) == 0: return [] events: models.QuerySet[Any] = Event.objects.filter(pk=self.pk) for action in actions: events = events.annotate( **{ "action_{}".format(action.pk): Event.objects.filter(pk=self.pk) .query_db_by_action(action) .values("id")[:1] } ) # This block is a little cryptic so bear with me # We grab the query and the params from the ORM here q, p = events.query.sql_with_params() # We then take the parameters and replace the event id's with a placeholder # We use this later to sub back in future event id's # The rest of the parameters are shared between action types qp = tuple(["%s" if i == self.pk else i for i in p]) # Create a cache item and add it to the cache keyed on team_id and event id qcache = {self.event: (q, qp)} TEAM_EVENT_ACTION_QUERY_CACHE[self.team_id].update(qcache) # Update the last updated team action timestamp for future reference LAST_UPDATED_TEAM_ACTION[self.team_id] = last_updated_action_ts else: # If we have reached this block we are about to use the sql query cache # Grab the actions using the cached action query actions.raw(TEAM_ACTION_QUERY_CACHE[self.team_id]) # Grab the cached query and query params, we will need to replace some params q, p = TEAM_EVENT_ACTION_QUERY_CACHE[self.team_id][self.event] # Replace the query param placeholders with the event id (opposite of what we did above) qp = tuple([self.pk if i == "%s" else i for i in p]) with connection.cursor() as cursor: # Format and execute the cached query using the mostly cached params qstring = cursor.mogrify(q, qp) cursor.execute(qstring) events = namedtuplefetchall(cursor) event = [event for event in events][0] filtered_actions = [action for action in actions if getattr(event, "action_{}".format(action.pk), None)] return filtered_actions created_at: models.DateTimeField = models.DateTimeField(auto_now_add=True, null=True, blank=True) objects: EventManager = EventManager.as_manager() # type: ignore team: models.ForeignKey = models.ForeignKey(Team, on_delete=models.CASCADE) event: models.CharField = models.CharField(max_length=200, null=True, blank=True) distinct_id: models.CharField = models.CharField(max_length=200) properties: JSONField = JSONField(default=dict) timestamp: models.DateTimeField = models.DateTimeField(default=timezone.now, blank=True) elements_hash: models.CharField = models.CharField(max_length=200, null=True, blank=True) # DEPRECATED: elements are stored against element groups now elements: JSONField = JSONField(default=list, null=True, blank=True)
43.082888
120
0.604171
59540e95e2ab1c15142ed393e9c91338d70b9ccd
5,815
py
Python
p05-join.py
DingPang/cs451-practicals
f5545fbc9f6dfc9e6d6e3b32615af265e483b801
[ "BSD-3-Clause" ]
null
null
null
p05-join.py
DingPang/cs451-practicals
f5545fbc9f6dfc9e6d6e3b32615af265e483b801
[ "BSD-3-Clause" ]
null
null
null
p05-join.py
DingPang/cs451-practicals
f5545fbc9f6dfc9e6d6e3b32615af265e483b801
[ "BSD-3-Clause" ]
null
null
null
""" In this lab, we once again have a mandatory 'python' challenge. Then we have a more open-ended Machine Learning 'see why' challenge. This data is the "Is Wikipedia Literary" that I pitched. You can contribute to science or get a sense of the data here: https://label.jjfoley.me/wiki """ import gzip, json from shared import ( dataset_local_path, TODO, bootstrap_accuracy, simple_boxplot, bootstrap_auc, ) from dataclasses import dataclass from typing import Dict, List """ Problem 1: We have a copy of Wikipedia (I spared you the other 6 million pages). It is separate from our labels we collected. """ @dataclass class JustWikiPage: title: str wiki_id: str body: str # Load our pages into this pages list. pages: List[JustWikiPage] = [] with gzip.open(dataset_local_path("tiny-wiki.jsonl.gz"), "rt") as fp: for line in fp: entry = json.loads(line) pages.append(JustWikiPage(**entry)) @dataclass class JustWikiLabel: wiki_id: str is_literary: bool # Load our judgments/labels/truths/ys into this labels list: labels: List[JustWikiLabel] = [] with open(dataset_local_path("tiny-wiki-labels.jsonl")) as fp: for line in fp: entry = json.loads(line) labels.append( JustWikiLabel(wiki_id=entry["wiki_id"], is_literary=entry["truth_value"]) ) @dataclass class JoinedWikiData: wiki_id: str is_literary: bool title: str body: str print(len(pages), len(labels)) # print(pages[0]) # print(labels[0]) joined_data: Dict[str, JoinedWikiData] = {} labels_by_id: Dict[str, JustWikiLabel] = {} for label in labels: labels_by_id[label.wiki_id] = label for page in pages: if page.wiki_id not in labels_by_id: print("missing labels for page:", page.wiki_id) continue label_for_page = labels_by_id[page.wiki_id] full_row = JoinedWikiData( page.wiki_id, label_for_page.is_literary, page.title, page.body ) joined_data[full_row.wiki_id] = full_row # TODO("1. create a list of JoinedWikiData from the ``pages`` and ``labels`` lists.") # This challenge has some very short solutions, so it's more conceptual. If you're stuck after ~10-20 minutes of thinking, ask! ############### Problem 1 ends here ############### # Make sure it is solved correctly! assert len(joined_data) == len(pages) assert len(joined_data) == len(labels) # Make sure it has *some* positive labels! assert sum([1 for d in joined_data.values() if d.is_literary]) > 0 # Make sure it has *some* negative labels! assert sum([1 for d in joined_data.values() if not d.is_literary]) > 0 # Construct our ML problem: ys = [] examples = [] for wiki_data in joined_data.values(): ys.append(wiki_data.is_literary) examples.append(wiki_data.body) ## We're actually going to split before converting to features now... from sklearn.model_selection import train_test_split import numpy as np RANDOM_SEED = 1234 ## split off train/validate (tv) pieces. ex_tv, ex_test, y_tv, y_test = train_test_split( examples, ys, train_size=0.75, shuffle=True, random_state=RANDOM_SEED, ) # split off train, validate from (tv) pieces. ex_train, ex_vali, y_train, y_vali = train_test_split( ex_tv, y_tv, train_size=0.66, shuffle=True, random_state=RANDOM_SEED ) ## Convert to features, train simple model (TFIDF will be explained eventually.) from sklearn.feature_extraction.text import TfidfVectorizer # Only learn columns for words in the training data, to be fair. word_to_column = TfidfVectorizer( strip_accents="unicode", lowercase=True, stop_words="english", max_df=0.5 ) word_to_column.fit(ex_train) # Test words should surprise us, actually! X_train = word_to_column.transform(ex_train) X_vali = word_to_column.transform(ex_vali) X_test = word_to_column.transform(ex_test) print("Ready to Learn!") from sklearn.linear_model import LogisticRegression, SGDClassifier, Perceptron from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score models = { "SGDClassifier": SGDClassifier(), "Perceptron": Perceptron(), "LogisticRegression": LogisticRegression(), "DTree": DecisionTreeClassifier(), } # 2A for d in range(1, 20): models["DTree{}".format(d)] = DecisionTreeClassifier(max_depth=d) # 2B models["rForest"] = RandomForestClassifier() for name, m in models.items(): m.fit(X_train, y_train) print("{}:".format(name)) print("\tVali-Acc: {:.3}".format(m.score(X_vali, y_vali))) if hasattr(m, "decision_function"): scores = m.decision_function(X_vali) else: scores = m.predict_proba(X_vali)[:, 1] print("\tVali-AUC: {:.3}".format(roc_auc_score(y_score=scores, y_true=y_vali))) """ Results should be something like: SGDClassifier: Vali-Acc: 0.84 Vali-AUC: 0.879 Perceptron: Vali-Acc: 0.815 Vali-AUC: 0.844 LogisticRegression: Vali-Acc: 0.788 Vali-AUC: 0.88 DTree: Vali-Acc: 0.739 Vali-AUC: 0.71 """ # TODO("2. Explore why DecisionTrees are not beating linear models. Answer one of:") # TODO("2.A. Is it a bad depth?") # TODO("2.B. Do Random Forests do better?") # TODO( # "2.C. Is it randomness? Use simple_boxplot and bootstrap_auc/bootstrap_acc to see if the differences are meaningful!" # ) # TODO("2.D. Is it randomness? Control for random_state parameters!") """ 2.A. The depth seems to not be the problem, becauss changing the depth doesn't seem to improve the scores by a lot 2.B. Randon Forest is doing better than the decision trees but it is still slightly worse than liner SGD classifer, I think linear model is doing better because the datasets may just work better with one line as the "classification" on is_literary. """
29.221106
127
0.710232
65751af607f0448b627ff9ab27ac77769871bf01
389
py
Python
pathMaker.py
patwoz/phototimer
4cb661314dce3f05fcbb33e0b7514b699bc62974
[ "MIT" ]
73
2016-12-13T01:59:32.000Z
2022-03-15T05:44:47.000Z
pathMaker.py
patwoz/phototimer
4cb661314dce3f05fcbb33e0b7514b699bc62974
[ "MIT" ]
7
2017-03-23T01:16:57.000Z
2022-01-30T16:56:06.000Z
pathMaker.py
patwoz/phototimer
4cb661314dce3f05fcbb33e0b7514b699bc62974
[ "MIT" ]
29
2017-03-22T04:07:59.000Z
2022-01-02T22:31:16.000Z
import os class pathMaker: def __init__(self): pass def get_parts(self, totalPath): if(totalPath==None): return [] return totalPath.strip("/").split("/") def get_paths(self, totalPath): parts = self.get_parts(totalPath) paths =[] path = "/" for p in parts: path = os.path.join(path,p) paths.append(path) return paths def make_path(self, totalPath): pass
16.913043
40
0.663239
f0bc9d4ab6778b87d14e20b7e9fe80e373b7211f
3,982
py
Python
app/v1/models.py
Nyakaru/Store-Manager-Backend
e6240eac541632760f4a74e3e27a83ae0d2d3be5
[ "MIT" ]
null
null
null
app/v1/models.py
Nyakaru/Store-Manager-Backend
e6240eac541632760f4a74e3e27a83ae0d2d3be5
[ "MIT" ]
4
2018-10-17T12:07:41.000Z
2021-06-01T22:50:14.000Z
app/v1/models.py
Nyakaru/Store-Manager-Backend
e6240eac541632760f4a74e3e27a83ae0d2d3be5
[ "MIT" ]
1
2019-01-22T16:54:57.000Z
2019-01-22T16:54:57.000Z
'''Models and their methods.''' from hashlib import sha256 from os import getenv import jwt class DB(): '''In memory database.''' def __init__(self): '''Create an empty database.''' self.users = [] self.products = [] self.sales = [] def drop(self): '''Drop entire database.''' self.__init__() db = DB() class Base(): '''Base class to be inherited by other models.''' def save(self): '''Add object to database.''' try: self.id = getattr(db, self.tablename)[-1]['id']+1 except IndexError: self.id = 1 current = self.current() getattr(db, self.tablename).append(current) return self.view() def view(self): '''View object as a dictionary.''' return self.current class Product(Base): '''Product model.''' def __init__(self, name, price): '''Initialize a product.''' self.id = 0 self.name = name self.price = price self.tablename = 'products' def current(self): '''Current product''' current = { "name": self.name, "price": self.price, "id": self.id } return current def view(self): '''View product's information.''' return { "name": self.name, "price": self.price, "id": self.id } class Sale(Base): '''Sales model.''' def __init__(self, name, price): '''Initialize a sale.''' self.id = 0 self.name = name self.price = price self.tablename = 'sales' def current(self): '''Current sale''' current = { "name": self.name, "price": self.price, "id": self.id } return current def view(self): '''View a user's information.''' return { "name": self.name, "price": self.price, "id": self.id } class User(Base): '''User model.''' def __init__(self, username, password, email, is_admin, is_attendant, id=None): '''Initialize a user.''' self.id = 0 self.username = username self.email = email self.password = self.make_hash(password) if str(is_admin) == 'True': self.is_admin = True else: self.is_admin = False if str(is_attendant) == 'True': self.is_attendant = True else: self.is_attendant = False self.tablename = 'users' def current(self): '''Current user''' current = { 'username': self.username, 'email': self.email, 'password': self.password, 'is_attendant': self.is_attendant, 'is_admin': self.is_admin, 'id': self.id } return current def view(self): '''View a user's information.''' return { 'username': self.username, 'email': self.email, 'is_admin': self.is_admin, 'is_attendant': self.is_attendant, 'id': self.id } def make_hash(self, password): '''Generate hash of password.''' return sha256(password.encode('utf-8')).hexdigest() def generate_token(self): '''Create a token for a user.''' key = getenv('APP_SECRET_KEY') payload = { 'user_id': self.id, 'username': self.username, 'is_admin': self.is_admin, 'is_attendant': self.is_attendant } return jwt.encode(payload=payload, key=str(key), algorithm='HS256').decode('utf-8') @staticmethod def decode_token(token): '''View information inside a token.''' return jwt.decode(token, key=str(getenv('APP_SECRET_KEY'))) def check_password(self, password): '''Validate a user's password.'''
22.625
91
0.514314
f4f1ed89badcc1462265ab83bd30f76c000b791f
4,243
py
Python
samples/web/content/apprtc/apprtc_test.py
alvestrand/webrtc
e08695776b058fe781a2ff5259b648a89ea0e548
[ "BSD-3-Clause" ]
null
null
null
samples/web/content/apprtc/apprtc_test.py
alvestrand/webrtc
e08695776b058fe781a2ff5259b648a89ea0e548
[ "BSD-3-Clause" ]
null
null
null
samples/web/content/apprtc/apprtc_test.py
alvestrand/webrtc
e08695776b058fe781a2ff5259b648a89ea0e548
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2014 Google Inc. All Rights Reserved. import unittest import webtest import apprtc import json from google.appengine.api import memcache from google.appengine.ext import testbed class AppRtcUnitTest(unittest.TestCase): def setUp(self): # First, create an instance of the Testbed class. self.testbed = testbed.Testbed() # Then activate the testbed, which prepares the service stubs for use. self.testbed.activate() def tearDown(self): self.testbed.deactivate() def testGenerateRandomGeneratesStringOfRightLength(self): self.assertEqual(17, len(apprtc.generate_random(17))) self.assertEqual(23, len(apprtc.generate_random(23))) class AppRtcPageHandlerTest(unittest.TestCase): def setUp(self): # First, create an instance of the Testbed class. self.testbed = testbed.Testbed() # Then activate the testbed, which prepares the service stubs for use. self.testbed.activate() # Next, declare which service stubs you want to use. self.testbed.init_memcache_stub() self.test_app = webtest.TestApp(apprtc.app) def tearDown(self): self.testbed.deactivate() def makeGetRequest(self, path): # PhantomJS uses WebKit, so Safari is closest to the thruth. return self.test_app.get(path, headers={'User-Agent': 'Safari'}) def makePostRequest(self, path, body=''): return self.test_app.post(path, body, headers={'User-Agent': 'Safari'}) def verifyRegisterSuccessResponse(self, response, is_initiator, room_id): self.assertEqual(response.status_int, 200) response_json = json.loads(response.body) self.assertEqual('SUCCESS', response_json['result']) params = response_json['params'] caller_id = params['client_id'] self.assertTrue(len(caller_id) > 0) self.assertEqual(json.dumps(is_initiator), params['is_initiator']) self.assertEqual(room_id, params['room_id']) self.assertEqual([], params['error_messages']) return caller_id def testConnectingWithoutRoomIdRedirectsToGeneratedRoom(self): response = self.makeGetRequest('/') self.assertEqual(response.status_int, 302) redirect_location = response.headers['Location'] self.assertRegexpMatches(redirect_location, '^http://localhost/r/[\d]+$') def testRegisterAndBye(self): room_id = 'foo' # Register the caller. response = self.makePostRequest('/register/' + room_id) caller_id = self.verifyRegisterSuccessResponse(response, True, room_id) # Register the callee. response = self.makePostRequest('/register/' + room_id) callee_id = self.verifyRegisterSuccessResponse(response, False, room_id) # The third user will get an error. response = self.makePostRequest('/register/' + room_id) self.assertEqual(response.status_int, 200) response_json = json.loads(response.body) self.assertEqual('FULL', response_json['result']) # The caller and the callee leave. self.makePostRequest('/bye/' + room_id + '/' + caller_id) self.makePostRequest('/bye/' + room_id + '/' + callee_id) # Another user becomes the new caller. response = self.makePostRequest('/register/' + room_id) caller_id = self.verifyRegisterSuccessResponse(response, True, room_id) self.makePostRequest('/bye/' + room_id + '/' + caller_id) def testCallerMessagesForwardedToCallee(self): room_id = 'foo' # Register the caller. response = self.makePostRequest('/register/' + room_id) caller_id = self.verifyRegisterSuccessResponse(response, True, room_id) # Caller's messages should be saved. messages = ['1', '2', '3'] path = '/message/' + room_id + '/' + caller_id for msg in messages: response = self.makePostRequest(path, msg) response_json = json.loads(response.body) self.assertEqual('SUCCESS', response_json['result']) response = self.makePostRequest('/register/' + room_id) callee_id = self.verifyRegisterSuccessResponse(response, False, room_id) received_msgs = json.loads(response.body)['params']['messages'] self.assertEqual(messages, received_msgs) self.makePostRequest('/bye/' + room_id + '/' + caller_id) self.makePostRequest('/bye/' + room_id + '/' + callee_id) if __name__ == '__main__': unittest.main()
35.957627
77
0.716003
a6b639406d1f0b8b2ebddb502a6b8be24eb0c6f0
422
py
Python
venv/Scripts/pip3.6-script.py
fachrurRz/raspi-webserver
b0c5bd0c76138b35aac228eb7b0af47a4f7771ed
[ "Apache-2.0" ]
null
null
null
venv/Scripts/pip3.6-script.py
fachrurRz/raspi-webserver
b0c5bd0c76138b35aac228eb7b0af47a4f7771ed
[ "Apache-2.0" ]
null
null
null
venv/Scripts/pip3.6-script.py
fachrurRz/raspi-webserver
b0c5bd0c76138b35aac228eb7b0af47a4f7771ed
[ "Apache-2.0" ]
null
null
null
#!C:\Users\fachr\PycharmProjects\raspi-webserver\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==9.0.1','console_scripts','pip3.6' __requires__ = 'pip==9.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==9.0.1', 'console_scripts', 'pip3.6')() )
32.461538
72
0.670616
e7924a5691252f59760c8d60cddebe77ef542010
912
py
Python
sources/rnt/mediane/migrations/0004_auto_20171221_0333.py
bryan-brancotte/rank-aggregation-with-ties
15fffb0b1bee3d6cef7090486a7c910e5f51195d
[ "Apache-2.0" ]
null
null
null
sources/rnt/mediane/migrations/0004_auto_20171221_0333.py
bryan-brancotte/rank-aggregation-with-ties
15fffb0b1bee3d6cef7090486a7c910e5f51195d
[ "Apache-2.0" ]
11
2018-04-04T08:24:30.000Z
2021-03-19T21:45:04.000Z
sources/rnt/mediane/migrations/0004_auto_20171221_0333.py
bryan-brancotte/rank-aggregation-with-ties
15fffb0b1bee3d6cef7090486a7c910e5f51195d
[ "Apache-2.0" ]
1
2018-10-25T09:13:41.000Z
2018-10-25T09:13:41.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-12-21 03:33 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mediane', '0003_auto_20171219_2309'), ] operations = [ migrations.AddField( model_name='distance', name='key_name', field=models.CharField(default='', max_length=128), preserve_default=False, ), migrations.AddField( model_name='distance', name='key_name_is_read_only', field=models.BooleanField(default=False), ), migrations.AlterField( model_name='dataset', name='transient', field=models.BooleanField(default=False, help_text='Should the dataset be deleted when the associated job is removed?'), ), ]
28.5
132
0.60636
326da98954558ddee3749af757cd6140696dbcb1
5,244
py
Python
parcels_valuation/src/init_classification.py
dykra/railwayPath
44a2e256fde7c6439e77e3d713b5ef44c4d0e3bb
[ "MIT" ]
null
null
null
parcels_valuation/src/init_classification.py
dykra/railwayPath
44a2e256fde7c6439e77e3d713b5ef44c4d0e3bb
[ "MIT" ]
null
null
null
parcels_valuation/src/init_classification.py
dykra/railwayPath
44a2e256fde7c6439e77e3d713b5ef44c4d0e3bb
[ "MIT" ]
null
null
null
import argparse import csv from os.path import abspath from sklearn.model_selection import train_test_split from configuration.configuration_constants import excluded_values, \ file_name_predicted_price_categories_values, \ target_column_name, \ limit_date, \ path_to_trained_models from classification_module import CalculateValue, \ ClassificationLogisticRegressionModel, \ get_model from utils.database_handler import DatabaseHandler from utils.file_names_builder import make_file_name from utils.serialization_module import create_logger query_step_iterate = 200000 parser = argparse.ArgumentParser(description='Program to predict category of land price.') parser.add_argument('--save_to_database', action='store_true', default=False, help='Specify whether to save the values into the database.') parser.add_argument('--model_overwrite', action='store_true', default=False, help='Specify whether to override the model.') logger = create_logger() def classification_regression_with_test_set(): database_handler = DatabaseHandler() query = "EXEC dbo.GetDataToTrainClassificationModel @LimitDate = {}, @ExcludedList ='{}'".format(limit_date, excluded_values) data = database_handler.execute_query(query) train, test = train_test_split(data, test_size=0.2) model = ClassificationLogisticRegressionModel(input_data=train, target_column_name=target_column_name) prediction = CalculateValue(model).predict(data_to_predict=test) from sklearn.metrics import accuracy_score print(accuracy_score(y_true=test[target_column_name], y_pred=prediction)) database_handler.close_connection() for predictionItem, realItem in zip(prediction, test[target_column_name]): if predictionItem != realItem: print(predictionItem) print(realItem) print("\n") def classification_regression(save_to_database=False, overwrite_model=False): database_handler = DatabaseHandler() model_file_name = make_file_name(base_name=path_to_trained_models + "classification_", _limit_date=limit_date, extension='.sav') model = get_model("EXEC dbo.GetDataToTrainClassificationModel @LimitDate = {}, @ExcludedList ='{}'" .format(limit_date, excluded_values), target_column=target_column_name, model_file_name=abspath(model_file_name), database_handler=database_handler, overwrite=overwrite_model) min_max_object_id = \ database_handler.execute_query("EXEC dbo.GetMinimumAndMaxumimObjectID_ParcelVectors " "@LimitDate = {}, @ExcludedList ='{}'" .format(limit_date, excluded_values)) min_object_id = min_max_object_id.iloc[0]["MinimumObjectID"] max_object_id = min_max_object_id.iloc[0]["MaximumObjectID"] try: with open(make_file_name(file_name_predicted_price_categories_values, extension='.csv'), mode='a') \ as estimated_bucket_values: estimated_bucket_writer = csv.writer(estimated_bucket_values, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) tmp_min = min_object_id while tmp_min < max_object_id: if tmp_min + query_step_iterate < max_object_id: tmp_max = tmp_min + query_step_iterate else: tmp_max = max_object_id df_parcels_to_estimate_price_group = database_handler.execute_query( "EXEC dbo.GetDataToParcelClassification " "@LimitDate = {}, @ExcludedList='{}', @ObjectIdMin = {}, @ObjectIdMax = {}" .format(limit_date, excluded_values, tmp_min, tmp_max)) prediction = CalculateValue(model).predict(data_to_predict=df_parcels_to_estimate_price_group) for (prediction_value, object_id) in zip(prediction, df_parcels_to_estimate_price_group['OBJECTID']): if save_to_database: query = ("EXEC dbo.UpdateEstimatedPriceCategoryGroup " "@NEW_Estimated_Price_Group = {}, @ObjectID = {} " .format(prediction_value, object_id)) database_handler.cursor.execute(query) database_handler.conn.commit() estimated_bucket_writer.writerow([object_id, prediction_value]) tmp_min = tmp_max finally: database_handler.close_connection() logger.info('Classification prediction is done.') if __name__ == '__main__': args = parser.parse_args() classification_regression(save_to_database=args.save_to_database, overwrite_model=args.model_overwrite)
48.555556
117
0.632151
44cbbf771684769184b9bb9d10e5fd2e8f06a165
1,918
py
Python
flaskext/color.py
Frozenball/flask-color
0ecea1cfe37570e9286cada9209674bd0b0f6d7c
[ "MIT" ]
16
2015-07-18T17:10:03.000Z
2019-05-22T17:09:44.000Z
flaskext/color.py
Teemu/flask-color
0ecea1cfe37570e9286cada9209674bd0b0f6d7c
[ "MIT" ]
1
2016-08-20T21:24:17.000Z
2018-04-27T20:36:54.000Z
flaskext/color.py
Teemu/flask-color
0ecea1cfe37570e9286cada9209674bd0b0f6d7c
[ "MIT" ]
2
2019-11-07T08:29:29.000Z
2020-06-05T13:12:37.000Z
# -*- coding: utf-8 -*- """ flaskext.color ~~~~~~~~~~~~~~ Colors the requests in debugging mode :copyright: (c) 2014 by Frozenball. :license: MIT, see LICENSE for more details. """ import time import re class TerminalColors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' GRAY = '\033[1;30m' LITTLEGRAY = '\033[1;30m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' def init_app(app): if not ( app.config['DEBUG'] or app.config.get('COLOR_ALWAYS_ON', False) ): return import werkzeug.serving staticPattern = app.config.get( 'COLOR_PATTERN_GRAY', r'^/(static|assets|img|js|css)/(.*)|favicon\.ico|(.*)\.(png|jpeg|jpg|gif|css)$' ) hidePattern = app.config.get('COLOR_PATTERN_HIDE', r'/^$/') WSGIRequestHandler = werkzeug.serving.WSGIRequestHandler def log_request(self, code='-', size='-'): url = self.requestline.split(" ")[1] method = self.requestline.split(" ")[0] if code == 200: statusColor = TerminalColors.OKGREEN elif str(code)[0] in ['4', '5']: statusColor = TerminalColors.FAIL else: statusColor = TerminalColors.GRAY if re.search(hidePattern, url): return print("{statusColor}{status}{colorEnd} {methodColor}{method}{colorEnd} {urlColor}{url}{colorEnd}".format( status=code, method=method, url=url, statusColor=statusColor, colorEnd=TerminalColors.ENDC, methodColor=TerminalColors.GRAY if method == 'GET' else TerminalColors.ENDC, urlColor=TerminalColors.LITTLEGRAY if re.search(staticPattern, url) else TerminalColors.ENDC )) WSGIRequestHandler.log_request = log_request werkzeug.serving.WSGIRequestHandler = WSGIRequestHandler
29.060606
113
0.594891
56e3e64f3bf659d71b797c8e84fd99b31360e04c
1,878
py
Python
menu/generic.py
vlegoff/mud
88c9b6f020148e3fc9f3a58c372a0907e89384ff
[ "BSD-3-Clause" ]
null
null
null
menu/generic.py
vlegoff/mud
88c9b6f020148e3fc9f3a58c372a0907e89384ff
[ "BSD-3-Clause" ]
null
null
null
menu/generic.py
vlegoff/mud
88c9b6f020148e3fc9f3a58c372a0907e89384ff
[ "BSD-3-Clause" ]
null
null
null
"""Module containing generic functions for EvMenu.""" def _formatter(nodetext, optionstext, caller=None): """Do not display the options, only the text. This function is used by EvMenu to format the text of nodes. Options are not displayed for this menu, where it doesn't often make much sense to do so. Thus, only the node text is displayed. """ return nodetext def _input_no_digit(menuobject, raw_string, caller): """ Process input. Processes input much the same way the original function in EvMenu operates, but if input is a number, consider it a default choice. Args: menuobject (EvMenu): The EvMenu instance raw_string (str): The incoming raw_string from the menu command. caller (Object, Player or Session): The entity using the menu. """ cmd = raw_string.strip().lower() if cmd.isdigit() and menuobject.default: goto, callback = menuobject.default menuobject.callback_goto(callback, goto, raw_string) elif cmd in menuobject.options: # this will take precedence over the default commands # below goto, callback = menuobject.options[cmd] menuobject.callback_goto(callback, goto, raw_string) elif menuobject.auto_look and cmd in ("look", "l"): menuobject.display_nodetext() elif menuobject.auto_help and cmd in ("help", "h"): menuobject.display_helptext() elif menuobject.auto_quit and cmd in ("quit", "q", "exit"): menuobject.close_menu() elif menuobject.default: goto, callback = menuobject.default menuobject.callback_goto(callback, goto, raw_string) else: caller.msg(_HELP_NO_OPTION_MATCH) if not (menuobject.options or menuobject.default): # no options - we are at the end of the menu. menuobject.close_menu()
34.777778
69
0.672524
0d096b66ab79399ba0d158a5af7a2cf5784b00d7
844
py
Python
adminmgr/media/code/python/red1/BD_0913_0171_1120_0113_reducer.py
IamMayankThakur/test-bigdata
cef633eb394419b955bdce479699d0115d8f99c3
[ "Apache-2.0" ]
9
2019-11-08T02:05:27.000Z
2021-12-13T12:06:35.000Z
adminmgr/media/code/python/red1/BD_0913_0171_1120_0113_reducer.py
IamMayankThakur/test-bigdata
cef633eb394419b955bdce479699d0115d8f99c3
[ "Apache-2.0" ]
6
2019-11-27T03:23:16.000Z
2021-06-10T19:15:13.000Z
adminmgr/media/code/python/red1/BD_0913_0171_1120_0113_reducer.py
IamMayankThakur/test-bigdata
cef633eb394419b955bdce479699d0115d8f99c3
[ "Apache-2.0" ]
4
2019-11-26T17:04:27.000Z
2021-12-13T11:57:03.000Z
#!/usr/bin/python3 import sys import csv file_contents = sys.stdin output_dict = dict() for LINE in file_contents: line = LINE.strip() LIST = line.split(",") batsman_bowler = str(LIST[0]) + "_" + str(LIST[1]) wickets = int(LIST[2]) if batsman_bowler in output_dict.keys(): wickets_deleveries = output_dict[batsman_bowler] wickets_deleveries[0] = wickets_deleveries[0] + wickets #No. of wickets wickets_deleveries[1] = wickets_deleveries[1] + 1 #No. of deleveries else: output_dict[batsman_bowler] = [wickets,1] o = list() for key in output_dict.keys(): if(output_dict[key][1] <= 5): continue bat_bowl_list = key.split("_") wick_del_list = output_dict[key] l1 = bat_bowl_list + wick_del_list o.append(l1) o.sort(key = lambda x: (-x[2],x[3],x[0],x[1])) for l in o: print(l[0],l[1],l[2],l[3],sep=",")
22.810811
74
0.674171
974721a1e802534d61c05f9a5922c72043bf964e
649
py
Python
Examples/CircuitPython/Audio/Play-Simple-Tone.py
CytronTechnologies/MAKER-NANO-RP2040
96ebf29b53833bc09251e3680a2ddbf7e83934ff
[ "MIT" ]
null
null
null
Examples/CircuitPython/Audio/Play-Simple-Tone.py
CytronTechnologies/MAKER-NANO-RP2040
96ebf29b53833bc09251e3680a2ddbf7e83934ff
[ "MIT" ]
null
null
null
Examples/CircuitPython/Audio/Play-Simple-Tone.py
CytronTechnologies/MAKER-NANO-RP2040
96ebf29b53833bc09251e3680a2ddbf7e83934ff
[ "MIT" ]
null
null
null
# Plays a simple 8ksps 440 Hz sin wave # # Copy this file to Maker Nano RP2040 CIRCUITPY drive as code.py to run it on power up. # # This example code uses: Maker Nano RP2040 import audiocore import audiopwmio import board import array import time import math # Generate one period of sine wav. length = 8000 // 440 sine_wave = array.array("H", [0] * length) for i in range(length): sine_wave[i] = int(math.sin(math.pi * 2 * i / length) * (2 ** 15) + 2 ** 15) dac = audiopwmio.PWMAudioOut(board.GP18) sine_wave = audiocore.RawSample(sine_wave, sample_rate=8000) dac.play(sine_wave, loop=True) time.sleep(1) dac.stop()
27.041667
88
0.694915
46c3bbb6712c6276e48dd9328d7741a447f28b91
1,351
py
Python
python/paddle/fluid/tests/unittests/test_fetch_var.py
limeng357/Paddle
dbd25805c88c48998eb9dc0f4b2ca1fd46326482
[ "ECL-2.0", "Apache-2.0" ]
4
2019-04-28T13:29:41.000Z
2022-01-09T16:54:20.000Z
python/paddle/fluid/tests/unittests/test_fetch_var.py
limeng357/Paddle
dbd25805c88c48998eb9dc0f4b2ca1fd46326482
[ "ECL-2.0", "Apache-2.0" ]
3
2017-07-15T14:20:08.000Z
2019-05-06T03:16:54.000Z
python/paddle/fluid/tests/unittests/test_fetch_var.py
limeng357/Paddle
dbd25805c88c48998eb9dc0f4b2ca1fd46326482
[ "ECL-2.0", "Apache-2.0" ]
2
2020-11-04T08:01:39.000Z
2020-11-06T08:33:28.000Z
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid import paddle.fluid.layers as layers import op_test import numpy import unittest class TestFetchVar(op_test.OpTest): def test_fetch_var(self): val = numpy.array([1, 3, 5]).astype(numpy.int32) x = layers.create_tensor(dtype="int32", persistable=True, name="x") layers.assign(input=val, output=x) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_main_program(), feed={}, fetch_list=[]) fetched_x = fluid.fetch_var("x") self.assertTrue( numpy.array_equal(fetched_x, val), "fetch_x=%s val=%s" % (fetched_x, val)) self.assertEqual(fetched_x.dtype, val.dtype) if __name__ == '__main__': unittest.main()
35.552632
75
0.703183
b0dddef602f2a708addae34069add138dc9920bf
15,296
py
Python
cumulusci/tasks/bulkdata/tests/test_delete.py
davisagli/CumulusCI
fd74c324ad3ff662484b159395c639879011e711
[ "BSD-3-Clause" ]
109
2015-01-20T14:28:48.000Z
2018-08-31T12:12:39.000Z
cumulusci/tasks/bulkdata/tests/test_delete.py
davisagli/CumulusCI
fd74c324ad3ff662484b159395c639879011e711
[ "BSD-3-Clause" ]
365
2015-01-07T19:54:25.000Z
2018-09-11T15:10:02.000Z
cumulusci/tasks/bulkdata/tests/test_delete.py
davisagli/CumulusCI
fd74c324ad3ff662484b159395c639879011e711
[ "BSD-3-Clause" ]
125
2015-01-17T16:05:39.000Z
2018-09-06T19:05:00.000Z
from unittest import mock import pytest import responses from cumulusci.core.exceptions import BulkDataException, TaskOptionsError from cumulusci.tasks.bulkdata import DeleteData from cumulusci.tasks.bulkdata.step import ( DataApi, DataOperationJobResult, DataOperationResult, DataOperationStatus, DataOperationType, ) from cumulusci.tasks.bulkdata.tests.utils import _make_task from cumulusci.tests.util import mock_describe_calls class TestDeleteData: @responses.activate @mock.patch("cumulusci.tasks.bulkdata.delete.get_query_operation") @mock.patch("cumulusci.tasks.bulkdata.delete.get_dml_operation") def test_run(self, dml_mock, query_mock): mock_describe_calls() task = _make_task(DeleteData, {"options": {"objects": "Contact"}}) query_mock.return_value.get_results.return_value = iter( ["001000000000000", "001000000000001"] ) query_mock.return_value.job_result = DataOperationJobResult( DataOperationStatus.SUCCESS, [], 2, 0 ) dml_mock.return_value.get_results.return_value = iter( [ DataOperationResult("001000000000000", True, None), DataOperationResult("001000000000001", True, None), ] ) dml_mock.return_value.job_result = DataOperationJobResult( DataOperationStatus.SUCCESS, [], 0, 0 ) task() query_mock.assert_called_once_with( sobject="Contact", fields=["Id"], api_options={}, context=task, query="SELECT Id FROM Contact", api=DataApi.SMART, ) query_mock.return_value.query.assert_called_once() query_mock.return_value.get_results.assert_called_once() dml_mock.assert_called_once_with( sobject="Contact", operation=DataOperationType.DELETE, api_options={}, context=task, fields=["Id"], api=DataApi.SMART, volume=2, ) dml_mock.return_value.start.assert_called_once() dml_mock.return_value.end.assert_called_once() dml_mock.return_value.load_records.assert_called_once() dml_mock.return_value.get_results.assert_called_once() @responses.activate @mock.patch("cumulusci.tasks.bulkdata.delete.get_query_operation") @mock.patch("cumulusci.tasks.bulkdata.delete.get_dml_operation") def test_run__no_results(self, dml_mock, query_mock): mock_describe_calls() task = _make_task(DeleteData, {"options": {"objects": "Contact"}}) query_mock.return_value.get_results.return_value = iter([]) query_mock.return_value.job_result = DataOperationJobResult( DataOperationStatus.SUCCESS, [], 0, 0 ) task() query_mock.assert_called_once_with( sobject="Contact", fields=["Id"], api_options={}, context=task, query="SELECT Id FROM Contact", api=DataApi.SMART, ) query_mock.return_value.query.assert_called_once() query_mock.return_value.get_results.assert_not_called() dml_mock.assert_not_called() @responses.activate @mock.patch("cumulusci.tasks.bulkdata.delete.get_query_operation") @mock.patch("cumulusci.tasks.bulkdata.delete.get_dml_operation") def test_run__job_error_delete(self, dml_mock, query_mock): mock_describe_calls() task = _make_task(DeleteData, {"options": {"objects": "Contact"}}) query_mock.return_value.get_results.return_value = iter( ["001000000000000", "001000000000001"] ) query_mock.return_value.job_result = DataOperationJobResult( DataOperationStatus.SUCCESS, [], 2, 0 ) dml_mock.return_value.get_results.return_value = iter( [ DataOperationResult("001000000000000", True, None), DataOperationResult("001000000000001", False, None), ] ) with pytest.raises(BulkDataException): task() @responses.activate @mock.patch("cumulusci.tasks.bulkdata.delete.get_query_operation") @mock.patch("cumulusci.tasks.bulkdata.delete.get_dml_operation") def test_run__job_error_query(self, dml_mock, query_mock): mock_describe_calls() task = _make_task(DeleteData, {"options": {"objects": "Contact"}}) query_mock.return_value.get_results.return_value = iter( ["001000000000000", "001000000000001"] ) query_mock.return_value.job_result = DataOperationJobResult( DataOperationStatus.JOB_FAILURE, [], 0, 0 ) with pytest.raises(BulkDataException): task() @responses.activate @mock.patch("cumulusci.tasks.bulkdata.delete.get_query_operation") @mock.patch("cumulusci.tasks.bulkdata.delete.get_dml_operation") def test_run__row_error(self, dml_mock, query_mock): mock_describe_calls() task = _make_task(DeleteData, {"options": {"objects": "Contact"}}) query_mock.return_value.get_results.return_value = iter( ["001000000000000", "001000000000001"] ) query_mock.return_value.job_result = DataOperationJobResult( DataOperationStatus.SUCCESS, [], 2, 0 ) dml_mock.return_value.get_results.return_value = iter( [ DataOperationResult("001000000000000", True, None), DataOperationResult("001000000000001", False, None), ] ) with pytest.raises(BulkDataException): task() @responses.activate @mock.patch("cumulusci.tasks.bulkdata.delete.get_query_operation") @mock.patch("cumulusci.tasks.bulkdata.delete.get_dml_operation") def test_run__ignore_error(self, dml_mock, query_mock): mock_describe_calls() task = _make_task( DeleteData, { "options": { "objects": "Contact", "ignore_row_errors": "true", "hardDelete": "true", } }, ) query_mock.return_value.get_results.return_value = iter( ["001000000000000", "001000000000001"] ) query_mock.return_value.job_result = DataOperationJobResult( DataOperationStatus.SUCCESS, [], 2, 0 ) dml_mock.return_value.get_results.return_value = iter( [ DataOperationResult("001000000000000", True, None), DataOperationResult("001000000000001", False, None), ] ) dml_mock.return_value.job_result = DataOperationJobResult( DataOperationStatus.SUCCESS, [], 2, 0 ) with mock.patch.object(task.logger, "warning") as warning: task() assert len(warning.mock_calls) == 1 query_mock.assert_called_once_with( sobject="Contact", api_options={}, context=task, query="SELECT Id FROM Contact", api=DataApi.SMART, fields=["Id"], ) query_mock.return_value.query.assert_called_once() query_mock.return_value.get_results.assert_called_once() dml_mock.assert_called_once_with( sobject="Contact", operation=DataOperationType.HARD_DELETE, api_options={}, context=task, fields=["Id"], api=DataApi.SMART, volume=2, ) dml_mock.return_value.start.assert_called_once() dml_mock.return_value.end.assert_called_once() dml_mock.return_value.load_records.assert_called_once() dml_mock.return_value.get_results.assert_called_once() @responses.activate @mock.patch("cumulusci.tasks.bulkdata.delete.get_query_operation") @mock.patch("cumulusci.tasks.bulkdata.delete.get_dml_operation") def test_run__ignore_error_throttling(self, dml_mock, query_mock): mock_describe_calls() task = _make_task( DeleteData, { "options": { "objects": "Contact", "ignore_row_errors": "true", "hardDelete": "true", } }, ) query_mock.return_value.get_results.return_value = iter( ["001000000000000", "001000000000001"] * 15 ) query_mock.return_value.job_result = DataOperationJobResult( DataOperationStatus.SUCCESS, [], 2, 0 ) dml_mock.return_value.get_results.return_value = iter( [ DataOperationResult("001000000000000", True, None), DataOperationResult("001000000000001", False, None), ] * 15 ) dml_mock.return_value.job_result = DataOperationJobResult( DataOperationStatus.SUCCESS, [], 2, 0 ) with mock.patch.object(task.logger, "warning") as warning: task() assert len(warning.mock_calls) == task.row_warning_limit + 1 == 11 assert "warnings suppressed" in str(warning.mock_calls[-1]) @responses.activate @mock.patch("cumulusci.tasks.bulkdata.delete.get_query_operation") @mock.patch("cumulusci.tasks.bulkdata.delete.get_dml_operation") def test_run__where(self, dml_mock, query_mock): mock_describe_calls() task = _make_task( DeleteData, {"options": {"objects": "Contact", "where": "Id != null"}} ) query_mock.return_value.get_results.return_value = iter( ["001000000000000", "001000000000001"] ) query_mock.return_value.job_result = DataOperationJobResult( DataOperationStatus.SUCCESS, [], 2, 0 ) dml_mock.return_value.get_results.return_value = iter( [ DataOperationResult("001000000000000", True, None), DataOperationResult("001000000000001", True, None), ] ) dml_mock.return_value.job_result = DataOperationJobResult( DataOperationStatus.SUCCESS, [], 2, 0 ) task() query_mock.assert_called_once_with( sobject="Contact", api_options={}, context=task, query="SELECT Id FROM Contact WHERE Id != null", fields=["Id"], api=DataApi.SMART, ) query_mock.return_value.query.assert_called_once() query_mock.return_value.get_results.assert_called_once() dml_mock.assert_called_once_with( sobject="Contact", operation=DataOperationType.DELETE, api_options={}, context=task, fields=["Id"], api=DataApi.SMART, volume=2, ) dml_mock.return_value.start.assert_called_once() dml_mock.return_value.end.assert_called_once() dml_mock.return_value.load_records.assert_called_once() dml_mock.return_value.get_results.assert_called_once() @responses.activate @mock.patch("cumulusci.tasks.bulkdata.delete.get_query_operation") @mock.patch("cumulusci.tasks.bulkdata.delete.get_dml_operation") def test_run__query_fails(self, dml_mock, query_mock): mock_describe_calls() task = _make_task( DeleteData, {"options": {"objects": "Contact", "where": "Id != null"}} ) query_mock.return_value.get_results.return_value = iter( ["001000000000000", "001000000000001"] ) query_mock.return_value.job_result = DataOperationJobResult( DataOperationStatus.JOB_FAILURE, [], 0, 0 ) with pytest.raises(BulkDataException): task() @responses.activate def test_validate_and_inject_namespace__standard(self): mock_describe_calls() task = _make_task(DeleteData, {"options": {"objects": "Contact,Account"}}) task._validate_and_inject_namespace() assert task.sobjects == ["Contact", "Account"] @responses.activate def test_validate_and_inject_namespace__missing_object(self): mock_describe_calls() task = _make_task( DeleteData, {"options": {"objects": "ApexTestQueueItem,Account"}} ) # ApexTestQueueItem is not deletable with pytest.raises(TaskOptionsError): task._validate_and_inject_namespace() def test_validate_and_inject_namespace__packaged(self): task = _make_task(DeleteData, {"options": {"objects": "Contact,Test__c"}}) task.project_config.project__package__namespace = "ns" task.org_config = mock.Mock() task.org_config.salesforce_client.describe.return_value = { "sobjects": [ {"name": "ns__Test__c", "deletable": True}, {"name": "Contact", "deletable": True}, ] } task._validate_and_inject_namespace() assert task.sobjects == ["Contact", "ns__Test__c"] def test_validate_and_inject_namespace__packaged_and_not(self): task = _make_task(DeleteData, {"options": {"objects": "Contact,Test__c"}}) task.project_config.project__package__namespace = "ns" task.org_config = mock.Mock() task.org_config.salesforce_client.describe.return_value = { "sobjects": [ {"name": "Test__c", "deletable": True}, {"name": "Contact", "deletable": True}, {"name": "ns__Test__c", "deletable": True}, ] } task._validate_and_inject_namespace() # Prefer the user entry where there is ambiguity. assert task.sobjects == ["Contact", "Test__c"] def test_object_description(self): t = _make_task(DeleteData, {"options": {"objects": "a", "where": "Id != null"}}) assert t._object_description("a") == 'a objects matching "Id != null"' t = _make_task(DeleteData, {"options": {"objects": "a"}}) assert t._object_description("a") == "all a objects" def test_init_options(self): with pytest.raises(TaskOptionsError): _make_task(DeleteData, {"options": {"objects": ""}}) with pytest.raises(TaskOptionsError): _make_task(DeleteData, {"options": {"objects": "a,b", "where": "x='y'"}}) with pytest.raises(TaskOptionsError): _make_task(DeleteData, {"options": {"objects": "a", "api": "blah"}}) with pytest.raises(TaskOptionsError): _make_task( DeleteData, {"options": {"objects": "a", "api": "rest", "hardDelete": True}}, ) t = _make_task( DeleteData, { "options": { "objects": "a", "where": "Id != null", "hardDelete": "true", "ignore_row_errors": "false", } }, ) assert t.options["where"] == "Id != null" assert not t.options["ignore_row_errors"] assert t.options["hardDelete"] t = _make_task(DeleteData, {"options": {"objects": "a,b"}}) assert t.options["objects"] == ["a", "b"]
37.767901
88
0.611271
a05ed2c72508b4e6dbe84f5ecfe1b8b59e7d2f54
12,153
py
Python
neutronclient/tests/unit/osc/v2/sfc/test_service_graph.py
casual-lemon/python-neutronclient
adf21f028827b8a4e32057334db4cd464c24c4d0
[ "Apache-2.0" ]
120
2015-01-07T00:38:58.000Z
2021-12-26T13:05:53.000Z
neutronclient/tests/unit/osc/v2/sfc/test_service_graph.py
casual-lemon/python-neutronclient
adf21f028827b8a4e32057334db4cd464c24c4d0
[ "Apache-2.0" ]
1
2021-08-11T18:42:30.000Z
2021-08-11T22:25:21.000Z
neutronclient/tests/unit/osc/v2/sfc/test_service_graph.py
casual-lemon/python-neutronclient
adf21f028827b8a4e32057334db4cd464c24c4d0
[ "Apache-2.0" ]
153
2015-01-05T16:50:50.000Z
2021-09-13T12:01:23.000Z
# Copyright 2017 Intel Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from unittest import mock from osc_lib import exceptions from osc_lib.tests import utils as tests_utils from neutronclient.osc.v2.sfc import sfc_service_graph from neutronclient.tests.unit.osc.v2.sfc import fakes def _get_id(client, id_or_name, resource): return id_or_name class TestListSfcServiceGraph(fakes.TestNeutronClientOSCV2): _service_graphs = fakes.FakeSfcServiceGraph.create_sfc_service_graphs( count=1) columns = ('ID', 'Name', 'Branching Points') columns_long = ('ID', 'Name', 'Branching Points', 'Description', 'Project') _service_graph = _service_graphs[0] data = [ _service_graph['id'], _service_graph['name'], _service_graph['port_chains'] ] data_long = [ _service_graph['id'], _service_graph['name'], _service_graph['port_chains'], _service_graph['description'], _service_graph['project_id'] ] _service_graph1 = {'service_graphs': _service_graph} _service_graph_id = _service_graph['id'] def setUp(self): super(TestListSfcServiceGraph, self).setUp() mock.patch( 'neutronclient.osc.v2.sfc.sfc_service_graph._get_id', new=_get_id).start() self.neutronclient.list_sfc_service_graphs = mock.Mock( return_value={'service_graphs': self._service_graphs} ) # Get the command object to test self.cmd = sfc_service_graph.ListSfcServiceGraph( self.app, self.namespace) def test_list_sfc_service_graphs(self): arglist = [] verifylist = [] parsed_args = self.check_parser(self.cmd, arglist, verifylist) columns = self.cmd.take_action(parsed_args)[0] sgs = self.neutronclient.list_sfc_service_graphs()['service_graphs'] sg = sgs[0] data = [ sg['id'], sg['name'], sg['port_chains'] ] self.assertEqual(list(self.columns), columns) self.assertEqual(self.data, data) def test_list_sfc_service_graphs_with_long_option(self): arglist = ['--long'] verifylist = [('long', True)] parsed_args = self.check_parser(self.cmd, arglist, verifylist) columns = self.cmd.take_action(parsed_args)[0] sgs = self.neutronclient.list_sfc_service_graphs()['service_graphs'] sg = sgs[0] data = [ sg['id'], sg['name'], sg['port_chains'], sg['description'], sg['project_id'] ] self.assertEqual(list(self.columns_long), columns) self.assertEqual(self.data_long, data) class TestCreateSfcServiceGraph(fakes.TestNeutronClientOSCV2): _service_graph = fakes.FakeSfcServiceGraph.create_sfc_service_graph() columns = ('ID', 'Name', 'Branching Points') columns_long = ('Branching Points', 'Description', 'ID', 'Name', 'Project') def get_data(self): return ( self._service_graph['port_chains'], self._service_graph['description'], self._service_graph['id'], self._service_graph['name'], self._service_graph['project_id'], ) def setUp(self): super(TestCreateSfcServiceGraph, self).setUp() mock.patch('neutronclient.osc.v2.sfc.sfc_service_graph._get_id', new=_get_id).start() self.neutronclient.create_sfc_service_graph = mock.Mock( return_value={'service_graph': self._service_graph}) self.data = self.get_data() self.cmd = sfc_service_graph.CreateSfcServiceGraph( self.app, self.namespace) def test_create_sfc_service_graph(self): arglist = [] verifylist = [] self.assertRaises(tests_utils.ParserException, self.check_parser, self.cmd, arglist, verifylist) def test_create_sfc_service_graph_without_loop(self): bp1_str = 'pc1:pc2,pc3' bp2_str = 'pc2:pc4' self.cmd = sfc_service_graph.CreateSfcServiceGraph( self.app, self.namespace) arglist = [ "--description", self._service_graph['description'], "--branching-point", bp1_str, "--branching-point", bp2_str, self._service_graph['name']] pcs = {'pc1': ['pc2', 'pc3'], 'pc2': ['pc4']} verifylist = [ ("description", self._service_graph['description']), ("branching_points", [bp1_str, bp2_str]), ("name", self._service_graph['name']) ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) columns, data = (self.cmd.take_action(parsed_args)) self.neutronclient.create_sfc_service_graph.assert_called_once_with({ 'service_graph': { 'description': self._service_graph['description'], 'name': self._service_graph['name'], 'port_chains': pcs } }) self.assertEqual(self.columns_long, columns) self.assertEqual(self.data, data) def test_create_sfc_service_graph_with_loop(self): bp1_str = 'pc1:pc2,pc3;' bp2_str = 'pc2:pc1' self.cmd = sfc_service_graph.CreateSfcServiceGraph( self.app, self.namespace) arglist = [ "--description", self._service_graph['description'], "--branching-point", bp1_str, "--branching-point", bp2_str, self._service_graph['name']] verifylist = [ ("description", self._service_graph['description']), ("branching_points", [bp1_str, bp2_str]), ("name", self._service_graph['name']) ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) self.assertRaises( exceptions.CommandError, self.cmd.take_action, parsed_args) def test_create_sfc_service_graph_invalid_port_chains(self): bp1_str = 'pc1:pc2,pc3:' self.cmd = sfc_service_graph.CreateSfcServiceGraph( self.app, self.namespace) arglist = [ "--description", self._service_graph['description'], "--branching-point", bp1_str, self._service_graph['name']] verifylist = [ ("description", self._service_graph['description']), ("branching_points", [bp1_str]), ("name", self._service_graph['name']) ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) self.assertRaises( exceptions.CommandError, self.cmd.take_action, parsed_args) def test_create_sfc_service_graph_duplicate_src_chains(self): bp1_str = 'pc1:pc2,pc3;' bp2_str = 'pc1:pc4' self.cmd = sfc_service_graph.CreateSfcServiceGraph( self.app, self.namespace) arglist = [ "--description", self._service_graph['description'], "--branching-point", bp1_str, "--branching-point", bp2_str, self._service_graph['name']] verifylist = [ ("description", self._service_graph['description']), ("branching_points", [bp1_str, bp2_str]), ("name", self._service_graph['name']) ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) self.assertRaises( exceptions.CommandError, self.cmd.take_action, parsed_args) class TestDeleteSfcServiceGraph(fakes.TestNeutronClientOSCV2): _service_graph = fakes.FakeSfcServiceGraph.create_sfc_service_graphs( count=1) def setUp(self): super(TestDeleteSfcServiceGraph, self).setUp() self.neutronclient.delete_sfc_service_graph = mock.Mock( return_value=None) self.cmd = sfc_service_graph.DeleteSfcServiceGraph( self.app, self.namespace) def test_delete_sfc_service_graph(self): client = self.app.client_manager.neutronclient mock_service_graph_delete = client.delete_sfc_service_graph arglist = [ self._service_graph[0]['id'], ] verifylist = [ ('service_graph', self._service_graph[0]['id']), ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) result = self.cmd.take_action(parsed_args) mock_service_graph_delete.assert_called_once_with( self._service_graph[0]['id']) self.assertIsNone(result) class TestShowSfcServiceGraph(fakes.TestNeutronClientOSCV2): _sg = fakes.FakeSfcServiceGraph.create_sfc_service_graph() columns = ('ID', 'Name', 'Branching Points') columns_long = ('Branching Points', 'Description', 'ID', 'Name', 'Project') data = ( _sg['id'], _sg['name'], _sg['port_chains'] ) data_long = ( _sg['port_chains'], _sg['description'], _sg['id'], _sg['name'], _sg['project_id'] ) _service_graph = {'service_graph': _sg} _service_graph_id = _sg['id'] def setUp(self): super(TestShowSfcServiceGraph, self).setUp() mock.patch( 'neutronclient.osc.v2.sfc.sfc_service_graph._get_id', new=_get_id).start() self.neutronclient.show_sfc_service_graph = mock.Mock( return_value=self._service_graph ) # Get the command object to test self.cmd = sfc_service_graph.ShowSfcServiceGraph( self.app, self.namespace) def test_service_graph_show(self): client = self.app.client_manager.neutronclient mock_service_graph_show = client.show_sfc_service_graph arglist = [ self._service_graph_id, ] verifylist = [ ('service_graph', self._service_graph_id), ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) columns, data = self.cmd.take_action(parsed_args) mock_service_graph_show.assert_called_once_with(self._service_graph_id) self.assertEqual(self.columns_long, columns) self.assertEqual(self.data_long, data) class TestSetSfcServiceGraph(fakes.TestNeutronClientOSCV2): _service_graph = fakes.FakeSfcServiceGraph.create_sfc_service_graph() _service_graph_name = _service_graph['name'] _service_graph_id = _service_graph['id'] def setUp(self): super(TestSetSfcServiceGraph, self).setUp() mock.patch('neutronclient.osc.v2.sfc.sfc_service_graph._get_id', new=_get_id).start() self.neutronclient.update_sfc_service_graph = mock.Mock( return_value=None) self.cmd = sfc_service_graph.SetSfcServiceGraph( self.app, self.namespace) def test_set_service_graph(self): client = self.app.client_manager.neutronclient mock_service_graph_update = client.update_sfc_service_graph arglist = [ self._service_graph_name, '--name', 'name_updated', '--description', 'desc_updated' ] verifylist = [ ('service_graph', self._service_graph_name), ('name', 'name_updated'), ('description', 'desc_updated'), ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) result = self.cmd.take_action(parsed_args) attrs = {'service_graph': { 'name': 'name_updated', 'description': 'desc_updated'} } mock_service_graph_update.assert_called_once_with( self._service_graph_name, attrs) self.assertIsNone(result)
36.062315
79
0.630462
eff3821df4d80b5a44f55f1a4eef1fec407651c1
2,227
py
Python
scripts/generate_delta_sysroot_unittest.py
bpsinc-native/src_third_party_chromite
b07cf18203c98a14c59819387754428e887ca164
[ "BSD-3-Clause" ]
null
null
null
scripts/generate_delta_sysroot_unittest.py
bpsinc-native/src_third_party_chromite
b07cf18203c98a14c59819387754428e887ca164
[ "BSD-3-Clause" ]
null
null
null
scripts/generate_delta_sysroot_unittest.py
bpsinc-native/src_third_party_chromite
b07cf18203c98a14c59819387754428e887ca164
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python # Copyright (c) 2013 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Unittests for generate_delta_sysroot.""" import os import sys sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', '..')) from chromite.lib import cros_build_lib from chromite.lib import cros_test_lib from chromite.scripts import generate_delta_sysroot as gds # pylint: disable=W0212 def _Parse(argv): return gds._ParseCommandLine(argv) class InterfaceTest(cros_test_lib.OutputTestCase, cros_test_lib.TempDirTestCase): """Test the commandline interface of the script""" def testNoBoard(self): """Test no board specified.""" argv = ['--out-dir', '/path/to/nowhere'] self.assertParseError(argv) def testNoOutDir(self): """Test no out dir specified.""" argv = ['--board', 'link'] self.assertParseError(argv) def testCorrectArgv(self): """Test successful parsing""" argv = ['--board', 'link', '--out-dir', self.tempdir] options = _Parse(argv) gds.FinishParsing(options) def testTestsSet(self): """Test successful parsing""" argv = ['--board', 'link', '--out-dir', self.tempdir] options = _Parse(argv) self.assertTrue(options.build_tests) def testNoTestsSet(self): """Test successful parsing""" argv = ['--board', 'link', '--out-dir', self.tempdir, '--skip-tests'] options = _Parse(argv) self.assertFalse(options.build_tests) def assertParseError(self, argv): """Helper to assert parsing error, given argv.""" with self.OutputCapturer(): self.assertRaises2(SystemExit, _Parse, argv) class TestCreateBatchFile(cros_test_lib.TempDirTestCase): """Test the batch file creation.""" def testSourceDirDoesNotExist(self): """Test error is raised if there is no source directory.""" no_source = os.path.join(self.tempdir, 'foo/bar/cow') self.assertRaises2(cros_build_lib.RunCommandError, gds.CreateBatchFile, no_source, self.tempdir, os.path.join(self.tempdir,'batch')) if __name__ == '__main__': cros_test_lib.main()
29.693333
76
0.684329
2fde3a60040a326a1fee60ef83807be9badc3cf5
892
py
Python
pythonbytes/tutorials/migrations/0008_tutorial.py
hanztura/pythonbytes
414e3f1443f58ccc094b40622688ca234041fc1c
[ "MIT" ]
1
2019-12-16T19:25:19.000Z
2019-12-16T19:25:19.000Z
pythonbytes/tutorials/migrations/0008_tutorial.py
hanztura/pythonbytes
414e3f1443f58ccc094b40622688ca234041fc1c
[ "MIT" ]
9
2020-06-06T01:07:19.000Z
2022-02-10T09:01:57.000Z
pythonbytes/tutorials/migrations/0008_tutorial.py
hanztura/pythonbytes
414e3f1443f58ccc094b40622688ca234041fc1c
[ "MIT" ]
null
null
null
# Generated by Django 2.2.8 on 2019-12-17 06:56 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('cms', '0022_auto_20180620_1551'), ('tutorials', '0007_delete_tutorial'), ] operations = [ migrations.CreateModel( name='Tutorial', fields=[ ('cmsplugin_ptr', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, related_name='tutorials_tutorial', serialize=False, to='cms.CMSPlugin')), ('body', models.TextField(verbose_name='body')), ('tutorial_title', models.CharField(max_length=200)), ], options={ 'abstract': False, }, bases=('cms.cmsplugin',), ), ]
29.733333
209
0.591928
0a29bd6e49e764f1c4da93364e9ef0e2c220f3b3
2,707
py
Python
tests/modules/transformer/positional_encoding_test.py
MSLars/allennlp
2cdb8742c8c8c3c38ace4bdfadbdc750a1aa2475
[ "Apache-2.0" ]
11,433
2017-06-27T03:08:46.000Z
2022-03-31T18:14:33.000Z
tests/modules/transformer/positional_encoding_test.py
MSLars/allennlp
2cdb8742c8c8c3c38ace4bdfadbdc750a1aa2475
[ "Apache-2.0" ]
4,006
2017-06-26T21:45:43.000Z
2022-03-31T02:11:10.000Z
tests/modules/transformer/positional_encoding_test.py
MSLars/allennlp
2cdb8742c8c8c3c38ace4bdfadbdc750a1aa2475
[ "Apache-2.0" ]
2,560
2017-06-26T21:16:53.000Z
2022-03-30T07:55:46.000Z
import copy import torch import numpy as np from allennlp.common import Params from allennlp.modules.transformer import SinusoidalPositionalEncoding from allennlp.common.testing import AllenNlpTestCase class TestSinusoidalPositionalEncoding(AllenNlpTestCase): def setup_method(self): super().setup_method() self.params_dict = { "min_timescale": 1.0, "max_timescale": 1.0e4, } params = Params(copy.deepcopy(self.params_dict)) self.positional_encoding = SinusoidalPositionalEncoding.from_params(params) def test_can_construct_from_params(self): assert self.positional_encoding.min_timescale == self.params_dict["min_timescale"] assert self.positional_encoding.max_timescale == self.params_dict["max_timescale"] def test_forward(self): tensor2tensor_result = np.asarray( [ [0.00000000e00, 0.00000000e00, 1.00000000e00, 1.00000000e00], [8.41470957e-01, 9.99999902e-05, 5.40302277e-01, 1.00000000e00], [9.09297407e-01, 1.99999980e-04, -4.16146845e-01, 1.00000000e00], ] ) tensor = torch.zeros([2, 3, 4]) result = self.positional_encoding(tensor) np.testing.assert_almost_equal(result[0].detach().cpu().numpy(), tensor2tensor_result) np.testing.assert_almost_equal(result[1].detach().cpu().numpy(), tensor2tensor_result) # Check case with odd number of dimensions. tensor2tensor_result = np.asarray( [ [ 0.00000000e00, 0.00000000e00, 0.00000000e00, 1.00000000e00, 1.00000000e00, 1.00000000e00, 0.00000000e00, ], [ 8.41470957e-01, 9.99983307e-03, 9.99999902e-05, 5.40302277e-01, 9.99949992e-01, 1.00000000e00, 0.00000000e00, ], [ 9.09297407e-01, 1.99986659e-02, 1.99999980e-04, -4.16146815e-01, 9.99800026e-01, 1.00000000e00, 0.00000000e00, ], ] ) tensor = torch.zeros([2, 3, 7]) result = self.positional_encoding(tensor) np.testing.assert_almost_equal(result[0].detach().cpu().numpy(), tensor2tensor_result) np.testing.assert_almost_equal(result[1].detach().cpu().numpy(), tensor2tensor_result)
35.155844
94
0.549686
98bd7b6a63b51d6510d82ed04e9d4f1ed5b0fe12
1,380
py
Python
src_python/WS2801/EffectColorWheel.py
AmiableAnteater/wohnzimmerlicht
eafda7911d95ee9f1b9a222e3e208e2debe8e03e
[ "Apache-2.0" ]
null
null
null
src_python/WS2801/EffectColorWheel.py
AmiableAnteater/wohnzimmerlicht
eafda7911d95ee9f1b9a222e3e208e2debe8e03e
[ "Apache-2.0" ]
null
null
null
src_python/WS2801/EffectColorWheel.py
AmiableAnteater/wohnzimmerlicht
eafda7911d95ee9f1b9a222e3e208e2debe8e03e
[ "Apache-2.0" ]
null
null
null
from .WS2801Wrapper import WS2801Wrapper from threading import Thread, Event from .EffectUtils import run_effect from time import monotonic def effect(pixels: WS2801Wrapper, event: Event, stretch_factor=1, speed=10): pixel_count = pixels.count() stretched_wheel_size = int(round(255 * stretch_factor)) inverse_factor = 255 / stretched_wheel_size zero_pos = 0 do_run = True last_time = monotonic() while do_run: current_time = monotonic() time_delta = current_time - last_time #print('delta:' + str(time_delta)) last_time = current_time zero_pos += time_delta * speed zero_pos = zero_pos % stretched_wheel_size #print(str(zero_pos)) pixel_idx = 0 pos_iterator = zero_pos while pixel_idx < pixel_count: color_index = round(pos_iterator * inverse_factor) #print('pixel_idx: ' + str(pixel_idx) + 'col_idx:' + str(color_index)) pixels.set_pixel_colorwheel(color_index, pixel_idx) pos_iterator += 1 if pos_iterator > stretched_wheel_size: pos_iterator -= stretched_wheel_size pixel_idx += 1 pixels.show() if event.wait(.02): do_run = False if __name__ == "__main__": run_effect(effect, (.75, 10))
34.5
83
0.618841
03afb57b3c473fcd7964907911140d488a45e053
16,608
py
Python
postfinancecheckout/api/shopify_recurring_order_service_api.py
pfpayments/python-sdk
b8ef159ea3c843a8d0361d1e0b122a9958adbcb4
[ "Apache-2.0" ]
1
2022-03-08T12:51:53.000Z
2022-03-08T12:51:53.000Z
postfinancecheckout/api/shopify_recurring_order_service_api.py
pfpayments/python-sdk
b8ef159ea3c843a8d0361d1e0b122a9958adbcb4
[ "Apache-2.0" ]
null
null
null
postfinancecheckout/api/shopify_recurring_order_service_api.py
pfpayments/python-sdk
b8ef159ea3c843a8d0361d1e0b122a9958adbcb4
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 from __future__ import absolute_import import six from postfinancecheckout.api_client import ApiClient class ShopifyRecurringOrderServiceApi: def __init__(self, configuration): self.api_client = ApiClient(configuration=configuration) def count(self, space_id, **kwargs): """Count Counts the number of items in the database as restricted by the given filter. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.count(space_id, async_req=True) >>> result = thread.get() :param async_req bool :param int space_id: (required) :param EntityQueryFilter filter: The filter which restricts the entities which are used to calculate the count. :return: int If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.count_with_http_info(space_id, **kwargs) else: (data) = self.count_with_http_info(space_id, **kwargs) return data def count_with_http_info(self, space_id, **kwargs): """Count Counts the number of items in the database as restricted by the given filter. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.count_with_http_info(space_id, async_req=True) >>> result = thread.get() :param async_req bool :param int space_id: (required) :param EntityQueryFilter filter: The filter which restricts the entities which are used to calculate the count. :return: int If the method is called asynchronously, returns the request thread. """ all_params = ['space_id', 'filter'] all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method count" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'space_id' is set if ('space_id' not in params or params['space_id'] is None): raise ValueError("Missing the required parameter `space_id` when calling `count`") collection_formats = {} path_params = {} query_params = [] if 'space_id' in params: query_params.append(('spaceId', params['space_id'])) header_params = {} form_params = [] local_var_files = {} body_params = None if 'filter' in params: body_params = params['filter'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json;charset=utf-8']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json;charset=utf-8']) # Authentication setting auth_settings = [] return self.api_client.call_api( '/shopify-recurring-order/count', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='int', auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def read(self, space_id, id, **kwargs): """Read Reads the entity with the given 'id' and returns it. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.read(space_id, id, async_req=True) >>> result = thread.get() :param async_req bool :param int space_id: (required) :param int id: The id of the Shopify recurring order which should be returned. (required) :return: ShopifyRecurringOrder If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.read_with_http_info(space_id, id, **kwargs) else: (data) = self.read_with_http_info(space_id, id, **kwargs) return data def read_with_http_info(self, space_id, id, **kwargs): """Read Reads the entity with the given 'id' and returns it. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.read_with_http_info(space_id, id, async_req=True) >>> result = thread.get() :param async_req bool :param int space_id: (required) :param int id: The id of the Shopify recurring order which should be returned. (required) :return: ShopifyRecurringOrder If the method is called asynchronously, returns the request thread. """ all_params = ['space_id', 'id'] all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method read" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'space_id' is set if ('space_id' not in params or params['space_id'] is None): raise ValueError("Missing the required parameter `space_id` when calling `read`") # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `read`") collection_formats = {} path_params = {} query_params = [] if 'space_id' in params: query_params.append(('spaceId', params['space_id'])) if 'id' in params: query_params.append(('id', params['id'])) header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json;charset=utf-8']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( ['*/*']) # Authentication setting auth_settings = [] return self.api_client.call_api( '/shopify-recurring-order/read', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ShopifyRecurringOrder', auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def search(self, space_id, query, **kwargs): """Search Searches for the entities as specified by the given query. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.search(space_id, query, async_req=True) >>> result = thread.get() :param async_req bool :param int space_id: (required) :param EntityQuery query: The query restricts the Shopify recurring orders which are returned by the search. (required) :return: list[ShopifyRecurringOrder] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.search_with_http_info(space_id, query, **kwargs) else: (data) = self.search_with_http_info(space_id, query, **kwargs) return data def search_with_http_info(self, space_id, query, **kwargs): """Search Searches for the entities as specified by the given query. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.search_with_http_info(space_id, query, async_req=True) >>> result = thread.get() :param async_req bool :param int space_id: (required) :param EntityQuery query: The query restricts the Shopify recurring orders which are returned by the search. (required) :return: list[ShopifyRecurringOrder] If the method is called asynchronously, returns the request thread. """ all_params = ['space_id', 'query'] all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method search" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'space_id' is set if ('space_id' not in params or params['space_id'] is None): raise ValueError("Missing the required parameter `space_id` when calling `search`") # verify the required parameter 'query' is set if ('query' not in params or params['query'] is None): raise ValueError("Missing the required parameter `query` when calling `search`") collection_formats = {} path_params = {} query_params = [] if 'space_id' in params: query_params.append(('spaceId', params['space_id'])) header_params = {} form_params = [] local_var_files = {} body_params = None if 'query' in params: body_params = params['query'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json;charset=utf-8']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json;charset=utf-8']) # Authentication setting auth_settings = [] return self.api_client.call_api( '/shopify-recurring-order/search', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[ShopifyRecurringOrder]', auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def update(self, space_id, update_request, **kwargs): """Update This operation allows to update a Shopify recurring order. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update(space_id, update_request, async_req=True) >>> result = thread.get() :param async_req bool :param int space_id: (required) :param ShopifyRecurringOrderUpdateRequest update_request: (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.update_with_http_info(space_id, update_request, **kwargs) else: (data) = self.update_with_http_info(space_id, update_request, **kwargs) return data def update_with_http_info(self, space_id, update_request, **kwargs): """Update This operation allows to update a Shopify recurring order. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update_with_http_info(space_id, update_request, async_req=True) >>> result = thread.get() :param async_req bool :param int space_id: (required) :param ShopifyRecurringOrderUpdateRequest update_request: (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['space_id', 'update_request'] all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method update" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'space_id' is set if ('space_id' not in params or params['space_id'] is None): raise ValueError("Missing the required parameter `space_id` when calling `update`") # verify the required parameter 'update_request' is set if ('update_request' not in params or params['update_request'] is None): raise ValueError("Missing the required parameter `update_request` when calling `update`") collection_formats = {} path_params = {} query_params = [] if 'space_id' in params: query_params.append(('spaceId', params['space_id'])) header_params = {} form_params = [] local_var_files = {} body_params = None if 'update_request' in params: body_params = params['update_request'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json;charset=utf-8']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json;charset=utf-8']) # Authentication setting auth_settings = [] return self.api_client.call_api( '/shopify-recurring-order/update', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
37.321348
127
0.608321
8a6647b55bef1896cd57f9e8bee86a7ed1728add
880
py
Python
azure/servicefabric/models/service_name_info.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
4
2016-06-17T23:25:29.000Z
2022-03-30T22:37:45.000Z
azure/servicefabric/models/service_name_info.py
EnjoyLifeFund/Debian_py36_packages
1985d4c73fabd5f08f54b922e73a9306e09c77a5
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
2
2016-09-30T21:40:24.000Z
2017-11-10T18:16:18.000Z
azure/servicefabric/models/service_name_info.py
EnjoyLifeFund/Debian_py36_packages
1985d4c73fabd5f08f54b922e73a9306e09c77a5
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
3
2016-05-03T20:49:46.000Z
2017-10-05T21:05:27.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ServiceNameInfo(Model): """Information about the service name. :param id: :type id: str :param name: :type name: str """ _attribute_map = { 'id': {'key': 'Id', 'type': 'str'}, 'name': {'key': 'Name', 'type': 'str'}, } def __init__(self, id=None, name=None): self.id = id self.name = name
27.5
76
0.529545
50ff8f842fdb67beb9c2ec270900ef8ad9891074
2,360
py
Python
test/CXX/CXXVERSION.py
Valkatraz/scons
5e70c65f633dcecc035751c9f0c6f894088df8a0
[ "MIT" ]
1,403
2017-11-23T14:24:01.000Z
2022-03-30T20:59:39.000Z
test/CXX/CXXVERSION.py
Valkatraz/scons
5e70c65f633dcecc035751c9f0c6f894088df8a0
[ "MIT" ]
3,708
2017-11-27T13:47:12.000Z
2022-03-29T17:21:17.000Z
test/CXX/CXXVERSION.py
Valkatraz/scons
5e70c65f633dcecc035751c9f0c6f894088df8a0
[ "MIT" ]
281
2017-12-01T23:48:38.000Z
2022-03-31T15:25:44.000Z
#!/usr/bin/env python # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" import sys import TestSCons _python_ = TestSCons._python_ _exe = TestSCons._exe test = TestSCons.TestSCons() if sys.platform == 'win32': test.skip_test('CXXVERSION not set with MSVC, skipping test.') test.write("versioned.py", """\ import subprocess import sys if '-dumpversion' in sys.argv: print('3.9.9') sys.exit(0) if '--version' in sys.argv: print('this is version 2.9.9 wrapping', sys.argv[2]) sys.exit(0) if sys.argv[1] not in [ '2.9.9', '3.9.9' ]: print('wrong version', sys.argv[1], 'when wrapping', sys.argv[2]) sys.exit(1) subprocess.run(" ".join(sys.argv[2:]), shell=True) """) test.write('SConstruct', """ cxx = Environment().Dictionary('CXX') foo = Environment(CXX = r'%(_python_)s versioned.py "${CXXVERSION}" ' + cxx) foo.Program(target = 'foo', source = 'foo.cpp') """ % locals()) test.write('foo.cpp', r""" #include <stdio.h> #include <stdlib.h> int main(int argc, char *argv[]) { printf("foo.c\n"); exit (0); } """) test.run(arguments = 'foo' + _exe) test.up_to_date(arguments = 'foo' + _exe) test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
28.433735
76
0.709322
935ca53c265ed1025f0064513f00ead08e57e971
10,329
py
Python
estimagic/dashboard/monitoring_app.py
yradeva93/estimagic
77d840ba01748314b35be8117c99460a1944062f
[ "BSD-3-Clause" ]
null
null
null
estimagic/dashboard/monitoring_app.py
yradeva93/estimagic
77d840ba01748314b35be8117c99460a1944062f
[ "BSD-3-Clause" ]
null
null
null
estimagic/dashboard/monitoring_app.py
yradeva93/estimagic
77d840ba01748314b35be8117c99460a1944062f
[ "BSD-3-Clause" ]
null
null
null
"""Show the development of one optimization's criterion and parameters over time.""" from functools import partial from pathlib import Path import numpy as np import pandas as pd from bokeh.layouts import Column from bokeh.layouts import Row from bokeh.models import ColumnDataSource from bokeh.models import Panel from bokeh.models import Tabs from bokeh.models import Toggle from jinja2 import Environment from jinja2 import FileSystemLoader from estimagic.dashboard.monitoring_callbacks import activation_callback from estimagic.dashboard.monitoring_callbacks import logscale_callback from estimagic.dashboard.plot_functions import plot_time_series from estimagic.logging.database_utilities import load_database from estimagic.logging.database_utilities import read_last_rows from estimagic.logging.read_log import read_start_params def monitoring_app( doc, database_name, session_data, updating_options, start_immediately, ): """Create plots showing the development of the criterion and parameters. Args: doc (bokeh.Document): Argument required by bokeh. database_name (str): Short and unique name of the database. session_data (dict): Infos to be passed between and within apps. Keys of this app's entry are: - last_retrieved (int): last iteration currently in the ColumnDataSource. - database_path (str or pathlib.Path) - callbacks (dict): dictionary to be populated with callbacks. updating_options (dict): Specification how to update the plotting data. It contains rollover, update_frequency, update_chunk, jump and stride. """ # style the Document template_folder = Path(__file__).resolve().parent # conversion to string from pathlib Path is necessary for FileSystemLoader env = Environment(loader=FileSystemLoader(str(template_folder))) doc.template = env.get_template("index.html") # process inputs database = load_database(path=session_data["database_path"]) start_point = _calculate_start_point(database, updating_options) session_data["last_retrieved"] = start_point start_params = read_start_params(path_or_database=database) start_params["id"] = _create_id_column(start_params) group_to_param_ids = _map_group_to_other_column(start_params, "id") group_to_param_names = _map_group_to_other_column(start_params, "name") criterion_history, params_history = _create_cds_for_monitoring_app( group_to_param_ids ) # create elements button_row = _create_button_row( doc=doc, database=database, session_data=session_data, start_params=start_params, updating_options=updating_options, ) monitoring_plots = _create_initial_convergence_plots( criterion_history=criterion_history, params_history=params_history, group_to_param_ids=group_to_param_ids, group_to_param_names=group_to_param_names, ) # add elements to bokeh Document grid = Column(children=[button_row, *monitoring_plots], sizing_mode="stretch_width") convergence_tab = Panel(child=grid, title="Convergence Tab") tabs = Tabs(tabs=[convergence_tab]) doc.add_root(tabs) if start_immediately: activation_button = doc.get_model_by_name("activation_button") activation_button.active = True def _create_id_column(df): """Create a column that gives the position for plotted parameters and is None else. Args: df (pd.DataFrame) Returns: ids (pd.Series): integer position in the DataFrame unless the group was None, False, np.nan or an empty string. """ ids = pd.Series(range(len(df)), dtype=object, index=df.index) ids[df["group"].isin([None, False, np.nan, ""])] = None return ids.astype(str) def _map_group_to_other_column(params, column_name): """Map the group name to lists of one column's values of the group's parameters. Args: params (pd.DataFrame): Includes the "group" and "id" columns. column_name (str): name of the column for which to return the parameter values. Returns: group_to_values (dict): Keys are the values of the "group" column. The values are lists of parameter values of the parameters belonging to the particular group. """ to_plot = params[~params["group"].isin([None, False, np.nan, ""])] group_to_indices = to_plot.groupby("group").groups group_to_values = {} for group, loc in group_to_indices.items(): group_to_values[group] = to_plot[column_name].loc[loc].tolist() return group_to_values def _create_cds_for_monitoring_app(group_to_param_ids): """Create the ColumnDataSources for saving the criterion and parameter values. They will be periodically updated from the database. There is a ColumnDataSource for all parameters and one for the criterion value. The "x" column is called "iteration". Args: group_to_param_ids (dict): Keys are the groups to be plotted. The values are the ids of the parameters belonging to the particular group. Returns: criterion_history (bokeh.ColumnDataSource) params_history (bokeh.ColumnDataSource) """ crit_data = {"iteration": [], "criterion": []} criterion_history = ColumnDataSource(crit_data, name="criterion_history_cds") param_ids = [] for id_list in group_to_param_ids.values(): param_ids += id_list params_data = {id_: [] for id_ in param_ids + ["iteration"]} params_history = ColumnDataSource(params_data, name="params_history_cds") return criterion_history, params_history def _calculate_start_point(database, updating_options): """Calculate the starting point. Args: database (sqlalchemy.MetaData): Bound metadata object. updating_options (dict): Specification how to update the plotting data. It contains rollover, update_frequency, update_chunk, jump and stride. Returns: start_point (int): iteration from which to start the dashboard. """ if updating_options["jump"]: last_entry = read_last_rows( database=database, table_name="optimization_iterations", n_rows=1, return_type="list_of_dicts", ) nr_of_entries = last_entry[0]["rowid"] nr_to_go_back = updating_options["rollover"] * updating_options["stride"] start_point = max(0, nr_of_entries - nr_to_go_back) else: start_point = 0 return start_point def _create_initial_convergence_plots( criterion_history, params_history, group_to_param_ids, group_to_param_names, ): """Create the initial convergence plots. Args: criterion_history (bokeh ColumnDataSource) params_history (bokeh ColumnDataSource) group_to_param_ids (dict): Keys are the groups to be plotted. Values are the ids of the parameters belonging to the respective group. group_to_param_names (dict): Keys are the groups to be plotted. Values are the names of the parameters belonging to the respective group. Returns: convergence_plots (list): List of bokeh Row elements, each containing one convergence plot. """ param_plots = [] for group, param_ids in group_to_param_ids.items(): param_names = group_to_param_names[group] param_group_plot = plot_time_series( data=params_history, y_keys=param_ids, y_names=param_names, x_name="iteration", title=str(group), ) param_plots.append(param_group_plot) arranged_param_plots = [Row(plot) for plot in param_plots] linear_criterion_plot = plot_time_series( data=criterion_history, x_name="iteration", y_keys=["criterion"], y_names=["criterion"], title="Criterion", name="linear_criterion_plot", logscale=False, ) log_criterion_plot = plot_time_series( data=criterion_history, x_name="iteration", y_keys=["criterion"], y_names=["criterion"], title="Criterion", name="log_criterion_plot", logscale=True, ) log_criterion_plot.visible = False plot_list = [ Row(linear_criterion_plot), Row(log_criterion_plot), ] + arranged_param_plots return plot_list def _create_button_row( doc, database, session_data, start_params, updating_options, ): """Create a row with two buttons, one for (re)starting and one for scale switching. Args: doc (bokeh.Document) database (sqlalchemy.MetaData): Bound metadata object. session_data (dict): dictionary with the last retrieved rowid start_params (pd.DataFrame): See :ref:`params` updating_options (dict): Specification how to update the plotting data. It contains rollover, update_frequency, update_chunk, jump and stride. Returns: bokeh.layouts.Row """ # (Re)start convergence plot button activation_button = Toggle( active=False, label="Start Updating", button_type="danger", width=200, height=30, name="activation_button", ) partialed_activation_callback = partial( activation_callback, button=activation_button, doc=doc, database=database, session_data=session_data, tables=["criterion_history", "params_history"], start_params=start_params, updating_options=updating_options, ) activation_button.on_change("active", partialed_activation_callback) # switch between linear and logscale button logscale_button = Toggle( active=False, label="Show criterion plot on a logarithmic scale", button_type="default", width=200, height=30, name="logscale_button", ) partialed_logscale_callback = partial( logscale_callback, button=logscale_button, doc=doc, ) logscale_button.on_change("active", partialed_logscale_callback) button_row = Row(children=[activation_button, logscale_button], name="button_row") return button_row
33.976974
88
0.694743
8311b69f65ad40d4f389e3f338ef96d15cb97557
4,426
py
Python
app.py
callzhang/qdtrack
4cdd29281a9dc81a9265c916540be1bd2dce08fd
[ "Apache-2.0" ]
null
null
null
app.py
callzhang/qdtrack
4cdd29281a9dc81a9265c916540be1bd2dce08fd
[ "Apache-2.0" ]
null
null
null
app.py
callzhang/qdtrack
4cdd29281a9dc81a9265c916540be1bd2dce08fd
[ "Apache-2.0" ]
null
null
null
from qdtrack.apis.inference import init_model, inference_model, export_video from tools.post_processing import post_processing, convert_result, merge_result from glob import glob import pickle, os, torch, sys, logging from flask import Flask, request, jsonify, send_file from werkzeug.utils import secure_filename # fairmot from src import _init_paths import datasets.dataset.jde as datasets from opts import opts from track import eval_seq from tracking_utils.log import logger logger.setLevel(logging.INFO) class_ID = { 'Car': 0, 'Van': 1, 'Truck': 2, 'Pedestrian': 3, 'Bus': 4, 'Misc': 5, 'DontCare': 6, 'ignored': 7 } ID_class = {v: k for k, v in class_ID.items()} app = Flask(__name__) app.config['MAX_CONTENT_LENGTH'] = 1024 * 1024 * 50 # 50MB max # app.config['UPLOAD_EXTENSIONS'] = ['.mp4'] device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = None @app.route("/tracking", methods=["POST"]) def track(): file = request.files['video'] assert file.content_type[:6] == 'video/', 'Invalid content_type, must upload a video file (*.mp4)' filename = secure_filename(file.filename) #TODO: pass link from aliyun OSS # save to temp folder video_path = f'temp/{filename}' os.makedirs('temp', exist_ok=True) file.save(video_path) # inference result = inference_model(model, video_path) output = convert_result(result) #post processing view_video = request.form.get('view_video', False) result = post_processing(output, video_path, model.CLASSES, get_video=view_video) if view_video: return send_file(result) return jsonify(result) @app.route("/dual_tracking", methods=["POST"]) def dual_track(): ''' track a video with qdtrack and fairmot ''' file = request.files['video'] assert file.content_type[:6] == 'video/', 'Invalid content_type, must upload a video file (*.mp4)' filename = secure_filename(file.filename) #TODO: pass link from aliyun OSS # save to temp folder video_path = f'temp/{filename}' os.makedirs('temp', exist_ok=True) file.save(video_path) # inference vihicle result_dict_1 = inference_model(model, video_path) result1 = convert_result(result_dict_1) # inference perdestrain from fairmot result2 = track_fairmot(video_path) # merge result output = video_path.replace('.mp4', '.csv') merge_result(result1, result2, output) #post processing view_video = request.form.get('view_video', False) result = post_processing(output, video_path, ID_class, get_video=view_video) if view_video: return send_file(result) return jsonify(result) def test_run(video): fname = video.split('/')[-1].replace('.mp4', '_result.mp4') # if os.path.exists('output/'+fname): return result = inference_model(model, video) # pickle.dump(result, open('temp/result', 'wb')) # result = pickle.load(open('temp/result', 'rb')) output = convert_result(result) # output = 'temp/result.csv' post_processing(output, video, model.CLASSES, get_video=True) def track_fairmot(video): os.environ['CUDA_VISIBLE_DEVICES'] = '0' opt = opts().init( [ '--load_model', 'models/fairmot_dla34.pth', '--input_video', 'videos/video.mp4', '--output_root', 'output', '--num_classes', '1', '--dataset', 'kitti' ]) result_filename = opt.result_file print('Starting tracking...') dataloader = datasets.LoadVideo(video, opt.img_size) fps = dataloader.frame_rate opt.track_buffer = fps * opt.track_duration opt.fps = fps eval_seq(opt, dataloader, opt.dataset, result_filename, save_dir=None, show_image=opt.show_image, frame_rate=fps, use_cuda=opt.gpus != [-1]) return result_filename if __name__ == '__main__': model = init_model( config='configs/qdtrack-basch.py', checkpoint='models/qdtrack-frcnn_r50_fpn_12e_bdd100k-13328aed.pth', # config='configs/tao/qdtrack_frcnn_r50_fpn_24e_lvis.py', # checkpoint='models/qdtrack_tao.pth', ) app.run(port=5005, debug=True, host='0.0.0.0') # videos = glob('data/bosch_tracking/*.mp4') # for video in videos: # test_run(video) # test_run('data/video_10s.mp4') # test_run('data/video.mp4') # track_fairmot('data/video_10s.mp4')
32.544118
102
0.671939
2d6359e7a345f8bf07d93707898e4782cf7ca055
8,235
py
Python
embedding-calculator/src/services/facescan/plugins/insightface/insightface.py
Precistat/CompreFace
dc850c23d4cadc355f77cef08adbbd5f430c01b7
[ "Apache-2.0" ]
1
2021-12-14T10:07:07.000Z
2021-12-14T10:07:07.000Z
embedding-calculator/src/services/facescan/plugins/insightface/insightface.py
Precistat/CompreFace
dc850c23d4cadc355f77cef08adbbd5f430c01b7
[ "Apache-2.0" ]
null
null
null
embedding-calculator/src/services/facescan/plugins/insightface/insightface.py
Precistat/CompreFace
dc850c23d4cadc355f77cef08adbbd5f430c01b7
[ "Apache-2.0" ]
1
2021-10-10T04:30:14.000Z
2021-10-10T04:30:14.000Z
# Copyright (c) 2020 the original author or authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. import logging import functools from typing import List, Tuple import attr import numpy as np import mxnet as mx from cached_property import cached_property from insightface.app import FaceAnalysis from insightface.model_zoo import (model_store, face_detection, face_recognition, face_genderage) from insightface.utils import face_align from src.constants import ENV from src.services.dto.bounding_box import BoundingBoxDTO from src.services.dto.json_encodable import JSONEncodable from src.services.facescan.imgscaler.imgscaler import ImgScaler from src.services.facescan.plugins import base, mixins, exceptions from src.services.facescan.plugins.insightface import helpers as insight_helpers from src.services.dto import plugin_result from src.services.imgtools.types import Array3D logger = logging.getLogger(__name__) class InsightFaceMixin: _CTX_ID = ENV.GPU_IDX _NMS = 0.4 def get_model_file(self, ml_model: base.MLModel): if not ml_model.exists(): raise exceptions.ModelImportException( f'Model {ml_model.name} does not exists') return model_store.find_params_file(ml_model.path) class DetectionOnlyFaceAnalysis(FaceAnalysis): rec_model = None ga_model = None def __init__(self, file): self.det_model = face_detection.FaceDetector(file, 'net3') class FaceDetector(InsightFaceMixin, mixins.FaceDetectorMixin, base.BasePlugin): ml_models = ( ('retinaface_mnet025_v1', '1ggNFFqpe0abWz6V1A82rnxD6fyxB8W2c'), ('retinaface_mnet025_v2', '1EYTMxgcNdlvoL1fSC8N1zkaWrX75ZoNL'), ('retinaface_r50_v1', '1LZ5h9f_YC5EdbIZAqVba9TKHipi90JBj'), ) IMG_LENGTH_LIMIT = ENV.IMG_LENGTH_LIMIT IMAGE_SIZE = 112 det_prob_threshold = 0.8 @cached_property def _detection_model(self): model_file = self.get_model_file(self.ml_model) model = DetectionOnlyFaceAnalysis(model_file) model.prepare(ctx_id=self._CTX_ID, nms=self._NMS) return model def find_faces(self, img: Array3D, det_prob_threshold: float = None) -> List[BoundingBoxDTO]: if det_prob_threshold is None: det_prob_threshold = self.det_prob_threshold assert 0 <= det_prob_threshold <= 1 scaler = ImgScaler(self.IMG_LENGTH_LIMIT) img = scaler.downscale_img(img) results = self._detection_model.get(img, det_thresh=det_prob_threshold) boxes = [] for result in results: downscaled_box_array = result.bbox.astype(np.int).flatten() downscaled_box = BoundingBoxDTO(x_min=downscaled_box_array[0], y_min=downscaled_box_array[1], x_max=downscaled_box_array[2], y_max=downscaled_box_array[3], probability=result.det_score, np_landmarks=result.landmark) box = downscaled_box.scaled(scaler.upscale_coefficient) if box.probability <= det_prob_threshold: logger.debug(f'Box Filtered out because below threshold ({det_prob_threshold}: {box})') continue logger.debug(f"Found: {box}") boxes.append(box) return boxes def crop_face(self, img: Array3D, box: BoundingBoxDTO) -> Array3D: return face_align.norm_crop(img, landmark=box._np_landmarks, image_size=self.IMAGE_SIZE) class Calculator(InsightFaceMixin, mixins.CalculatorMixin, base.BasePlugin): ml_models = ( ('arcface_mobilefacenet', '17TpxpyHuUc1ZTm3RIbfvhnBcZqhyKszV', (1.26538905, 5.552089201), 200), ('arcface_r100_v1', '11xFaEHIQLNze3-2RUV1cQfT-q6PKKfYp', (1.23132175, 6.602259425), 400), ('arcface_resnet34', '1ECp5XrLgfEAnwyTYFEhJgIsOAw6KaHa7', (1.2462842, 5.981636853), 400), ('arcface_resnet50', '1a9nib4I9OIVORwsqLB0gz0WuLC32E8gf', (1.2375747, 5.973354538), 400), ('arcface-r50-msfdrop75', '1gNuvRNHCNgvFtz7SjhW82v2-znlAYaRO', (1.2350148, 7.071431642), 400), ('arcface-r100-msfdrop75', '1lAnFcBXoMKqE-SkZKTmi6MsYAmzG0tFw', (1.224676, 6.322647217), 400), ) def calc_embedding(self, face_img: Array3D) -> Array3D: return self._calculation_model.get_embedding(face_img).flatten() @cached_property def _calculation_model(self): model_file = self.get_model_file(self.ml_model) model = face_recognition.FaceRecognition( self.ml_model.name, True, model_file) model.prepare(ctx_id=self._CTX_ID) return model @attr.s(auto_attribs=True, frozen=True) class GenderAgeDTO(JSONEncodable): gender: str age: Tuple[int, int] class BaseGenderAge(InsightFaceMixin, base.BasePlugin): ml_models = ( ('genderage_v1', '1J9hqSWqZz6YvMMNrDrmrzEW9anhvdKuC'), ) CACHE_FIELD = '_genderage_cached_result' def _evaluate_model(self, face: plugin_result.FaceDTO): cached_result = getattr(face, self.CACHE_FIELD, None) if not cached_result: cached_result = self._genderage_model.get(face._face_img) setattr(face, self.CACHE_FIELD, cached_result) return cached_result @cached_property def _genderage_model(self): model_file = self.get_model_file(self.ml_model) model = face_genderage.FaceGenderage( self.ml_model.name, True, model_file) model.prepare(ctx_id=self._CTX_ID) return model class GenderDetector(BaseGenderAge): slug = "gender" GENDERS = ('female', 'male') def __call__(self, face: plugin_result.FaceDTO): gender, age = self._evaluate_model(face) return plugin_result.GenderDTO(gender=self.GENDERS[int(gender)]) class AgeDetector(BaseGenderAge): slug = "age" def __call__(self, face: plugin_result.FaceDTO): gender, age = self._evaluate_model(face) return plugin_result.AgeDTO(age=(age, age)) class LandmarksDetector(mixins.LandmarksDetectorMixin, base.BasePlugin): """ Extract landmarks from FaceDetector results.""" class Landmarks2d106DTO(plugin_result.LandmarksDTO): """ 106-points facial landmarks Points mark-up - https://github.com/deepinsight/insightface/tree/master/alignment/coordinateReg#visualization """ NOSE_POSITION = 86 class Landmarks2d106Detector(InsightFaceMixin, mixins.LandmarksDetectorMixin, base.BasePlugin): slug = 'landmarks2d106' ml_models = ( ('2d106det', '1MBWbTEYRhZFzj_O2f2Dc6fWGXFWtbMFw'), ) CROP_SIZE = (192, 192) # model requirements def __call__(self, face: plugin_result.FaceDTO): landmarks = insight_helpers.predict_landmark2d106( self._landmark_model, face._img, self.CROP_SIZE, face.box.center, (face.box.width, face.box.height), ) return Landmarks2d106DTO(landmarks=landmarks.astype(int).tolist()) @cached_property def _landmark_model(self): model_prefix = f'{self.ml_model.path}/{self.ml_model.name}' sym, arg_params, aux_params = mx.model.load_checkpoint(model_prefix, 0) ctx = mx.gpu(self._CTX_ID) if self._CTX_ID >= 0 else mx.cpu() all_layers = sym.get_internals() sym = all_layers['fc1_output'] model = mx.mod.Module(symbol=sym, context=ctx, label_names=None) model.bind(for_training=False, data_shapes=[('data', (1, 3, *self.CROP_SIZE))]) model.set_params(arg_params, aux_params) return model
38.661972
113
0.686096
58e3095ee6efa78dee5ecb30e3f1805f15bb0e61
1,607
py
Python
tfserve/loader.py
gar1t/tfserve
cd8cb67f87f3f6f1309628f62184f19da106e2dc
[ "MIT" ]
31
2018-09-05T17:14:16.000Z
2021-03-26T12:39:23.000Z
tfserve/loader.py
gar1t/tfserve
cd8cb67f87f3f6f1309628f62184f19da106e2dc
[ "MIT" ]
5
2018-10-10T13:02:49.000Z
2020-06-23T15:04:38.000Z
tfserve/loader.py
gar1t/tfserve
cd8cb67f87f3f6f1309628f62184f19da106e2dc
[ "MIT" ]
10
2018-10-15T16:15:22.000Z
2020-01-23T08:37:37.000Z
""" Module that handles loading a tensorflow model in several different forms. """ import os import tensorflow as tf def load_model(model_path): """ Loads a tensorflow model return a tf.Session running on the loaded model (the graph). :param str model_path: It can be a `.pb` file or directory containing checkpoint files. :return: tf.Session running the model graph. """ if model_path is None: raise ValueError("model_path must not be None") if not os.path.exists(model_path): raise ValueError("model_path must exist") if os.path.isfile(model_path) and model_path.endswith(".pb"): return _load_pb(model_path) if os.path.isdir(model_path): for f in os.listdir(model_path): if f.endswith(".pb"): return _load_pb(os.path.join(model_path, f)) return _load_ckpt(model_path) def _load_pb(model_path): """ Loads from a '.pb' model file. """ graph = tf.Graph() sess = tf.Session(graph=graph) with tf.gfile.FastGFile(model_path, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) with sess.graph.as_default(): tf.import_graph_def(graph_def) return sess def _load_ckpt(model_dir): """ Loads from a checkpoint directory. """ graph = tf.Graph() sess = tf.Session(graph=graph) with graph.as_default(): ckpt_path = tf.train.latest_checkpoint(model_dir) saver = tf.train.import_meta_graph('{}.meta'.format(ckpt_path)) saver.restore(sess, ckpt_path) return sess
27.237288
91
0.65028
2110a6e6d578fd0fcc8269d00ad6dcf4799a8390
493
py
Python
application/utils/log_handler.py
lahdjirayhan/drive-kesma-library-linker
7c945e2b8efd8d05a571b563e0738dc3c086263e
[ "Unlicense" ]
null
null
null
application/utils/log_handler.py
lahdjirayhan/drive-kesma-library-linker
7c945e2b8efd8d05a571b563e0738dc3c086263e
[ "Unlicense" ]
null
null
null
application/utils/log_handler.py
lahdjirayhan/drive-kesma-library-linker
7c945e2b8efd8d05a571b563e0738dc3c086263e
[ "Unlicense" ]
null
null
null
import logging # https://stackoverflow.com/questions/36408496/python-logging-handler-to-append-to-list # Both answers combined class ListHandler(logging.Handler): def __init__(self, *args, message_list, **kwargs): logging.Handler.__init__(self, *args, **kwargs) self.setFormatter(logging.Formatter('%(message)s')) self.setLevel(logging.INFO) self.message_list = message_list def emit(self, record): self.message_list.append(record.getMessage())
41.083333
87
0.716024
813abdc0b8b243c881946660276c4fda5f15aa76
7,246
py
Python
opencv_engine/engine.py
scorphus/opencv-engine
ae02452d9d6ae884c9a4ae22382e34b7d6e6fc11
[ "MIT" ]
17
2015-02-23T04:15:21.000Z
2019-05-05T23:08:08.000Z
opencv_engine/engine.py
scorphus/opencv-engine
ae02452d9d6ae884c9a4ae22382e34b7d6e6fc11
[ "MIT" ]
25
2015-01-14T17:20:44.000Z
2022-01-24T02:47:01.000Z
opencv_engine/engine.py
scorphus/opencv-engine
ae02452d9d6ae884c9a4ae22382e34b7d6e6fc11
[ "MIT" ]
26
2015-02-23T04:16:58.000Z
2020-01-09T00:21:34.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # thumbor imaging service - opencv engine # https://github.com/thumbor/opencv-engine # Licensed under the MIT license: # http://www.opensource.org/licenses/mit-license # Copyright (c) 2014 globo.com [email protected] try: import cv except ImportError: import cv2.cv as cv from colour import Color from thumbor.engines import BaseEngine from pexif import JpegFile, ExifSegment try: from thumbor.ext.filters import _composite FILTERS_AVAILABLE = True except ImportError: FILTERS_AVAILABLE = False FORMATS = { '.jpg': 'JPEG', '.jpeg': 'JPEG', '.gif': 'GIF', '.png': 'PNG' } class Engine(BaseEngine): @property def image_depth(self): if self.image is None: return 8 return cv.GetImage(self.image).depth @property def image_channels(self): if self.image is None: return 3 return self.image.channels @classmethod def parse_hex_color(cls, color): try: color = Color(color).get_rgb() return tuple(c * 255 for c in reversed(color)) except Exception: return None def gen_image(self, size, color_value): img0 = cv.CreateImage(size, self.image_depth, self.image_channels) if color_value == 'transparent': color = (255, 255, 255, 255) else: color = self.parse_hex_color(color_value) if not color: raise ValueError('Color %s is not valid.' % color_value) cv.Set(img0, color) return img0 def create_image(self, buffer): # FIXME: opencv doesn't support gifs, even worse, the library # segfaults when trying to decoding a gif. An exception is a # less drastic measure. try: if FORMATS[self.extension] == 'GIF': raise ValueError("opencv doesn't support gifs") except KeyError: pass imagefiledata = cv.CreateMatHeader(1, len(buffer), cv.CV_8UC1) cv.SetData(imagefiledata, buffer, len(buffer)) img0 = cv.DecodeImageM(imagefiledata, cv.CV_LOAD_IMAGE_UNCHANGED) if FORMATS[self.extension] == 'JPEG': try: info = JpegFile.fromString(buffer).get_exif() if info: self.exif = info.data self.exif_marker = info.marker except Exception: pass return img0 @property def size(self): return cv.GetSize(self.image) def normalize(self): pass def resize(self, width, height): thumbnail = cv.CreateImage( (int(round(width, 0)), int(round(height, 0))), self.image_depth, self.image_channels ) cv.Resize(self.image, thumbnail, cv.CV_INTER_AREA) self.image = thumbnail def crop(self, left, top, right, bottom): new_width = right - left new_height = bottom - top cropped = cv.CreateImage( (new_width, new_height), self.image_depth, self.image_channels ) src_region = cv.GetSubRect(self.image, (left, top, new_width, new_height)) cv.Copy(src_region, cropped) self.image = cropped def rotate(self, degrees): if (degrees > 180): # Flip around both axes cv.Flip(self.image, None, -1) degrees = degrees - 180 img = self.image size = cv.GetSize(img) if (degrees / 90 % 2): new_size = (size[1], size[0]) center = ((size[0] - 1) * 0.5, (size[0] - 1) * 0.5) else: new_size = size center = ((size[0] - 1) * 0.5, (size[1] - 1) * 0.5) mapMatrix = cv.CreateMat(2, 3, cv.CV_64F) cv.GetRotationMatrix2D(center, degrees, 1.0, mapMatrix) dst = cv.CreateImage(new_size, self.image_depth, self.image_channels) cv.SetZero(dst) cv.WarpAffine(img, dst, mapMatrix) self.image = dst def flip_vertically(self): cv.Flip(self.image, None, 1) def flip_horizontally(self): cv.Flip(self.image, None, 0) def read(self, extension=None, quality=None): if quality is None: quality = self.context.config.QUALITY options = None extension = extension or self.extension try: if FORMATS[extension] == 'JPEG': options = [cv.CV_IMWRITE_JPEG_QUALITY, quality] except KeyError: # default is JPEG so options = [cv.CV_IMWRITE_JPEG_QUALITY, quality] data = cv.EncodeImage(extension, self.image, options or []).tostring() if FORMATS[extension] == 'JPEG' and self.context.config.PRESERVE_EXIF_INFO: if hasattr(self, 'exif'): img = JpegFile.fromString(data) img._segments.insert(0, ExifSegment(self.exif_marker, None, self.exif, 'rw')) data = img.writeString() return data def set_image_data(self, data): cv.SetData(self.image, data) def image_data_as_rgb(self, update_image=True): # TODO: Handle other formats if self.image_channels == 4: mode = 'BGRA' elif self.image_channels == 3: mode = 'BGR' else: mode = 'BGR' rgb_copy = cv.CreateImage((self.image.width, self.image.height), 8, 3) cv.CvtColor(self.image, rgb_copy, cv.CV_GRAY2BGR) self.image = rgb_copy return mode, self.image.tostring() def draw_rectangle(self, x, y, width, height): cv.Rectangle(self.image, (int(x), int(y)), (int(x + width), int(y + height)), cv.Scalar(255, 255, 255, 1.0)) def convert_to_grayscale(self): if self.image_channels >= 3: # FIXME: OpenCV does not support grayscale with alpha channel? grayscaled = cv.CreateImage((self.image.width, self.image.height), self.image_depth, 1) cv.CvtColor(self.image, grayscaled, cv.CV_BGRA2GRAY) self.image = grayscaled def paste(self, other_engine, pos, merge=True): if merge and not FILTERS_AVAILABLE: raise RuntimeError( 'You need filters enabled to use paste with merge. Please reinstall ' + 'thumbor with proper compilation of its filters.') self.enable_alpha() other_engine.enable_alpha() sz = self.size other_size = other_engine.size mode, data = self.image_data_as_rgb() other_mode, other_data = other_engine.image_data_as_rgb() imgdata = _composite.apply( mode, data, sz[0], sz[1], other_data, other_size[0], other_size[1], pos[0], pos[1], merge) self.set_image_data(imgdata) def enable_alpha(self): if self.image_channels < 4: with_alpha = cv.CreateImage( (self.image.width, self.image.height), self.image_depth, 4 ) if self.image_channels == 3: cv.CvtColor(self.image, with_alpha, cv.CV_BGR2BGRA) else: cv.CvtColor(self.image, with_alpha, cv.CV_GRAY2BGRA) self.image = with_alpha
31.641921
116
0.587911
c3af66c6b1cee906a5c5f9ae5f17c95af97293d2
1,332
py
Python
plotly/api/v1/clientresp.py
SamLau95/plotly.py
7dd4ddd4e18e79ff30cec3ef331fa2f8949ed1bd
[ "MIT" ]
5
2022-02-20T07:10:02.000Z
2022-03-18T17:47:53.000Z
plotly/api/v1/clientresp.py
SamLau95/plotly.py
7dd4ddd4e18e79ff30cec3ef331fa2f8949ed1bd
[ "MIT" ]
9
2020-06-05T20:31:50.000Z
2022-03-11T23:45:47.000Z
plotly/api/v1/clientresp.py
SamLau95/plotly.py
7dd4ddd4e18e79ff30cec3ef331fa2f8949ed1bd
[ "MIT" ]
2
2018-02-13T10:40:10.000Z
2021-06-04T11:15:53.000Z
"""Interface to deprecated /clientresp API. Subject to deletion.""" from __future__ import absolute_import import warnings from requests.compat import json as _json from plotly import config, utils, version from plotly.api.v1.utils import request def clientresp(data, **kwargs): """ Deprecated endpoint, still used because it can parse data out of a plot. When we get around to forcing users to create grids and then create plots, we can finally get rid of this. :param (list) data: The data array from a figure. """ creds = config.get_credentials() cfg = config.get_config() dumps_kwargs = {'sort_keys': True, 'cls': utils.PlotlyJSONEncoder} payload = { 'platform': 'python', 'version': version.__version__, 'args': _json.dumps(data, **dumps_kwargs), 'un': creds['username'], 'key': creds['api_key'], 'origin': 'plot', 'kwargs': _json.dumps(kwargs, **dumps_kwargs) } url = '{plotly_domain}/clientresp'.format(**cfg) response = request('post', url, data=payload) # Old functionality, just keeping it around. parsed_content = response.json() if parsed_content.get('warning'): warnings.warn(parsed_content['warning']) if parsed_content.get('message'): print(parsed_content['message']) return response
29.6
78
0.677177
43bcb53b30b218647164141e67e2c15e8751be5f
1,967
py
Python
contextaware_processors/response.py
kezabelle/django-contextaware-processors
7f5bd32b73032fa5b9208f62c2b4438c13a2d78b
[ "BSD-2-Clause" ]
null
null
null
contextaware_processors/response.py
kezabelle/django-contextaware-processors
7f5bd32b73032fa5b9208f62c2b4438c13a2d78b
[ "BSD-2-Clause" ]
null
null
null
contextaware_processors/response.py
kezabelle/django-contextaware-processors
7f5bd32b73032fa5b9208f62c2b4438c13a2d78b
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from django.template.response import TemplateResponse __all__ = ['AlreadyRendered', 'ContextawareTemplateResponse'] class AlreadyRendered(TypeError): pass def update_context_from_callbacks(request, context, callbacks): for context_callback in callbacks: newcontext = context_callback(request=request, context=context) # if a callback marks itself as irrelevant, skip to the # next processor in the list. if newcontext is NotImplemented: continue if newcontext is not None: context.update(newcontext) return context class ContextawareTemplateResponse(TemplateResponse): rendering_attrs = TemplateResponse.rendering_attrs + ['_post_context_callbacks'] def __init__(self, request, template, context=None, content_type=None, status=None, charset=None, using=None): super(ContextawareTemplateResponse, self).__init__( request, template, context=context, content_type=content_type, status=status, charset=charset, using=using) self._post_context_callbacks = [] def add_context_callback(self, callback): if self._is_rendered: raise AlreadyRendered("Cannot apply a new context-mutating " "callback after rendering the content, " "without having to re-render it") self._post_context_callbacks.append(callback) def update_context_from_callbacks(self, context): return update_context_from_callbacks(request=self._request, context=context, callbacks=self._post_context_callbacks) def resolve_context(self, context): ctx = super(ContextawareTemplateResponse, self).resolve_context(context=context) ctx = self.update_context_from_callbacks(context=ctx) return ctx
38.568627
88
0.689375
5cec1e757a166bee97afa6b1cc079410ce4dcc60
5,341
py
Python
app/user/tests/test_user_api.py
masoud91/recipe
88481ae2f22e6ac1f8081be0ce699039ffc645b1
[ "MIT" ]
3
2020-08-10T14:14:00.000Z
2021-08-08T10:21:56.000Z
app/user/tests/test_user_api.py
masoud91/recipe
88481ae2f22e6ac1f8081be0ce699039ffc645b1
[ "MIT" ]
null
null
null
app/user/tests/test_user_api.py
masoud91/recipe
88481ae2f22e6ac1f8081be0ce699039ffc645b1
[ "MIT" ]
null
null
null
from django.test import TestCase from django.contrib.auth import get_user_model from django.urls import reverse from rest_framework.test import APIClient from rest_framework import status CREATE_USER_URL = reverse('user:create') TOKEN_URL = reverse('user:token') ME_URL = reverse('user:me') def create_user(**params): return get_user_model().objects.create_user(**params) class PublicUserApiTest(TestCase): def setUp(self) -> None: self.client = APIClient() def test_create_valid_user_success(self): """test creating user with valid payload is successful""" payload = { 'email': '[email protected]', 'password': 'demo1234', 'name': 'Demo User', } response = self.client.post(CREATE_USER_URL, payload) self.assertEqual(response.status_code, status.HTTP_201_CREATED) user = get_user_model().objects.get(**response.data) self.assertTrue(user.check_password(payload['password'])) self.assertNotIn('password', response.data) def test_user_exist(self): """Test creating a user that already exists""" payload = { 'email': '[email protected]', 'password': 'demo1234', } create_user(**payload) response = self.client.post(CREATE_USER_URL, payload) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_password_too_short(self): """Test that password must be more than 5 characters""" payload = { 'email': '[email protected]', 'password': 'short', } response = self.client.post(CREATE_USER_URL, payload) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) user_exists = get_user_model().objects.filter( email=payload['email'] ).exists() self.assertFalse(user_exists) def test_create_token_for_user(self): """Test that token is created for the user""" payload = { 'email': '[email protected]', 'password': 'demo1234', } create_user(**payload) response = self.client.post(TOKEN_URL, payload) self.assertIn('token', response.data) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_create_token_with_invalid_credential(self): """Test that token is not created if invalid credentials are given""" create_user(**{ 'email': '[email protected]', 'password': 'demo1234', }) payload = { 'email': '[email protected]', 'password': 'WrongPassword', } response = self.client.post(TOKEN_URL, payload) self.assertNotIn('token', response.data) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_create_token_no_user(self): """Test that token is not created if user does not exists""" payload = { 'email': '[email protected]', 'password': 'demo1234', } response = self.client.post(TOKEN_URL, payload) self.assertNotIn('token', response.data) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_create_token_missing_field(self): """Test that email and password are required""" payload = { 'email': 'demo', 'password': '', } response = self.client.post(TOKEN_URL, payload) self.assertNotIn('token', response.data) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_retrieve_user_authorized(self): """Test that authentication is required for users""" response = self.client.get(ME_URL) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) class ProtectedUserApiTest(TestCase): """Test api requests that require authentication""" def setUp(self) -> None: self.user = create_user( email='[email protected]', password='pass123456', name='user one', ) self.client = APIClient() self.client.force_authenticate(user=self.user) def test_retrieve_profile_success(self): """Test retrieving profile for logged in used""" response = self.client.get(ME_URL) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual({ 'name': self.user.name, 'email': self.user.email, }, response.data) self.assertNotIn('password', response.data) def test_post_me_not_allowed(self): """Test that POST in not allowed on user/me url""" response = self.client.post(ME_URL, {}) self.assertEqual( response.status_code, status.HTTP_405_METHOD_NOT_ALLOWED ) def test_update_user_profile(self): """Test updating the user profile for authenticated user""" payload = { 'name': 'name edited', 'password': 'changed', } response = self.client.patch(ME_URL, payload) self.user.refresh_from_db() self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(self.user.name, payload['name']) self.assertTrue(self.user.check_password(payload['password']))
31.982036
77
0.627598
029142861467283b04bed19dae8b5258610b5426
37,237
py
Python
blobfile/ops_test.py
jpambrun/blobfile
16a7c183e49fcc2a7c95af4f2a63b60cb9a55e24
[ "Unlicense" ]
null
null
null
blobfile/ops_test.py
jpambrun/blobfile
16a7c183e49fcc2a7c95af4f2a63b60cb9a55e24
[ "Unlicense" ]
null
null
null
blobfile/ops_test.py
jpambrun/blobfile
16a7c183e49fcc2a7c95af4f2a63b60cb9a55e24
[ "Unlicense" ]
null
null
null
# https://github.com/tensorflow/tensorflow/issues/27023 import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore", category=FutureWarning) import random import string import tempfile import os import contextlib import json import urllib.request import hashlib import time import subprocess as sp import multiprocessing as mp import platform import base64 import av import pytest from tensorflow.io import gfile import imageio import numpy as np import blobfile as bf from blobfile import ops, azure GCS_TEST_BUCKET = "csh-test-3" AS_TEST_ACCOUNT = "cshteststorage2" AS_TEST_CONTAINER = "testcontainer2" AZURE_VALID_CONTAINER = ( f"https://{AS_TEST_ACCOUNT}.blob.core.windows.net/{AS_TEST_CONTAINER}" ) AZURE_INVALID_CONTAINER = f"https://{AS_TEST_ACCOUNT}.blob.core.windows.net/{AS_TEST_CONTAINER}-does-not-exist" AZURE_INVALID_ACCOUNT = f"https://{AS_TEST_ACCOUNT}-does-not-exist.blob.core.windows.net/{AS_TEST_CONTAINER}" GCS_VALID_BUCKET = f"gs://{GCS_TEST_BUCKET}" GCS_INVALID_BUCKET = f"gs://{GCS_TEST_BUCKET}-does-not-exist" # only run this for our docker tests, this tells gcloud to use the credentials supplied by the # test running script @pytest.mark.skipif(platform.system() != "Linux") @pytest.fixture(scope="session", autouse=True) def setup_gcloud_auth(): sp.run( [ "gcloud", "auth", "activate-service-account", f"--key-file={os.environ['GOOGLE_APPLICATION_CREDENTIALS']}", ] ) yield @contextlib.contextmanager def chdir(path): original_path = os.getcwd() os.chdir(path) yield os.chdir(original_path) @contextlib.contextmanager def _get_temp_local_path(): with tempfile.TemporaryDirectory() as tmpdir: assert isinstance(tmpdir, str) path = os.path.join(tmpdir, "file.name") yield path @contextlib.contextmanager def _get_temp_gcs_path(): path = f"gs://{GCS_TEST_BUCKET}/" + "".join( random.choice(string.ascii_lowercase) for i in range(16) ) gfile.mkdir(path) yield path + "/file.name" gfile.rmtree(path) @contextlib.contextmanager def _get_temp_as_path(): random_id = "".join(random.choice(string.ascii_lowercase) for i in range(16)) path = ( f"https://{AS_TEST_ACCOUNT}.blob.core.windows.net/{AS_TEST_CONTAINER}/" + random_id ) yield path + "/file.name" sp.run( [ "az", "storage", "blob", "delete-batch", "--account-name", AS_TEST_ACCOUNT, "--source", AS_TEST_CONTAINER, "--pattern", f"{random_id}/*", ], check=True, shell=platform.system() == "Windows", ) def _write_contents(path, contents): if ".blob.core.windows.net" in path: with tempfile.TemporaryDirectory() as tmpdir: assert isinstance(tmpdir, str) account, container, blob = azure.split_url(path) filepath = os.path.join(tmpdir, "tmp") with open(filepath, "wb") as f: f.write(contents) sp.run( [ "az", "storage", "blob", "upload", "--account-name", account, "--container-name", container, "--name", blob, "--file", filepath, ], check=True, shell=platform.system() == "Windows", stdout=sp.DEVNULL, stderr=sp.DEVNULL, ) else: with gfile.GFile(path, "wb") as f: f.write(contents) def _read_contents(path): if ".blob.core.windows.net" in path: with tempfile.TemporaryDirectory() as tmpdir: assert isinstance(tmpdir, str) account, container, blob = azure.split_url(path) filepath = os.path.join(tmpdir, "tmp") sp.run( [ "az", "storage", "blob", "download", "--account-name", account, "--container-name", container, "--name", blob, "--file", filepath, ], check=True, shell=platform.system() == "Windows", stdout=sp.DEVNULL, stderr=sp.DEVNULL, ) with open(filepath, "rb") as f: return f.read() else: with gfile.GFile(path, "rb") as f: return f.read() def test_basename(): testcases = [ ("/", ""), ("a/", ""), ("a", "a"), ("a/b", "b"), ("", ""), ("gs://a", ""), ("gs://a/", ""), ("gs://a/b/", ""), ("gs://a/b", "b"), ("gs://a/b/c/test.filename", "test.filename"), ("https://a.blob.core.windows.net/b", ""), ("https://a.blob.core.windows.net/b/", ""), ("https://a.blob.core.windows.net/b/c/", ""), ("https://a.blob.core.windows.net/b/c", "c"), ("https://a.blob.core.windows.net/b/c/test.filename", "test.filename"), ] for input_, desired_output in testcases: actual_output = bf.basename(input_) assert desired_output == actual_output def test_dirname(): testcases = [ ("a", ""), ("a/b", "a"), ("a/b/c", "a/b"), ("a/b/c/", "a/b/c"), ("a/b/c/////", "a/b/c"), ("", ""), ("gs://a", "gs://a"), ("gs://a/", "gs://a"), ("gs://a/////", "gs://a"), ("gs://a/b", "gs://a"), ("gs://a/b/c/test.filename", "gs://a/b/c"), ("gs://a/b/c/", "gs://a/b"), ("gs://a/b/c/////", "gs://a/b"), ( "https://a.blob.core.windows.net/container", "https://a.blob.core.windows.net/container", ), ( "https://a.blob.core.windows.net/container/", "https://a.blob.core.windows.net/container", ), ( "https://a.blob.core.windows.net/container/////", "https://a.blob.core.windows.net/container", ), ( "https://a.blob.core.windows.net/container/b", "https://a.blob.core.windows.net/container", ), ( "https://a.blob.core.windows.net/container/b/c/test.filename", "https://a.blob.core.windows.net/container/b/c", ), ( "https://a.blob.core.windows.net/container/b/c/", "https://a.blob.core.windows.net/container/b", ), ( "https://a.blob.core.windows.net/container/b/c//////", "https://a.blob.core.windows.net/container/b", ), ] for input_, desired_output in testcases: actual_output = bf.dirname(input_) assert desired_output == actual_output, f"{input_}" def test_join(): testcases = [ ("a", "b", "a/b"), ("a/b", "c", "a/b/c"), ("a/b/", "c", "a/b/c"), ("a/b/", "c/", "a/b/c/"), ("a/b/", "/c/", "/c/"), ("", "", ""), ("gs://a", "b", "gs://a/b"), ("gs://a/b", "c", "gs://a/b/c"), ("gs://a/b/", "c", "gs://a/b/c"), ("gs://a/b/", "c/", "gs://a/b/c/"), ("gs://a/b/", "/c/", "gs://a/c/"), ("gs://a/b/", "../c", "gs://a/c"), ("gs://a/b/", "../c/", "gs://a/c/"), ("gs://a/b/", "../../c/", "gs://a/c/"), ( "https://a.blob.core.windows.net/container", "b", "https://a.blob.core.windows.net/container/b", ), ( "https://a.blob.core.windows.net/container/b", "c", "https://a.blob.core.windows.net/container/b/c", ), ( "https://a.blob.core.windows.net/container/b/", "c", "https://a.blob.core.windows.net/container/b/c", ), ( "https://a.blob.core.windows.net/container/b/", "c/", "https://a.blob.core.windows.net/container/b/c/", ), ( "https://a.blob.core.windows.net/container/b/", "/c/", "https://a.blob.core.windows.net/container/c/", ), ( "https://a.blob.core.windows.net/container/b/", "../c", "https://a.blob.core.windows.net/container/c", ), ( "https://a.blob.core.windows.net/container/b/", "../c/", "https://a.blob.core.windows.net/container/c/", ), ( "https://a.blob.core.windows.net/container/b/", "../../c/", "https://a.blob.core.windows.net/container/c/", ), ] for input_a, input_b, desired_output in testcases: actual_output = bf.join(input_a, input_b) assert desired_output == actual_output, f"{input_a} {input_b}" @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) def test_get_url(ctx): contents = b"meow!" with ctx() as path: _write_contents(path, contents) url, _ = bf.get_url(path) assert urllib.request.urlopen(url).read() == contents @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) @pytest.mark.parametrize("streaming", [True, False]) def test_read_write(ctx, streaming): contents = b"meow!\npurr\n" with ctx() as path: path = bf.join(path, "a folder", "a.file") bf.makedirs(bf.dirname(path)) with bf.BlobFile(path, "wb", streaming=streaming) as w: w.write(contents) with bf.BlobFile(path, "rb", streaming=streaming) as r: assert r.read() == contents with bf.BlobFile(path, "rb", streaming=streaming) as r: lines = list(r) assert b"".join(lines) == contents @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) def test_append(ctx): contents = b"meow!\n" additional_contents = b"purr\n" with ctx() as path: with bf.LocalBlobFile(path, "ab") as w: w.write(contents) with bf.LocalBlobFile(path, "ab") as w: w.write(additional_contents) with bf.BlobFile(path, "rb") as r: assert r.read() == contents + additional_contents @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) def test_stat(ctx): contents = b"meow!" with ctx() as path: _write_contents(path, contents) s = bf.stat(path) assert s.size == len(contents) assert 0 <= abs(time.time() - s.mtime) <= 5 @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) def test_remove(ctx): contents = b"meow!" with ctx() as path: _write_contents(path, contents) assert bf.exists(path) bf.remove(path) assert not bf.exists(path) @pytest.mark.parametrize( # don't test local path because that has slightly different behavior "ctx", [_get_temp_gcs_path, _get_temp_as_path], ) def test_rmdir(ctx): contents = b"meow!" with ctx() as path: dirpath = bf.dirname(path) # this is an error for a local path but not for a blob path bf.rmdir(bf.join(dirpath, "fakedirname")) new_dirpath = bf.join(dirpath, "dirname") bf.makedirs(new_dirpath) assert bf.exists(new_dirpath) bf.rmdir(new_dirpath) assert not bf.exists(new_dirpath) # double delete is fine bf.rmdir(new_dirpath) # implicit dir new_filepath = bf.join(dirpath, "dirname", "name") _write_contents(new_filepath, contents) with pytest.raises(OSError): # not empty dir bf.rmdir(new_dirpath) bf.remove(new_filepath) bf.rmdir(new_dirpath) @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) def test_makedirs(ctx): contents = b"meow!" with ctx() as path: dirpath = bf.join(path, "x", "x", "x") bf.makedirs(dirpath) assert bf.exists(dirpath) _write_contents(bf.join(dirpath, "testfile"), contents) @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) def test_isdir(ctx): contents = b"meow!" with ctx() as path: assert not bf.isdir(path) _write_contents(path, contents) assert not bf.isdir(path) dirpath = path + ".dir" bf.makedirs(dirpath) assert bf.isdir(dirpath) assert not bf.isdir(dirpath[:-1]) @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) def test_listdir(ctx): contents = b"meow!" with ctx() as path: dirpath = bf.dirname(path) a_path = bf.join(dirpath, "a") with bf.BlobFile(a_path, "wb") as w: w.write(contents) b_path = bf.join(dirpath, "b") with bf.BlobFile(b_path, "wb") as w: w.write(contents) bf.makedirs(bf.join(dirpath, "c")) assert sorted(list(bf.listdir(dirpath))) == ["a", "b", "c"] @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) def test_listdir_sharded(ctx): contents = b"meow!" with ctx() as path: dirpath = bf.dirname(path) with bf.BlobFile(bf.join(dirpath, "a"), "wb") as w: w.write(contents) with bf.BlobFile(bf.join(dirpath, "aa"), "wb") as w: w.write(contents) with bf.BlobFile(bf.join(dirpath, "b"), "wb") as w: w.write(contents) with bf.BlobFile(bf.join(dirpath, "ca"), "wb") as w: w.write(contents) bf.makedirs(bf.join(dirpath, "c")) with bf.BlobFile(bf.join(dirpath, "c/a"), "wb") as w: w.write(contents) # this should also test shard_prefix_length=2 but that takes too long assert sorted(list(bf.listdir(dirpath, shard_prefix_length=1))) == [ "a", "aa", "b", "c", "ca", ] @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) @pytest.mark.parametrize("topdown", [False, True]) def test_walk(ctx, topdown): contents = b"meow!" with ctx() as path: dirpath = bf.dirname(path) a_path = bf.join(dirpath, "a") with bf.BlobFile(a_path, "wb") as w: w.write(contents) bf.makedirs(bf.join(dirpath, "c/d")) b_path = bf.join(dirpath, "c/d/b") with bf.BlobFile(b_path, "wb") as w: w.write(contents) expected = [ (dirpath, ["c"], ["a"]), (bf.join(dirpath, "c"), ["d"], []), (bf.join(dirpath, "c", "d"), [], ["b"]), ] if not topdown: expected = list(reversed(expected)) assert list(bf.walk(dirpath, topdown=topdown)) == expected @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) @pytest.mark.parametrize("parallel", [False, True]) def test_glob(ctx, parallel): contents = b"meow!" with ctx() as path: dirpath = bf.dirname(path) a_path = bf.join(dirpath, "ab") with bf.BlobFile(a_path, "wb") as w: w.write(contents) b_path = bf.join(dirpath, "bb") with bf.BlobFile(b_path, "wb") as w: w.write(contents) def assert_listing_equal(path, desired): desired = sorted([bf.join(dirpath, p) for p in desired]) actual = sorted(list(bf.glob(path, parallel=parallel))) assert actual == desired, f"{actual} != {desired}" assert_listing_equal(bf.join(dirpath, "*b"), ["ab", "bb"]) assert_listing_equal(bf.join(dirpath, "a*"), ["ab"]) assert_listing_equal(bf.join(dirpath, "ab*"), ["ab"]) assert_listing_equal(bf.join(dirpath, "*"), ["ab", "bb"]) assert_listing_equal(bf.join(dirpath, "bb"), ["bb"]) path = bf.join(dirpath, "test.txt") with bf.BlobFile(path, "wb") as w: w.write(contents) path = bf.join(dirpath, "subdir", "test.txt") bf.makedirs(bf.dirname(path)) with bf.BlobFile(path, "wb") as f: f.write(contents) path = bf.join(dirpath, "subdir", "subsubdir", "test.txt") if "://" not in path: # implicit directory bf.makedirs(bf.dirname(path)) with bf.BlobFile(path, "wb") as f: f.write(contents) assert_listing_equal(bf.join(dirpath, "*/test.txt"), ["subdir/test.txt"]) assert_listing_equal(bf.join(dirpath, "*/*.txt"), ["subdir/test.txt"]) if "://" in path: # local glob doesn't handle ** the same way as remote glob assert_listing_equal( bf.join(dirpath, "**.txt"), ["test.txt", "subdir/test.txt", "subdir/subsubdir/test.txt"], ) else: assert_listing_equal(bf.join(dirpath, "**.txt"), ["test.txt"]) assert_listing_equal(bf.join(dirpath, "*/test"), []) assert_listing_equal(bf.join(dirpath, "subdir/test.txt"), ["subdir/test.txt"]) # directories assert_listing_equal(bf.join(dirpath, "*"), ["ab", "bb", "subdir", "test.txt"]) assert_listing_equal(bf.join(dirpath, "subdir"), ["subdir"]) assert_listing_equal(bf.join(dirpath, "subdir/"), ["subdir"]) assert_listing_equal(bf.join(dirpath, "*/"), ["subdir"]) assert_listing_equal(bf.join(dirpath, "*dir"), ["subdir"]) assert_listing_equal(bf.join(dirpath, "subdir/*dir"), ["subdir/subsubdir"]) assert_listing_equal(bf.join(dirpath, "subdir/*dir/"), ["subdir/subsubdir"]) assert_listing_equal(bf.join(dirpath, "su*ir/*dir/"), ["subdir/subsubdir"]) @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) def test_rmtree(ctx): contents = b"meow!" with ctx() as path: root = bf.dirname(path) destroy_path = bf.join(root, "destroy") bf.makedirs(destroy_path) save_path = bf.join(root, "save") bf.makedirs(save_path) # implicit dir if not "://" in path: bf.makedirs(bf.join(destroy_path, "adir")) with bf.BlobFile(bf.join(destroy_path, "adir/b"), "wb") as w: w.write(contents) # explicit dir bf.makedirs(bf.join(destroy_path, "bdir")) with bf.BlobFile(bf.join(destroy_path, "bdir/b"), "wb") as w: w.write(contents) bf.makedirs(bf.join(save_path, "somedir")) with bf.BlobFile(bf.join(save_path, "somefile"), "wb") as w: w.write(contents) def assert_listing_equal(path, desired): actual = list(bf.walk(path)) # ordering of os walk is weird, only compare sorted order assert sorted(actual) == sorted(desired), f"{actual} != {desired}" assert_listing_equal( root, [ (root, ["destroy", "save"], []), (destroy_path, ["adir", "bdir"], []), (bf.join(destroy_path, "adir"), [], ["b"]), (bf.join(destroy_path, "bdir"), [], ["b"]), (save_path, ["somedir"], ["somefile"]), (bf.join(save_path, "somedir"), [], []), ], ) bf.rmtree(destroy_path) assert_listing_equal( root, [ (root, ["save"], []), (save_path, ["somedir"], ["somefile"]), (bf.join(save_path, "somedir"), [], []), ], ) def test_copy(): contents = b"meow!" with _get_temp_local_path() as local_path1, _get_temp_local_path() as local_path2, _get_temp_local_path() as local_path3, _get_temp_gcs_path() as gcs_path1, _get_temp_gcs_path() as gcs_path2, _get_temp_as_path() as as_path1, _get_temp_as_path() as as_path2: with pytest.raises(FileNotFoundError): bf.copy(gcs_path1, gcs_path2) with pytest.raises(FileNotFoundError): bf.copy(as_path1, as_path2) _write_contents(local_path1, contents) testcases = [ (local_path1, local_path2), (local_path1, gcs_path1), (gcs_path1, gcs_path2), (gcs_path2, as_path1), (as_path1, as_path2), (as_path2, local_path3), ] for src, dst in testcases: h = bf.copy(src, dst, return_md5=True) assert h == hashlib.md5(contents).hexdigest() assert _read_contents(dst) == contents with pytest.raises(FileExistsError): bf.copy(src, dst) bf.copy(src, dst, overwrite=True) assert _read_contents(dst) == contents @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) def test_exists(ctx): contents = b"meow!" with ctx() as path: assert not bf.exists(path) _write_contents(path, contents) assert bf.exists(path) def test_more_exists(): testcases = [ (AZURE_INVALID_CONTAINER, False), (AZURE_INVALID_CONTAINER + "/", False), (AZURE_INVALID_CONTAINER + "//", False), (AZURE_INVALID_CONTAINER + "/invalid.file", False), (GCS_INVALID_BUCKET, False), (GCS_INVALID_BUCKET + "/", False), (GCS_INVALID_BUCKET + "//", False), (GCS_INVALID_BUCKET + "/invalid.file", False), (AZURE_INVALID_ACCOUNT, False), (AZURE_INVALID_ACCOUNT + "/", False), (AZURE_INVALID_ACCOUNT + "//", False), (AZURE_INVALID_ACCOUNT + "/invalid.file", False), (AZURE_VALID_CONTAINER, True), (AZURE_VALID_CONTAINER + "/", True), (AZURE_VALID_CONTAINER + "//", False), (AZURE_VALID_CONTAINER + "/invalid.file", False), (GCS_VALID_BUCKET, True), (GCS_VALID_BUCKET + "/", True), (GCS_VALID_BUCKET + "//", False), (GCS_VALID_BUCKET + "/invalid.file", False), (f"/does-not-exist", False), (f"/", True), ] for path, should_exist in testcases: assert bf.exists(path) == should_exist @pytest.mark.parametrize( "base_path", [AZURE_INVALID_ACCOUNT, AZURE_INVALID_CONTAINER, GCS_INVALID_BUCKET] ) def test_invalid_paths(base_path): for suffix in ["", "/", "//", "/invalid.file", "/invalid/dir/"]: path = base_path + suffix print(path) if path.endswith("/"): expected_error = IsADirectoryError else: expected_error = FileNotFoundError list(bf.glob(path)) if suffix == "": for pattern in ["*", "**"]: try: list(bf.glob(path + pattern)) except bf.Error as e: assert "Wildcards cannot be used" in e.message else: for pattern in ["*", "**"]: list(bf.glob(path + pattern)) with pytest.raises(FileNotFoundError): list(bf.listdir(path)) assert not bf.exists(path) assert not bf.isdir(path) with pytest.raises(expected_error): bf.remove(path) if suffix in ("", "/"): try: bf.rmdir(path) except bf.Error as e: assert "Cannot delete bucket" in e.message else: bf.rmdir(path) with pytest.raises(NotADirectoryError): bf.rmtree(path) with pytest.raises(FileNotFoundError): bf.stat(path) if base_path == AZURE_INVALID_ACCOUNT: with pytest.raises(bf.Error): bf.get_url(path) else: bf.get_url(path) with pytest.raises(FileNotFoundError): bf.md5(path) with pytest.raises(bf.Error): bf.makedirs(path) list(bf.walk(path)) with tempfile.TemporaryDirectory() as tmpdir: local_path = os.path.join(tmpdir, "test.txt") with pytest.raises(expected_error): bf.copy(path, local_path) with open(local_path, "w") as f: f.write("meow") with pytest.raises(expected_error): bf.copy(local_path, path) for streaming in [False, True]: with pytest.raises(expected_error): with bf.BlobFile(path, "rb", streaming=streaming) as f: f.read() with pytest.raises(expected_error): with bf.BlobFile(path, "wb", streaming=streaming) as f: f.write(b"meow") @pytest.mark.parametrize("buffer_size", [1, 100]) @pytest.mark.parametrize("ctx", [_get_temp_gcs_path, _get_temp_as_path]) def test_read_stats(buffer_size, ctx): with ctx() as path: contents = b"meow!" with bf.BlobFile(path, "wb") as w: w.write(contents) with bf.BlobFile(path, "rb", buffer_size=buffer_size) as r: r.read(1) if buffer_size == 1: assert r.raw.bytes_read == 1 # type: ignore else: assert r.raw.bytes_read == len(contents) # type: ignore with bf.BlobFile(path, "rb", buffer_size=buffer_size) as r: r.read(1) r.seek(4) r.read(1) if buffer_size == 1: assert r.raw.requests == 2 # type: ignore assert r.raw.bytes_read == 2 # type: ignore else: assert r.raw.requests == 1 # type: ignore assert r.raw.bytes_read == len(contents) # type: ignore @pytest.mark.parametrize("ctx", [_get_temp_gcs_path, _get_temp_as_path]) def test_cache_dir(ctx): cache_dir = tempfile.mkdtemp() contents = b"meow!" alternative_contents = b"purr!" with ctx() as path: with bf.BlobFile(path, mode="wb") as f: f.write(contents) with bf.LocalBlobFile(path, mode="rb", cache_dir=cache_dir) as f: assert f.read() == contents content_hash = hashlib.md5(contents).hexdigest() cache_path = bf.join(cache_dir, content_hash, bf.basename(path)) with open(cache_path, "rb") as f: assert f.read() == contents # alter the cached file to make sure we are not re-reading the remote file with open(cache_path, "wb") as f: f.write(alternative_contents) with bf.LocalBlobFile(path, mode="rb", cache_dir=cache_dir) as f: assert f.read() == alternative_contents @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) def test_truncation(ctx): chunk_size = 2 ** 20 contents = b"\x00" * chunk_size * 3 alternative_contents = b"\xFF" * chunk_size * 2 with ctx() as path: with bf.BlobFile(path, "wb") as f: f.write(contents) with bf.BlobFile(path, "rb") as f: read_contents = f.read(chunk_size) with bf.BlobFile(path, "wb") as f2: f2.write(alternative_contents) # close underlying connection f.raw._f = None # type: ignore read_contents += f.read(chunk_size) read_contents += f.read(chunk_size) assert ( read_contents == contents[:chunk_size] + alternative_contents[chunk_size : chunk_size * 2] ) @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) def test_overwrite_while_reading(ctx): chunk_size = 2 ** 20 contents = b"\x00" * chunk_size * 2 alternative_contents = b"\xFF" * chunk_size * 4 with ctx() as path: with bf.BlobFile(path, "wb") as f: f.write(contents) with bf.BlobFile(path, "rb") as f: read_contents = f.read(chunk_size) with bf.BlobFile(path, "wb") as f2: f2.write(alternative_contents) # close underlying connection f.raw._f = None # type: ignore read_contents += f.read(chunk_size) assert ( read_contents == contents[:chunk_size] + alternative_contents[chunk_size : chunk_size * 2] ) def test_create_local_intermediate_dirs(): contents = b"meow" with _get_temp_local_path() as path: dirpath = bf.dirname(path) with chdir(dirpath): for filepath in [ bf.join(dirpath, "dirname", "file.name"), bf.join("..", bf.basename(dirpath), "file.name"), "./file.name", "file.name", ]: with bf.BlobFile(filepath, "wb") as f: f.write(contents) @pytest.mark.parametrize("binary", [True, False]) @pytest.mark.parametrize("blobfile", [bf.BlobFile, bf.LocalBlobFile]) @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) def test_more_read_write(binary, blobfile, ctx): rng = np.random.RandomState(0) with ctx() as path: if binary: read_mode = "rb" write_mode = "wb" else: read_mode = "r" write_mode = "w" with blobfile(path, write_mode) as w: pass with blobfile(path, read_mode) as r: assert len(r.read()) == 0 contents = b"meow!" if not binary: contents = contents.decode("utf8") with blobfile(path, write_mode) as w: w.write(contents) with blobfile(path, read_mode) as r: assert r.read(1) == contents[:1] assert r.read() == contents[1:] assert len(r.read()) == 0 with blobfile(path, read_mode) as r: for i in range(len(contents)): assert r.read(1) == contents[i : i + 1] assert len(r.read()) == 0 assert len(r.read()) == 0 contents = b"meow!\n\nmew!\n" lines = [b"meow!\n", b"\n", b"mew!\n"] if not binary: contents = contents.decode("utf8") lines = [line.decode("utf8") for line in lines] with blobfile(path, write_mode) as w: w.write(contents) with blobfile(path, read_mode) as r: assert r.readlines() == lines with blobfile(path, read_mode) as r: assert [line for line in r] == lines if binary: for size in [2 * 2 ** 20, 12_345_678]: contents = rng.randint(0, 256, size=size, dtype=np.uint8).tobytes() with blobfile(path, write_mode) as w: w.write(contents) with blobfile(path, read_mode) as r: size = rng.randint(0, 1_000_000) buf = b"" while True: b = r.read(size) if b == b"": break buf += b assert buf == contents else: obj = {"a": 1} with blobfile(path, write_mode) as w: json.dump(obj, w) with blobfile(path, read_mode) as r: assert json.load(r) == obj @pytest.mark.parametrize("blobfile", [bf.BlobFile, bf.LocalBlobFile]) @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) def test_video(blobfile, ctx): rng = np.random.RandomState(0) shape = (256, 64, 64, 3) video_data = rng.randint(0, 256, size=np.prod(shape), dtype=np.uint8).reshape(shape) with ctx() as path: with blobfile(path, mode="wb") as wf: with imageio.get_writer( wf, format="ffmpeg", quality=None, codec="libx264rgb", pixelformat="bgr24", output_params=["-f", "mp4", "-crf", "0"], ) as w: for frame in video_data: w.append_data(frame) with blobfile(path, mode="rb") as rf: with imageio.get_reader( rf, format="ffmpeg", input_params=["-f", "mp4"] ) as r: for idx, frame in enumerate(r): assert np.array_equal(frame, video_data[idx]) with blobfile(path, mode="rb") as rf: container = av.open(rf) stream = container.streams.video[0] for idx, frame in enumerate(container.decode(stream)): assert np.array_equal(frame.to_image(), video_data[idx]) @pytest.mark.parametrize( "ctx", [_get_temp_local_path] # disable remote backends because they are super slow # "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) def test_large_file(ctx): contents = b"0" * 2 ** 32 with ctx() as path: with bf.BlobFile(path, "wb", streaming=True) as f: f.write(contents) with bf.BlobFile(path, "rb", streaming=True) as f: assert contents == f.read() def test_composite_objects(): with _get_temp_gcs_path() as remote_path: with _get_temp_local_path() as local_path: contents = b"0" * 2 * 2 ** 20 with open(local_path, "wb") as f: f.write(contents) sp.run( [ "gsutil", "-o", "GSUtil:parallel_composite_upload_threshold=1M", "cp", local_path, remote_path, ], check=True, ) assert hashlib.md5(contents).hexdigest() == bf.md5(remote_path) assert hashlib.md5(contents).hexdigest() == bf.md5(remote_path) with tempfile.TemporaryDirectory() as tmpdir: with bf.BlobFile(remote_path, "rb", cache_dir=tmpdir, streaming=False) as f: assert f.read() == contents @pytest.mark.parametrize( "ctx", [_get_temp_local_path, _get_temp_gcs_path, _get_temp_as_path] ) def test_md5(ctx): contents = b"meow!" meow_hash = hashlib.md5(contents).hexdigest() with ctx() as path: _write_contents(path, contents) assert bf.md5(path) == meow_hash with bf.BlobFile(path, "wb") as f: f.write(contents) assert bf.md5(path) == meow_hash with bf.BlobFile(path, "wb") as f: f.write(contents) assert bf.md5(path) == meow_hash @pytest.mark.parametrize("ctx", [_get_temp_as_path]) def test_azure_maybe_update_md5(ctx): contents = b"meow!" meow_hash = hashlib.md5(contents).hexdigest() alternative_contents = b"purr" purr_hash = hashlib.md5(alternative_contents).hexdigest() with ctx() as path: _write_contents(path, contents) _isfile, metadata = ops._azure_isfile(path) assert ops._azure_maybe_update_md5(path, metadata["ETag"], meow_hash) _write_contents(path, alternative_contents) assert not ops._azure_maybe_update_md5(path, metadata["ETag"], meow_hash) _isfile, metadata = ops._azure_isfile(path) assert base64.b64decode(metadata["Content-MD5"]).hex() == purr_hash def _get_http_pool_id(q): q.put(id(ops._get_http_pool())) def test_fork(): q = mp.Queue() # this reference should keep the old http client alive in the child process # to ensure that a new one does not recycle the memory address http1 = ops._get_http_pool() parent1 = id(http1) p = mp.Process(target=_get_http_pool_id, args=(q,)) p.start() p.join() http2 = ops._get_http_pool() parent2 = id(http2) child = q.get() assert parent1 == parent2 assert child != parent1
34.225184
262
0.535569
ca1157a5249486b410ba20987f0c3141b208cee7
16,804
py
Python
tests/esok/config/test_connection_options.py
ahaeger/esok
9e60a663678ba2ae021afcfa0ee6dd9af4fe700e
[ "MIT" ]
2
2021-06-03T18:51:10.000Z
2021-12-16T14:49:56.000Z
tests/esok/config/test_connection_options.py
ahaeger/esok
9e60a663678ba2ae021afcfa0ee6dd9af4fe700e
[ "MIT" ]
4
2021-08-21T20:03:42.000Z
2021-08-21T22:43:07.000Z
tests/esok/config/test_connection_options.py
ahaeger/esok
9e60a663678ba2ae021afcfa0ee6dd9af4fe700e
[ "MIT" ]
null
null
null
import click import pytest from esok.config.connection_options import per_connection from esok.constants import CLI_ERROR, CONFIGURATION_ERROR, USER_ERROR from esok.esok import esok @pytest.mark.usefixtures("mock_clients") def test_no_connection_options(runner): clients, command = _attach_sub_command(esok) r = runner.invoke(esok, [command]) assert r.exit_code == 0, "The command should succeed." assert clients == [ "localhost" ], "Default connection should be used when no connection options are passed." @pytest.mark.usefixtures("mock_clients") def test_no_connection_options_and_sites_option(runner): clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-s", "eu", command]) assert r.exit_code == USER_ERROR, "Exit code should signal a user error." assert "Error" in r.output @pytest.mark.usefixtures("mock_clients") def test_host_option(runner): clients, command = _attach_sub_command(esok) expected_host = "some_host" r = runner.invoke(esok, ["-H", expected_host, command]) assert r.exit_code == 0, "The command should succeed." assert clients == [expected_host], "Provided hostname should be used." @pytest.mark.usefixtures("mock_clients") def test_host_option_cannot_be_used_with_cluster(runner): clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-H", "some_host", "-c", "some_cluster", command]) assert r.exit_code == USER_ERROR, "Exit code should signal a user error." assert "Error" in r.output, "There should be error output explaining the issue." @pytest.mark.usefixtures("mock_clients") def test_host_option_cannot_be_used_with_sites(runner): clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-H", "some_host", "-s", "site1,site2", command]) assert r.exit_code == USER_ERROR, "Exit code should signal a user error." assert "Error" in r.output, "There should be error output explaining the issue." @pytest.mark.usefixtures("mock_clients") def test_cluster_with_missing_connection(runner): clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-c", "some_cluster", command]) assert r.exit_code == USER_ERROR, "Exit code should signal a user error." assert "Error" in r.output, "There should be error output explaining the issue." @pytest.mark.usefixtures("mock_clients") def test_cluster_with_predefined_connections(user_config_file, runner): user_config_file.write_text( """ [cluster:awesome-cluster] eu = 192.168.0.1 us = some.es.cluster.example.com ae = east-asia-host """ ) clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-c", "awesome-cluster", command]) assert r.exit_code == 0, "The command should succeed." assert "192.168.0.1" in clients, "Configured cluster should be part of the clients." assert ( "some.es.cluster.example.com" in clients ), "Configured cluster should be part of the clients to connect to." assert ( "east-asia-host" in clients ), "Configured cluster should be part of the clients to connect to." @pytest.mark.usefixtures("mock_clients") def test_cluster_with_predefined_connections_and_site_option(user_config_file, runner): user_config_file.write_text( """ [cluster:awesome-cluster] eu = 192.168.0.1 us = some.es.cluster.example.com ap = asia-host """ ) clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-c", "awesome-cluster", "-s", "eu", command]) assert r.exit_code == 0, "The command should succeed." assert ["192.168.0.1"] == clients, "Specified cluster should be the only client." @pytest.mark.usefixtures("mock_clients") def test_cluster_with_predefined_connections_and_missing_site_option( user_config_file, runner ): user_config_file.write_text( """ [cluster:awesome-cluster] us = some.es.cluster.example.com ap = asia-host """ ) clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-c", "awesome-cluster", "-s", "eu", command]) assert r.exit_code == USER_ERROR, "Exit code should signal a user error." assert "Error" in r.output, "There should be error output explaining the issue." @pytest.mark.usefixtures("mock_clients") def test_cluster_with_invalid_pattern_config(user_config_file, runner): user_config_file.write_text( """ [general] cluster_hostname_pattern = my-cluster """ ) clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-c", "favorite", command]) assert ( r.exit_code == CONFIGURATION_ERROR ), "Exit code should signal a configuration error." assert "Error" in r.output @pytest.mark.usefixtures("mock_clients") def test_cluster_with_pattern_config_without_site(user_config_file, runner): user_config_file.write_text( """ [general] cluster_hostname_pattern = my-{cluster}-cluster """ ) clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-c", "favorite", command]) assert r.exit_code == 0, "The command should succeed." assert ( "my-favorite-cluster" in clients ), "Specified cluster should be the only client." @pytest.mark.usefixtures("mock_clients") def test_cluster_with_pattern_config_and_site_option_without_site_variable( user_config_file, runner ): user_config_file.write_text( """ [general] cluster_hostname_pattern = my-{cluster}-cluster """ ) clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-c", "favorite", "-s", "woops", command]) assert r.exit_code == USER_ERROR, "Exit code should signal a user error." assert "Error" in r.output, "There should be error output explaining the issue." @pytest.mark.usefixtures("mock_clients") def test_cluster_with_pattern_config_and_missing_site(user_config_file, runner): user_config_file.write_text( """ [general] cluster_hostname_pattern = my-{cluster}-{site}-cluster """ ) clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-c", "favorite", command]) assert r.exit_code == USER_ERROR, "Exit code should signal a user error." assert "Error" in r.output, "There should be error output explaining the issue." @pytest.mark.usefixtures("mock_clients") def test_cluster_with_pattern_config_and_default_sites(user_config_file, runner): user_config_file.write_text( """ [general] cluster_hostname_pattern = my-{cluster}-{site}-cluster cluster_pattern_default_sites = site1,site2 """ ) clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-c", "favorite", command]) assert r.exit_code == 0, "The command should succeed." assert ( "my-favorite-site1-cluster" in clients ), "Specified cluster should be among the clients." assert ( "my-favorite-site2-cluster" in clients ), "Specified cluster should be among the clients." assert "site1" in r.output, "CLI should indicate which site it is connecting to." assert "site2" in r.output, "CLI should indicate which site it is connecting to." @pytest.mark.usefixtures("mock_clients") def test_cluster_with_pattern_config_and_default_sites_without_site_variable( user_config_file, runner ): user_config_file.write_text( """ [general] cluster_hostname_pattern = my-{cluster}-cluster cluster_pattern_default_sites = site1,site2 """ ) clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-c", "favorite", command]) assert ( r.exit_code == CONFIGURATION_ERROR ), "Exit code should signal a configuration error." assert "Error" in r.output, "There should be error output explaining the issue." @pytest.mark.usefixtures("mock_clients") def test_cluster_with_pattern_config_and_default_sites_and_site_option( user_config_file, runner ): user_config_file.write_text( """ [general] cluster_hostname_pattern = my-{cluster}-{site}-cluster cluster_pattern_default_sites = site1,site2 """ ) clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-c", "favorite", "-s", "site3", command]) assert r.exit_code == 0, "The command should succeed." assert [ "my-favorite-site3-cluster" ] == clients, "Specified cluster should be the only client." @pytest.mark.usefixtures("mock_clients") def test_cluster_with_pattern_config_predefined_connections_takes_precedence( user_config_file, runner ): user_config_file.write_text( """ [general] cluster_hostname_pattern = my-{cluster}-{site}-cluster cluster_pattern_default_sites = site1,site2 [cluster:some-cluster] region2 = host1 region1 = host2 """ ) clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-c", "some-cluster", command]) assert r.exit_code == 0, "The command should succeed." assert "host1" in clients, "Specified cluster should be among the clients." assert "host2" in clients, "Specified cluster should be among the clients." assert "region1" in r.output, "CLI should indicate which site it is connecting to." assert "region2" in r.output, "CLI should indicate which site it is connecting to." @pytest.mark.usefixtures("mock_clients") def test_cluster_with_pattern_config_(user_config_file, runner): user_config_file.write_text( """ [general] cluster_hostname_pattern = my-{cluster}-{site}-cluster cluster_pattern_default_sites = site1,site2 [cluster:some-cluster] region2 = host1 region1 = host2 """ ) clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-c", "some-cluster", command]) assert r.exit_code == 0, "The command should succeed." assert "host1" in clients, "Specified cluster should be among the clients." assert "host2" in clients, "Specified cluster should be among the clients." assert "region1" in r.output, "CLI should indicate which site it is connecting to." assert "region2" in r.output, "CLI should indicate which site it is connecting to." @pytest.mark.usefixtures("mock_clients") def test_default_connection_can_be_predefined_connection(user_config_file, runner): user_config_file.write_text( """ [general] default_connection = my-cluster [cluster:my-cluster] eu = host1 us = host2 """ ) clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-s", "eu", command]) assert r.exit_code == 0, "The command should succeed." assert "host1" in clients, "Specified cluster should be the only client." @pytest.mark.usefixtures("mock_clients") def test_cluster_with_pattern_config_and_default_sites_are_stripped_of_whitespace( user_config_file, runner ): user_config_file.write_text( """ [general] cluster_hostname_pattern = my-{cluster}-{site}-cluster cluster_pattern_default_sites = site1, site2 """ ) clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-c", "favorite", command]) assert r.exit_code == 0, "The command should succeed." assert ( "my-favorite-site1-cluster" in clients ), "Specified cluster should be among the clients." assert ( "my-favorite-site2-cluster" in clients ), "Specified cluster should be among the clients." @pytest.mark.usefixtures("mock_clients") def test_include_site_should_pass_site(user_config_file, runner): user_config_file.write_text( """ [cluster:my-cluster] eu = host1 us = host2 """ ) clients = list() @esok.command() @per_connection(include_site=True) def sub(client, site): clients.append((client[1]["hosts"][0], site)) r = runner.invoke(esok, ["-c", "my-cluster", "sub"]) assert r.exit_code == 0, "The command should succeed." assert ( "host1", "eu", ) in clients, "Configured site-to-host mapping should be preserved." assert ( "host2", "us", ) in clients, "Configured site-to-host mapping should be preserved." @pytest.mark.usefixtures("mock_clients") def test_developer_boo_boo_is_captured(runner): """This happens if @connection_options and Click's context object is not set up properly, before @per_connection starts. """ @click.group() def root(): pass _, command = _attach_sub_command(root) r = runner.invoke(root, [command]) assert r.exit_code == CLI_ERROR, "Exit code should signal an internal error." assert "Error" in r.output, "There should be error output explaining the issue." @pytest.mark.usefixtures("mock_clients") def test_progress_is_printed_for_several_clients(user_config_file, runner): user_config_file.write_text( """ [cluster:awesome-cluster] eu = 192.168.0.1 us = some.es.cluster.example.com ae = east-asia-host """ ) clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-c", "awesome-cluster", command]) assert r.exit_code == 0, "The command should succeed." assert ( "awesome-cluster - eu:\n" in r.output ), "CLI should output which cluster it is connecting to." assert ( "awesome-cluster - us:\n" in r.output ), "CLI should output which cluster it is connecting to." assert ( "awesome-cluster - ae:\n" in r.output ), "CLI should output which cluster it is connecting to." assert "OK" in r.output, "CLI should indicate that command was successful." @pytest.mark.usefixtures("mock_clients") def test_no_progress_is_printed_for_only_one_client(user_config_file, runner): user_config_file.write_text( """ [cluster:awesome-cluster] eu = 192.168.0.1 """ ) clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-c", "awesome-cluster", command]) assert r.exit_code == 0, "The command should succeed." assert ( r.output == "" ), "There should be no output when only one cluster is being connected to." def test_bad_hostname(runner): clients, command = _attach_sub_command(esok) r = runner.invoke(esok, ["-H", "////////////////////", command]) assert r.exit_code == USER_ERROR assert "Error" in r.output @pytest.mark.usefixtures("mock_clients") def test_tls(runner): clients, command = _attach_sub_command(esok, hostname_only=False) r = runner.invoke(esok, ["-T", command]) assert r.exit_code == 0 _, kwargs = clients[0] assert kwargs["use_ssl"] is True @pytest.mark.usefixtures("mock_clients") def test_ca_certificate(runner, test_app_dir): clients, command = _attach_sub_command(esok, hostname_only=False) ca_file = test_app_dir / "ca.crt" ca_file.touch() r = runner.invoke(esok, ["-C", str(ca_file), command]) assert r.exit_code == 0 _, kwargs = clients[0] assert kwargs["use_ssl"] is True assert kwargs["ssl_context"] == str(ca_file) @pytest.mark.usefixtures("mock_clients") def test_user_password_prompt(runner): clients, command = _attach_sub_command(esok, hostname_only=False) user = "super user" password = "super secret" r = runner.invoke(esok, ["-u", user, command], input=password) assert r.exit_code == 0 _, kwargs = clients[0] assert kwargs["http_auth"] == (user, password) @pytest.mark.usefixtures("mock_clients") def test_timeout(runner): clients, command = _attach_sub_command(esok, hostname_only=False) timeout = 5 r = runner.invoke(esok, ["-t", str(timeout), command]) assert r.exit_code == 0 _, kwargs = clients[0] assert kwargs["timeout"] == timeout def _attach_sub_command(root_command, hostname_only=True): clients = list() @root_command.command() @per_connection() def sub(client): if hostname_only: clients.append(client[1]["hosts"][0]) else: clients.append(client) return clients, sub.name @pytest.fixture() def mock_clients(monkeypatch): monkeypatch.setattr( "esok.config.connection_options.Elasticsearch", lambda *args, **kwargs: (args, kwargs), ) monkeypatch.setattr( "esok.config.connection_options.create_default_context", lambda *args, cafile, **kwargs: cafile, )
31.527205
88
0.676863
d17104d80c7635941723a21e920cf239fb4a4b55
2,475
py
Python
k4MarlinWrapper/examples/runit.py
vvolkl/k4MarlinWrapper
8a9692790606dee2c9e6c4ce976bf8cee43a4943
[ "Apache-2.0" ]
null
null
null
k4MarlinWrapper/examples/runit.py
vvolkl/k4MarlinWrapper
8a9692790606dee2c9e6c4ce976bf8cee43a4943
[ "Apache-2.0" ]
9
2020-07-14T09:13:31.000Z
2020-11-09T10:51:34.000Z
k4MarlinWrapper/examples/runit.py
vvolkl/k4MarlinWrapper
8a9692790606dee2c9e6c4ce976bf8cee43a4943
[ "Apache-2.0" ]
2
2020-03-25T12:50:10.000Z
2020-04-09T12:22:34.000Z
from Gaudi.Configuration import * from Configurables import LcioEvent, EventDataSvc, MarlinProcessorWrapper algList = [] evtsvc = EventDataSvc() read = LcioEvent() read.OutputLevel = DEBUG read.Files = ["../test/inputFiles/muons.slcio"] algList.append(read) END_TAG = "END_TAG" # assign parameters by hand, in future parse Marlin.xml file in python # and convert to list of processors and parameters procA = MarlinProcessorWrapper("AidaProcessor") procA.OutputLevel = DEBUG procA.ProcessorType = "AIDAProcessor" procA.Parameters = {"FileName": ["histograms"], "FileType": ["root"], "Compress": ["1"], "Verbosity": ["DEBUG"], } algList.append(procA) proc0 = MarlinProcessorWrapper("EventNumber") proc0.OutputLevel = DEBUG proc0.ProcessorType = "Statusmonitor" proc0.Parameters = {"HowOften": ["1"], "Verbosity": ["DEBUG"], } algList.append(proc0) proc1 = MarlinProcessorWrapper("InitDD4hep") proc1.OutputLevel = DEBUG proc1.ProcessorType = "InitializeDD4hep" proc1.Parameters = {#"EncodingStringParameter", "GlobalTrackerReadoutID"}, #"DD4hepXMLFile", "/cvmfs/clicdp.cern.ch/iLCSoft/builds/nightly/x86_64-slc6-gcc62-opt/lcgeo/HEAD/CLIC/compact/CLIC_o3_v13/CLIC_o3_v13.xml"}, "DD4hepXMLFile": ["/cvmfs/clicdp.cern.ch/iLCSoft/builds/nightly/x86_64-slc6-gcc62-opt/lcgeo/HEAD/CLIC/compact/CLIC_o2_v04/CLIC_o2_v04.xml"], } algList.append(proc1) digiVxd = MarlinProcessorWrapper("VXDBarrelDigitiser") digiVxd.OutputLevel = DEBUG digiVxd.ProcessorType = "DDPlanarDigiProcessor" digiVxd.Parameters = {"SubDetectorName": ["Vertex"], "IsStrip": ["false"], "ResolutionU": ["0.003", "0.003", "0.003", "0.003", "0.003", "0.003"], "ResolutionV": ["0.003", "0.003", "0.003", "0.003", "0.003", "0.003"], "SimTrackHitCollectionName": ["VertexBarrelCollection"], "SimTrkHitRelCollection": ["VXDTrackerHitRelations"], "TrackerHitCollectionName": ["VXDTrackerHits"], "Verbosity": ["DEBUG"], } algList.append(digiVxd) from Configurables import ApplicationMgr ApplicationMgr( TopAlg = algList, EvtSel = 'NONE', EvtMax = 10, ExtSvc = [evtsvc], OutputLevel=DEBUG )
35.869565
160
0.62101
fe3193b2b0e366f02cb2b5ab3bb4feb39c582e2a
1,844
py
Python
utils/mvsec_utils.py
tub-rip/E-RAFT
2e74afcfe93c93f55cea583381489a24a55351ff
[ "MIT" ]
32
2021-12-03T06:40:42.000Z
2022-03-31T04:59:39.000Z
utils/mvsec_utils.py
tub-rip/E-RAFT
2e74afcfe93c93f55cea583381489a24a55351ff
[ "MIT" ]
7
2021-12-03T02:32:50.000Z
2022-01-13T02:49:24.000Z
utils/mvsec_utils.py
tub-rip/E-RAFT
2e74afcfe93c93f55cea583381489a24a55351ff
[ "MIT" ]
11
2021-12-24T08:04:46.000Z
2022-03-25T07:34:28.000Z
import numpy as np # import cv2 from matplotlib import pyplot as plt import os from utils import filename_templates as TEMPLATES def prop_flow(x_flow, y_flow, x_indices, y_indices, x_mask, y_mask, scale_factor=1.0): flow_x_interp = cv2.remap(x_flow, x_indices, y_indices, cv2.INTER_NEAREST) flow_y_interp = cv2.remap(y_flow, x_indices, y_indices, cv2.INTER_NEAREST) x_mask[flow_x_interp == 0] = False y_mask[flow_y_interp == 0] = False x_indices += flow_x_interp * scale_factor y_indices += flow_y_interp * scale_factor return def estimate_corresponding_gt_flow(path_flow, gt_timestamps, start_time, end_time): # Each gt flow at timestamp gt_timestamps[gt_iter] represents the displacement between # gt_iter and gt_iter+1. # gt_timestamps[gt_iter] -> Timestamp just before start_time gt_iter = np.searchsorted(gt_timestamps, start_time, side='right') - 1 gt_dt = gt_timestamps[gt_iter + 1] - gt_timestamps[gt_iter] # Load Flow just before start_time flow_file = os.path.join(path_flow, TEMPLATES.MVSEC_FLOW_GT_FILE.format(gt_iter)) flow = np.load(flow_file) x_flow = flow[0] y_flow = flow[1] #x_flow = np.squeeze(x_flow_in[gt_iter, ...]) #y_flow = np.squeeze(y_flow_in[gt_iter, ...]) dt = end_time - start_time # No need to propagate if the desired dt is shorter than the time between gt timestamps. if gt_dt > dt: return x_flow * dt / gt_dt, y_flow * dt / gt_dt else: raise Exception
34.792453
93
0.586768
90f31a5ad47f5b86bb7fc6942e0f80aacd95970b
5,070
py
Python
tests/test_case_name_tests.py
mehrdad-shokri/retdec-regression-tests-framework
9c3edcd0a7bc292a0d5b5cbfb4315010c78d3bc3
[ "MIT" ]
21
2017-12-12T20:38:43.000Z
2019-04-14T12:46:10.000Z
tests/test_case_name_tests.py
mehrdad-shokri/retdec-regression-tests-framework
9c3edcd0a7bc292a0d5b5cbfb4315010c78d3bc3
[ "MIT" ]
6
2018-01-06T13:32:23.000Z
2018-09-14T15:09:11.000Z
tests/test_case_name_tests.py
mehrdad-shokri/retdec-regression-tests-framework
9c3edcd0a7bc292a0d5b5cbfb4315010c78d3bc3
[ "MIT" ]
11
2017-12-12T20:38:46.000Z
2018-07-19T03:12:03.000Z
""" Tests for the :mod:`regression_tests.test_case_name_tests` module. """ import unittest from regression_tests.filesystem.file import StandaloneFile from regression_tests.test_case import TestCaseName from regression_tests.tools.tool_arguments import ToolArguments class TestCaseNameTests(unittest.TestCase): """Tests for `TestCaseName`.""" def test_class_name_returns_correct_value(self): name = TestCaseName( 'Test (gcd.exe -a x86)' ) self.assertEqual(name.class_name, 'Test') def test_input_files_returns_correct_value_when_there_is_single_input_file(self): name = TestCaseName( 'Test (gcd.exe -a x86)' ) self.assertEqual(name.input_files, 'gcd.exe') def test_input_files_returns_correct_value_when_there_is_single_input_file_with_dash(self): name = TestCaseName( 'Test (my-file.exe -a x86)' ) self.assertEqual(name.input_files, 'my-file.exe') def test_input_files_returns_correct_value_when_there_are_multiple_input_files(self): name = TestCaseName( 'Test (file1.exe file2.exe -f json)' ) self.assertEqual(name.input_files, 'file1.exe file2.exe') def test_input_files_returns_empty_string_if_there_are_no_input_files(self): name = TestCaseName( 'Test (-v)' ) self.assertEqual(name.input_files, '') def test_tool_args_returns_correct_value_when_only_input_file_is_given(self): name = TestCaseName('Test (gcd.exe)') self.assertEqual(name.tool_args, 'gcd.exe') def test_tool_args_returns_correct_value_when_additional_parameters_are_given(self): name = TestCaseName( 'Test (gcd.exe -a x86)' ) self.assertEqual(name.tool_args, 'gcd.exe -a x86') def test_tool_args_returns_empty_string_when_there_are_no_arguments_or_input_files(self): name = TestCaseName('Test ()') self.assertEqual(name.tool_args, '') def test_short_tool_args_returns_correct_value_when_shorter_than_limit(self): name = TestCaseName( 'Test (gcd.exe -a x86)' ) self.assertEqual(name.short_tool_args(200), 'gcd.exe -a x86') def test_short_tool_args_returns_correct_value_when_longer_than_limit(self): name = TestCaseName( 'Test (gcd.exe -a x86)' ) self.assertEqual(name.short_tool_args(10), 'gcd.ex[..]') def test_args_returns_correct_value_when_only_input_file_is_used(self): name = TestCaseName('Test (gcd.exe)') self.assertEqual(name.args, '') def test_args_returns_correct_value_when_additional_parameters_are_given(self): name = TestCaseName( 'Test (gcd.exe -a x86)' ) self.assertEqual(name.args, '-a x86') def test_args_returns_correct_value_when_there_are_multiple_input_files(self): name = TestCaseName('Test (gcd1.exe gcd2.exe)') self.assertEqual(name.args, '') def test_args_returns_correct_value_when_there_are_multiple_input_files_and_other_arguments(self): name = TestCaseName('Test (gcd1.exe gcd2.exe -f json)') self.assertEqual(name.args, '-f json') def test_args_returns_empty_string_when_there_are_no_arguments_or_input_files(self): name = TestCaseName('Test ()') self.assertEqual(name.args, '') def test_short_args_returns_correct_value_when_shorter_than_limit(self): name = TestCaseName( 'Test (gcd.exe -a x86)' ) self.assertEqual(name.short_args(200), '-a x86') def test_short_args_returns_correct_value_when_longer_than_limit(self): name = TestCaseName( 'Test (gcd.exe -a x86)' ) self.assertEqual(name.short_args(5), '-[..]') def test_with_short_args_returns_correct_value_when_shorter_than_limit(self): name = TestCaseName( 'Test (gcd.exe -a x86)' ) self.assertEqual( name.with_short_args(200), 'Test (gcd.exe -a x86)' ) def test_with_short_args_returns_correct_value_when_longer_than_limit(self): name = TestCaseName( 'Test (gcd.exe -a x86)' ) self.assertEqual(name.with_short_args(4), 'Test (gcd.exe [..])') def test_with_short_args_returns_correct_value_when_only_input_file_is_used(self): name = TestCaseName('Test (gcd.exe)') self.assertEqual(name.with_short_args(10), 'Test (gcd.exe)') def test_with_short_args_returns_correct_value_when_there_are_no_arguments_or_input_files(self): name = TestCaseName('Test ()') self.assertEqual(name.with_short_args(10), 'Test ()') def test_from_tool_arguments_returns_correct_test_case_name(self): name = TestCaseName.from_tool_arguments( test_name='Test', tool_arguments=ToolArguments( input_files=(StandaloneFile('gcd.exe'),), args='-a x86' ) ) self.assertEqual(name, 'Test (gcd.exe -a x86)')
37.007299
102
0.676529
c38f8a137a8ab674b0f9ad3ffa00628b4cf57150
98
py
Python
matizla/helpers/types.py
neotje/matizla
23afbc9ad3972c04e5882e0fed2de1ce0b7f397b
[ "MIT" ]
null
null
null
matizla/helpers/types.py
neotje/matizla
23afbc9ad3972c04e5882e0fed2de1ce0b7f397b
[ "MIT" ]
null
null
null
matizla/helpers/types.py
neotje/matizla
23afbc9ad3972c04e5882e0fed2de1ce0b7f397b
[ "MIT" ]
null
null
null
from webview.window import Window class JSwindow: title: str uuid: str hidden: bool
12.25
33
0.683673
058a08600ba5c6150dc4f30eb208f753758e1148
511
py
Python
parser.py
fabiantheblind/my.feedbin.com.subscriptions
b89dd1fca65559ba03d5e773441ac318b4a4c935
[ "Unlicense" ]
null
null
null
parser.py
fabiantheblind/my.feedbin.com.subscriptions
b89dd1fca65559ba03d5e773441ac318b4a4c935
[ "Unlicense" ]
null
null
null
parser.py
fabiantheblind/my.feedbin.com.subscriptions
b89dd1fca65559ba03d5e773441ac318b4a4c935
[ "Unlicense" ]
null
null
null
#!/usr/bin/python from bs4 import BeautifulSoup import codecs soup = BeautifulSoup(open("subscriptions.xml")) tags = soup.find_all("outline") f = codecs.open("links.md","w","utf-8") for tag in tags: # print tag['htmlurl'] if tag.get('htmlurl') is None: f.write("\n##" + tag.get('title')+ "\n\n") # print "##" + tag.get('title') else: f.write("- ["+tag.get('text')+"]("+tag.get('htmlurl')+") \n") # print "- ["+tag.get('text')+"]("+tag.get('htmlurl')+") " f.close()
31.9375
70
0.55773
13b2d60a4c503c10251704e6d2fff4e105541b37
1,779
py
Python
task13_b.py
mboehn/aoc2017
1bf5302c6e566e8454d3e567cfac38945c8fe955
[ "MIT" ]
null
null
null
task13_b.py
mboehn/aoc2017
1bf5302c6e566e8454d3e567cfac38945c8fe955
[ "MIT" ]
null
null
null
task13_b.py
mboehn/aoc2017
1bf5302c6e566e8454d3e567cfac38945c8fe955
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import math import sys import csv from pprint import pprint import collections import operator import func INPUTFILE = './task13.input' MY_DEPTH = 0 def main(): layers = {} with open(file=INPUTFILE, mode='r') as fileinput: for line in fileinput: layer, depth = line.strip().split(': ') layers[int(layer)] = int(depth) #pprint(layers) delay = 0 last_layer = max(layers) # layer num is the key while True: position = 0 severity = 0 hits = 0 while position <= last_layer: # print("** current position is: {}".format(position)) try: current_depth = layers[position] # print("** this layer has a depth of {}".format(current_depth)) except: current_depth = None # print("** no scanner at this layer") if current_depth: scanner_position = (delay + position) % ((current_depth - 1) * 2) # print("** the scanner at this layer has a position of: {}".format(scanner_position)) if scanner_position == MY_DEPTH: # print("!! i was hit by the scanner! adding to severity...") severity += position * current_depth hits += 1 # print() position += 1 # print("== severity is {}".format(severity)) if hits == 0: print("++ escaped without hits") print("== delay was {}".format(delay)) break # print("-- new round. delay was {}".format(delay)) # print() delay += 1 if __name__ == '__main__': if len(sys.argv) == 2: INPUTFILE = sys.argv[1] main()
25.414286
101
0.525014
a12ee170bc397851916594783db89aebe191102a
12,859
py
Python
examples/generate_with_calibration_v2.py
mikkyhu/transformers
b28abe5c4d221ff2574dde0355c985fd11f1152b
[ "Apache-2.0" ]
null
null
null
examples/generate_with_calibration_v2.py
mikkyhu/transformers
b28abe5c4d221ff2574dde0355c985fd11f1152b
[ "Apache-2.0" ]
null
null
null
examples/generate_with_calibration_v2.py
mikkyhu/transformers
b28abe5c4d221ff2574dde0355c985fd11f1152b
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Conditional text generation with the auto-regressive models of the library (GPT/GPT-2/Transformer-XL/XLNet) """ from __future__ import absolute_import, division, print_function, unicode_literals import argparse import logging from tqdm import trange import torch import torch.nn.functional as F import numpy as np from transformers import GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig from transformers import GPT2LMHeadModel, GPT2Tokenizer from transformers import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer from transformers import XLNetLMHeadModel, XLNetTokenizer from transformers import TransfoXLLMHeadModel, TransfoXLTokenizer logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) MAX_LENGTH = int(10000) # Hardcoded max length to avoid infinite loop ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig)), ()) MODEL_CLASSES = { 'gpt2': (GPT2LMHeadModel, GPT2Tokenizer), 'openai-gpt': (OpenAIGPTLMHeadModel, OpenAIGPTTokenizer), 'xlnet': (XLNetLMHeadModel, XLNetTokenizer), 'transfo-xl': (TransfoXLLMHeadModel, TransfoXLTokenizer), } # Padding text to help Transformer-XL and XLNet with short prompts as proposed by Aman Rusia # in https://github.com/rusiaaman/XLNet-gen#methodology # and https://medium.com/@amanrusia/xlnet-speaks-comparison-to-gpt-2-ea1a4e9ba39e PADDING_TEXT = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos>""" # TODO: setting custom seed not robust. def set_seed(args=None, seed=42): if args is None: np.random.seed(seed) torch.manual_seed(seed) # not robust. will crash if no gpus available. torch.cuda.manual_seed_all(seed) else: np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (vocabulary size) top_k > 0: keep only top k tokens with highest probability (top-k filtering). top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ top_k = min(top_k, logits.size(-1)) # Safety check if top_k > 0: # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p > 0.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold sorted_indices_to_remove = cumulative_probs > top_p # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 indices_to_remove = sorted_indices[sorted_indices_to_remove] logits[indices_to_remove] = filter_value return logits def get_lookahead_entropies(model, context, batch_size, vocab_size, candidates=None, is_xlnet=False, device='cpu'): # in: context (1-dim tensor of t tokens) # out: ents (1-dim tensor of entropies of w_{t+2} given each candidate w_{t+1}) # i.e. ents[w] = H(w_{t+2} | w_{<=t}, w_{t+1}=w) # tries all words by default, but can pass in array of candidates batch = torch.zeros(len(context)+1, dtype=torch.long, device=device) batch[:len(context)] = context batch = batch.unsqueeze(0).repeat(batch_size, 1) # mark uncomputed entropies with -1 for processing later ents = -torch.ones(vocab_size, device=device) # if not passed an array of candidates, try all candidates if candidates is None: candidates = torch.arange(vocab_size, dtype=torch.long, device=device) batch_start = 0 with torch.no_grad(): # loop over all w_{t+1}, chunking into batches while batch_start < len(candidates): batch_end = min(len(candidates), batch_start + batch_size) batch[:batch_end-batch_start, -1] = candidates[batch_start:batch_end] inputs = {'input_ids': batch} if is_xlnet: pass # not equipped to deal with xlnet yet outputs = model(**inputs) # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states) next_token_logits = outputs[0][:, -1, :] next_probs = F.softmax(next_token_logits, dim=-1) next_ents = torch.sum(-next_probs * torch.log(next_probs + 1e-20), dim=-1) ents[batch_start:batch_end] = next_ents[:batch_end-batch_start] batch_start += batch_size return ents def sample_sequence_calibrated(model, length, context, batch_size, vocab_size, alpha=0.0, temperature=1, top_k=0, top_p=0.0, is_xlnet=False, device='cpu'): num_samples = 1 # since entropy measurement is slow, no point parallelizing context = torch.tensor(context, dtype=torch.long, device=device) context = context.unsqueeze(0).repeat(num_samples, 1) generated = context # ents[k,t] = H(w_t | w_<t) for independent generation k ents = torch.zeros((num_samples, length), device=device) with torch.no_grad(): for gen_index in range(length): inputs = {'input_ids': generated} if is_xlnet: pass # not equipped to deal with xlnet yet outputs = model(**inputs) # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states) model_next_logits = outputs[0][:, -1, :] / temperature if top_k == 0: candidates = None # try all words for lookahead else: # try k most likely words candidates = torch.argsort(model_next_logits[0], descending=True)[:top_k] lookahead_ents = get_lookahead_entropies(model, generated[0], batch_size, vocab_size, candidates=candidates, device=device, is_xlnet=is_xlnet).unsqueeze(0) if top_k != 0: # replace uncomputed entropies with average (for centered adjustment) top_average_ent = lookahead_ents[lookahead_ents != -1].mean() lookahead_ents[lookahead_ents != -1] = top_average_ent calibrated_next_logits = model_next_logits - alpha * lookahead_ents next_probs = F.softmax(calibrated_next_logits, dim=-1) next_ents = torch.sum(-next_probs * torch.log(next_probs + 1e-20), dim=-1) ents[:, gen_index] = next_ents # sample from top k # filtered_logits = top_k_top_p_filtering(calibrated_next_logits, top_k=top_k, top_p=top_p) next_token = torch.multinomial(F.softmax(calibrated_next_logits, dim=-1), num_samples=1) generated = torch.cat((generated, next_token), dim=1) return generated, ents def main(): parser = argparse.ArgumentParser() parser.add_argument("--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())) parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS)) parser.add_argument("--prompt", type=str, default="") parser.add_argument("--save_name", type=str, default="test.npz") parser.add_argument("--padding_text", type=str, default="") parser.add_argument("--num_samples", type=int, default=4) parser.add_argument("--length", type=int, default=20) parser.add_argument("--temperature", type=float, default=1.0) parser.add_argument("--top_k", type=int, default=0) parser.add_argument("--top_p", type=float, default=0.0) parser.add_argument("--alpha", type=float, default=0) parser.add_argument("--batch_size", type=int, default=128) parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") args = parser.parse_args() args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() set_seed(args) args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) model = model_class.from_pretrained(args.model_name_or_path) model.to(args.device) model.eval() if args.length < 0 and model.config.max_position_embeddings > 0: args.length = model.config.max_position_embeddings elif 0 < model.config.max_position_embeddings < args.length: args.length = model.config.max_position_embeddings # No generation bigger than model size elif args.length < 0: args.length = MAX_LENGTH # avoid infinite loop print(args) vocab_size = tokenizer.vocab_size print('vocab_size:', vocab_size) while True: raw_text = args.prompt if args.prompt else input("Model prompt >>> ") if args.model_type in ["transfo-xl", "xlnet"]: # Models with memory likes to have a long prompt for short inputs. raw_text = (args.padding_text if args.padding_text else PADDING_TEXT) + raw_text context_tokens = tokenizer.encode(raw_text) avg_ents = torch.zeros((1, args.length), device=args.device) for i in range(args.num_samples): set_seed(seed=i + args.seed) out, ents = sample_sequence_calibrated( model=model, context=context_tokens, length=args.length, batch_size=args.batch_size, vocab_size=vocab_size, alpha=args.alpha, temperature=args.temperature, top_k=args.top_k, top_p=args.top_p, device=args.device, is_xlnet=bool(args.model_type == "xlnet"), ) # show all generations from this batch for j in range(len(out)): seq = out[j, len(context_tokens):].tolist() text = tokenizer.decode(seq, clean_up_tokenization_spaces=True) print(text) ents = ents.mean(axis=0) avg_ents = (avg_ents * i + ents) / (i + 1) np.savez(args.save_name, avg_ents=avg_ents.cpu().numpy()) if args.prompt: break return text if __name__ == '__main__': main()
44.804878
167
0.66887
a6fa4a978219ee9d991bb2361e0fb4a96309e0e9
602
py
Python
testprojectD-rice-d058558a4d4f/migrations/versions/9bd4ada1f824_.py
YuanXMjoy/rice
05e908eea8c9189c3b392d2d57e5653191bf1da9
[ "MIT" ]
null
null
null
testprojectD-rice-d058558a4d4f/migrations/versions/9bd4ada1f824_.py
YuanXMjoy/rice
05e908eea8c9189c3b392d2d57e5653191bf1da9
[ "MIT" ]
null
null
null
testprojectD-rice-d058558a4d4f/migrations/versions/9bd4ada1f824_.py
YuanXMjoy/rice
05e908eea8c9189c3b392d2d57e5653191bf1da9
[ "MIT" ]
null
null
null
"""empty message Revision ID: 9bd4ada1f824 Revises: b809ef5c228c Create Date: 2016-07-09 15:30:22.896575 """ # revision identifiers, used by Alembic. revision = '9bd4ada1f824' down_revision = 'b809ef5c228c' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('orders', sa.Column('time', sa.DateTime(), nullable=True)) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('orders', 'time') ### end Alembic commands ###
22.296296
76
0.69103
788ea3d1f51c25e4fb89d9de87e3c0ec26a9c5af
7,970
gyp
Python
snapshot/snapshot.gyp
dark-richie/crashpad
d573ac113bd5fce5cc970bb5ae76a235a1431a5d
[ "Apache-2.0" ]
575
2015-06-18T23:58:20.000Z
2022-03-23T09:32:39.000Z
snapshot/snapshot.gyp
dark-richie/crashpad
d573ac113bd5fce5cc970bb5ae76a235a1431a5d
[ "Apache-2.0" ]
113
2019-12-14T04:28:04.000Z
2021-09-26T18:40:27.000Z
snapshot/snapshot.gyp
dark-richie/crashpad
d573ac113bd5fce5cc970bb5ae76a235a1431a5d
[ "Apache-2.0" ]
52
2015-07-14T10:40:50.000Z
2022-03-15T01:11:49.000Z
# Copyright 2014 The Crashpad Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. { 'includes': [ '../build/crashpad.gypi', ], 'targets': [ { 'target_name': 'crashpad_snapshot', 'type': 'static_library', 'dependencies': [ '../client/client.gyp:crashpad_client', '../compat/compat.gyp:crashpad_compat', '../third_party/mini_chromium/mini_chromium.gyp:base', '../util/util.gyp:crashpad_util', ], 'include_dirs': [ '..', ], 'sources': [ 'annotation_snapshot.cc', 'annotation_snapshot.h', 'capture_memory.cc', 'capture_memory.h', 'cpu_architecture.h', 'cpu_context.cc', 'cpu_context.h', 'crashpad_info_client_options.cc', 'crashpad_info_client_options.h', 'crashpad_types/crashpad_info_reader.cc', 'crashpad_types/crashpad_info_reader.h', 'crashpad_types/image_annotation_reader.cc', 'crashpad_types/image_annotation_reader.h', 'elf/elf_dynamic_array_reader.cc', 'elf/elf_dynamic_array_reader.h', 'elf/elf_image_reader.cc', 'elf/elf_image_reader.h', 'elf/elf_symbol_table_reader.cc', 'elf/elf_symbol_table_reader.h', 'elf/module_snapshot_elf.cc', 'elf/module_snapshot_elf.h', 'exception_snapshot.h', 'handle_snapshot.cc', 'handle_snapshot.h', 'linux/cpu_context_linux.cc', 'linux/cpu_context_linux.h', 'linux/debug_rendezvous.cc', 'linux/debug_rendezvous.h', 'linux/exception_snapshot_linux.cc', 'linux/exception_snapshot_linux.h', 'linux/process_reader_linux.cc', 'linux/process_reader_linux.h', 'linux/process_snapshot_linux.cc', 'linux/process_snapshot_linux.h', 'linux/signal_context.h', 'linux/system_snapshot_linux.cc', 'linux/system_snapshot_linux.h', 'linux/thread_snapshot_linux.cc', 'linux/thread_snapshot_linux.h', 'mac/cpu_context_mac.cc', 'mac/cpu_context_mac.h', 'mac/exception_snapshot_mac.cc', 'mac/exception_snapshot_mac.h', 'mac/mach_o_image_annotations_reader.cc', 'mac/mach_o_image_annotations_reader.h', 'mac/mach_o_image_reader.cc', 'mac/mach_o_image_reader.h', 'mac/mach_o_image_segment_reader.cc', 'mac/mach_o_image_segment_reader.h', 'mac/mach_o_image_symbol_table_reader.cc', 'mac/mach_o_image_symbol_table_reader.h', 'mac/module_snapshot_mac.cc', 'mac/module_snapshot_mac.h', 'mac/process_reader_mac.cc', 'mac/process_reader_mac.h', 'mac/process_snapshot_mac.cc', 'mac/process_snapshot_mac.h', 'mac/process_types.cc', 'mac/process_types.h', 'mac/process_types/all.proctype', 'mac/process_types/annotation.proctype', 'mac/process_types/crashpad_info.proctype', 'mac/process_types/crashreporterclient.proctype', 'mac/process_types/custom.cc', 'mac/process_types/dyld_images.proctype', 'mac/process_types/flavors.h', 'mac/process_types/internal.h', 'mac/process_types/loader.proctype', 'mac/process_types/nlist.proctype', 'mac/process_types/traits.h', 'mac/system_snapshot_mac.cc', 'mac/system_snapshot_mac.h', 'mac/thread_snapshot_mac.cc', 'mac/thread_snapshot_mac.h', 'memory_snapshot.cc', 'memory_snapshot.h', 'memory_snapshot_generic.h', 'minidump/minidump_annotation_reader.cc', 'minidump/minidump_annotation_reader.h', 'minidump/minidump_context_converter.cc', 'minidump/minidump_context_converter.h', 'minidump/minidump_simple_string_dictionary_reader.cc', 'minidump/minidump_simple_string_dictionary_reader.h', 'minidump/minidump_stream.h', 'minidump/minidump_string_list_reader.cc', 'minidump/minidump_string_list_reader.h', 'minidump/minidump_string_reader.cc', 'minidump/minidump_string_reader.h', 'minidump/exception_snapshot_minidump.cc', 'minidump/exception_snapshot_minidump.h', 'minidump/memory_snapshot_minidump.cc', 'minidump/memory_snapshot_minidump.h', 'minidump/module_snapshot_minidump.cc', 'minidump/module_snapshot_minidump.h', 'minidump/process_snapshot_minidump.cc', 'minidump/process_snapshot_minidump.h', 'minidump/system_snapshot_minidump.cc', 'minidump/system_snapshot_minidump.h', 'minidump/thread_snapshot_minidump.cc', 'minidump/thread_snapshot_minidump.h', 'module_snapshot.h', 'posix/timezone.cc', 'posix/timezone.h', 'process_snapshot.h', 'sanitized/memory_snapshot_sanitized.cc', 'sanitized/memory_snapshot_sanitized.h', 'sanitized/module_snapshot_sanitized.cc', 'sanitized/module_snapshot_sanitized.h', 'sanitized/process_snapshot_sanitized.cc', 'sanitized/process_snapshot_sanitized.h', 'sanitized/sanitization_information.cc', 'sanitized/sanitization_information.h', 'sanitized/thread_snapshot_sanitized.cc', 'sanitized/thread_snapshot_sanitized.h', 'snapshot_constants.h', 'system_snapshot.h', 'thread_snapshot.h', 'unloaded_module_snapshot.cc', 'unloaded_module_snapshot.h', 'win/cpu_context_win.cc', 'win/cpu_context_win.h', 'win/exception_snapshot_win.cc', 'win/exception_snapshot_win.h', 'win/capture_memory_delegate_win.cc', 'win/capture_memory_delegate_win.h', 'win/memory_map_region_snapshot_win.cc', 'win/memory_map_region_snapshot_win.h', 'win/module_snapshot_win.cc', 'win/module_snapshot_win.h', 'win/pe_image_annotations_reader.cc', 'win/pe_image_annotations_reader.h', 'win/pe_image_reader.cc', 'win/pe_image_reader.h', 'win/pe_image_resource_reader.cc', 'win/pe_image_resource_reader.h', 'win/process_reader_win.cc', 'win/process_reader_win.h', 'win/process_snapshot_win.cc', 'win/process_snapshot_win.h', 'win/process_subrange_reader.cc', 'win/process_subrange_reader.h', 'win/system_snapshot_win.cc', 'win/system_snapshot_win.h', 'win/thread_snapshot_win.cc', 'win/thread_snapshot_win.h', 'x86/cpuid_reader.cc', 'x86/cpuid_reader.h', ], 'conditions': [ ['OS=="win"', { 'link_settings': { 'libraries': [ '-lpowrprof.lib', ], }, }], ['OS=="linux" or OS=="android"', { 'sources!': [ 'capture_memory.cc', 'capture_memory.h', ], }, { # else: OS!="linux" and OS!="android" 'sources/': [ ['exclude', '^elf/'], ['exclude', '^crashpad_types/'], ['exclude', '^sanitized/'], ], }], ['target_arch!="ia32" and target_arch!="x64"', { 'sources/': [ ['exclude', '^x86/'], ], }], ], 'target_conditions': [ ['OS=="android"', { 'sources/': [ ['include', '^linux/'], ], }], ], }, ], }
36.728111
74
0.62522
2b992ea2e9f7bff0a2cc0d51a2445922e3dbed5b
31,437
py
Python
lib/enum34/__init__.py
xbmc-catchuptv-au/script.module.pycaption
4f76781c38d50c138dca2344bcceb748764d76da
[ "Apache-2.0" ]
1
2019-05-06T20:09:13.000Z
2019-05-06T20:09:13.000Z
lib/enum34/__init__.py
xbmc-catchuptv-au/script.module.pycaption
4f76781c38d50c138dca2344bcceb748764d76da
[ "Apache-2.0" ]
2
2020-01-24T13:03:23.000Z
2020-02-06T02:21:01.000Z
lib/enum34/__init__.py
xbmc-catchuptv-au/script.module.pycaption
4f76781c38d50c138dca2344bcceb748764d76da
[ "Apache-2.0" ]
2
2019-06-15T15:25:42.000Z
2019-09-11T02:36:48.000Z
"""Python Enumerations""" import sys as _sys __all__ = ['Enum', 'IntEnum', 'unique'] version = 1, 1, 6 pyver = float('%s.%s' % _sys.version_info[:2]) try: any except NameError: def any(iterable): for element in iterable: if element: return True return False try: from collections import OrderedDict except ImportError: OrderedDict = None try: basestring except NameError: # In Python 2 basestring is the ancestor of both str and unicode # in Python 3 it's just str, but was missing in 3.1 basestring = str try: unicode except NameError: # In Python 3 unicode no longer exists (it's just str) unicode = str class _RouteClassAttributeToGetattr(object): """Route attribute access on a class to __getattr__. This is a descriptor, used to define attributes that act differently when accessed through an instance and through a class. Instance access remains normal, but access to an attribute through a class will be routed to the class's __getattr__ method; this is done by raising AttributeError. """ def __init__(self, fget=None): self.fget = fget def __get__(self, instance, ownerclass=None): if instance is None: raise AttributeError() return self.fget(instance) def __set__(self, instance, value): raise AttributeError("can't set attribute") def __delete__(self, instance): raise AttributeError("can't delete attribute") def _is_descriptor(obj): """Returns True if obj is a descriptor, False otherwise.""" return ( hasattr(obj, '__get__') or hasattr(obj, '__set__') or hasattr(obj, '__delete__')) def _is_dunder(name): """Returns True if a __dunder__ name, False otherwise.""" return (name[:2] == name[-2:] == '__' and name[2:3] != '_' and name[-3:-2] != '_' and len(name) > 4) def _is_sunder(name): """Returns True if a _sunder_ name, False otherwise.""" return (name[0] == name[-1] == '_' and name[1:2] != '_' and name[-2:-1] != '_' and len(name) > 2) def _make_class_unpicklable(cls): """Make the given class un-picklable.""" def _break_on_call_reduce(self, protocol=None): raise TypeError('%r cannot be pickled' % self) cls.__reduce_ex__ = _break_on_call_reduce cls.__module__ = '<unknown>' class _EnumDict(dict): """Track enum member order and ensure member names are not reused. EnumMeta will use the names found in self._member_names as the enumeration member names. """ def __init__(self): super(_EnumDict, self).__init__() self._member_names = [] def __setitem__(self, key, value): """Changes anything not dundered or not a descriptor. If a descriptor is added with the same name as an enum member, the name is removed from _member_names (this may leave a hole in the numerical sequence of values). If an enum member name is used twice, an error is raised; duplicate values are not checked for. Single underscore (sunder) names are reserved. Note: in 3.x __order__ is simply discarded as a not necessary piece leftover from 2.x """ if pyver >= 3.0 and key in ('_order_', '__order__'): return elif key == '__order__': key = '_order_' if _is_sunder(key): if key != '_order_': raise ValueError('_names_ are reserved for future Enum use') elif _is_dunder(key): pass elif key in self._member_names: # descriptor overwriting an enum? raise TypeError('Attempted to reuse key: %r' % key) elif not _is_descriptor(value): if key in self: # enum overwriting a descriptor? raise TypeError('Key already defined as: %r' % self[key]) self._member_names.append(key) super(_EnumDict, self).__setitem__(key, value) # Dummy value for Enum as EnumMeta explicity checks for it, but of course until # EnumMeta finishes running the first time the Enum class doesn't exist. This # is also why there are checks in EnumMeta like `if Enum is not None` Enum = None class EnumMeta(type): """Metaclass for Enum""" @classmethod def __prepare__(metacls, cls, bases): return _EnumDict() def __new__(metacls, cls, bases, classdict): # an Enum class is final once enumeration items have been defined; it # cannot be mixed with other types (int, float, etc.) if it has an # inherited __new__ unless a new __new__ is defined (or the resulting # class will fail). if type(classdict) is dict: original_dict = classdict classdict = _EnumDict() for k, v in original_dict.items(): classdict[k] = v member_type, first_enum = metacls._get_mixins_(bases) __new__, save_new, use_args = metacls._find_new_(classdict, member_type, first_enum) # save enum items into separate mapping so they don't get baked into # the new class members = dict((k, classdict[k]) for k in classdict._member_names) for name in classdict._member_names: del classdict[name] # py2 support for definition order _order_ = classdict.get('_order_') if _order_ is None: if pyver < 3.0: try: _order_ = [name for (name, value) in sorted(members.items(), key=lambda item: item[1])] except TypeError: _order_ = [name for name in sorted(members.keys())] else: _order_ = classdict._member_names else: del classdict['_order_'] if pyver < 3.0: _order_ = _order_.replace(',', ' ').split() aliases = [name for name in members if name not in _order_] _order_ += aliases # check for illegal enum names (any others?) invalid_names = set(members) & set(['mro']) if invalid_names: raise ValueError('Invalid enum member name(s): %s' % ( ', '.join(invalid_names),)) # save attributes from super classes so we know if we can take # the shortcut of storing members in the class dict base_attributes = set([a for b in bases for a in b.__dict__]) # create our new Enum type enum_class = super(EnumMeta, metacls).__new__(metacls, cls, bases, classdict) enum_class._member_names_ = [] # names in random order if OrderedDict is not None: enum_class._member_map_ = OrderedDict() else: enum_class._member_map_ = {} # name->value map enum_class._member_type_ = member_type # Reverse value->name map for hashable values. enum_class._value2member_map_ = {} # instantiate them, checking for duplicates as we go # we instantiate first instead of checking for duplicates first in case # a custom __new__ is doing something funky with the values -- such as # auto-numbering ;) if __new__ is None: __new__ = enum_class.__new__ for member_name in _order_: value = members[member_name] if not isinstance(value, tuple): args = (value,) else: args = value if member_type is tuple: # special case for tuple enums args = (args,) # wrap it one more time if not use_args or not args: enum_member = __new__(enum_class) if not hasattr(enum_member, '_value_'): enum_member._value_ = value else: enum_member = __new__(enum_class, *args) if not hasattr(enum_member, '_value_'): enum_member._value_ = member_type(*args) value = enum_member._value_ enum_member._name_ = member_name enum_member.__objclass__ = enum_class enum_member.__init__(*args) # If another member with the same value was already defined, the # new member becomes an alias to the existing one. for name, canonical_member in enum_class._member_map_.items(): if canonical_member.value == enum_member._value_: enum_member = canonical_member break else: # Aliases don't appear in member names (only in __members__). enum_class._member_names_.append(member_name) # performance boost for any member that would not shadow # a DynamicClassAttribute (aka _RouteClassAttributeToGetattr) if member_name not in base_attributes: setattr(enum_class, member_name, enum_member) # now add to _member_map_ enum_class._member_map_[member_name] = enum_member try: # This may fail if value is not hashable. We can't add the # value to the map, and by-value lookups for this value will be # linear. enum_class._value2member_map_[value] = enum_member except TypeError: pass # If a custom type is mixed into the Enum, and it does not know how # to pickle itself, pickle.dumps will succeed but pickle.loads will # fail. Rather than have the error show up later and possibly far # from the source, sabotage the pickle protocol for this class so # that pickle.dumps also fails. # # However, if the new class implements its own __reduce_ex__, do not # sabotage -- it's on them to make sure it works correctly. We use # __reduce_ex__ instead of any of the others as it is preferred by # pickle over __reduce__, and it handles all pickle protocols. unpicklable = False if '__reduce_ex__' not in classdict: if member_type is not object: methods = ('__getnewargs_ex__', '__getnewargs__', '__reduce_ex__', '__reduce__') if not any(m in member_type.__dict__ for m in methods): _make_class_unpicklable(enum_class) unpicklable = True # double check that repr and friends are not the mixin's or various # things break (such as pickle) for name in ('__repr__', '__str__', '__format__', '__reduce_ex__'): class_method = getattr(enum_class, name) enum_method = getattr(first_enum, name, None) if name not in classdict and class_method is not enum_method: if name == '__reduce_ex__' and unpicklable: continue setattr(enum_class, name, enum_method) # method resolution and int's are not playing nice # Python's less than 2.6 use __cmp__ if pyver < 2.6: if issubclass(enum_class, int): setattr(enum_class, '__cmp__', getattr(int, '__cmp__')) elif pyver < 3.0: if issubclass(enum_class, int): for method in ( '__le__', '__lt__', '__gt__', '__ge__', '__eq__', '__ne__', '__hash__', ): setattr(enum_class, method, getattr(int, method)) # replace any other __new__ with our own (as long as Enum is not None, # anyway) -- again, this is to support pickle if Enum is not None: # if the user defined their own __new__, save it before it gets # clobbered in case they subclass later if save_new: setattr(enum_class, '__member_new__', enum_class.__dict__['__new__']) setattr(enum_class, '__new__', Enum.__dict__['__new__']) return enum_class def __bool__(cls): """ classes/types should always be True. """ return True def __call__(cls, value, names=None, module=None, type=None, start=1): """Either returns an existing member, or creates a new enum class. This method is used both when an enum class is given a value to match to an enumeration member (i.e. Color(3)) and for the functional API (i.e. Color = Enum('Color', names='red green blue')). When used for the functional API: `module`, if set, will be stored in the new class' __module__ attribute; `type`, if set, will be mixed in as the first base class. Note: if `module` is not set this routine will attempt to discover the calling module by walking the frame stack; if this is unsuccessful the resulting class will not be pickleable. """ if names is None: # simple value lookup return cls.__new__(cls, value) # otherwise, functional API: we're creating a new Enum type return cls._create_(value, names, module=module, type=type, start=start) def __contains__(cls, member): return isinstance(member, cls) and member.name in cls._member_map_ def __delattr__(cls, attr): # nicer error message when someone tries to delete an attribute # (see issue19025). if attr in cls._member_map_: raise AttributeError( "%s: cannot delete Enum member." % cls.__name__) super(EnumMeta, cls).__delattr__(attr) def __dir__(self): return (['__class__', '__doc__', '__members__', '__module__'] + self._member_names_) @property def __members__(cls): """Returns a mapping of member name->value. This mapping lists all enum members, including aliases. Note that this is a copy of the internal mapping. """ return cls._member_map_.copy() def __getattr__(cls, name): """Return the enum member matching `name` We use __getattr__ instead of descriptors or inserting into the enum class' __dict__ in order to support `name` and `value` being both properties for enum members (which live in the class' __dict__) and enum members themselves. """ if _is_dunder(name): raise AttributeError(name) try: return cls._member_map_[name] except KeyError: raise AttributeError(name) def __getitem__(cls, name): return cls._member_map_[name] def __iter__(cls): return (cls._member_map_[name] for name in cls._member_names_) def __reversed__(cls): return (cls._member_map_[name] for name in reversed(cls._member_names_)) def __len__(cls): return len(cls._member_names_) __nonzero__ = __bool__ def __repr__(cls): return "<enum %r>" % cls.__name__ def __setattr__(cls, name, value): """Block attempts to reassign Enum members. A simple assignment to the class namespace only changes one of the several possible ways to get an Enum member from the Enum class, resulting in an inconsistent Enumeration. """ member_map = cls.__dict__.get('_member_map_', {}) if name in member_map: raise AttributeError('Cannot reassign members.') super(EnumMeta, cls).__setattr__(name, value) def _create_(cls, class_name, names=None, module=None, type=None, start=1): """Convenience method to create a new Enum class. `names` can be: * A string containing member names, separated either with spaces or commas. Values are auto-numbered from 1. * An iterable of member names. Values are auto-numbered from 1. * An iterable of (member name, value) pairs. * A mapping of member name -> value. """ if pyver < 3.0: # if class_name is unicode, attempt a conversion to ASCII if isinstance(class_name, unicode): try: class_name = class_name.encode('ascii') except UnicodeEncodeError: raise TypeError( '%r is not representable in ASCII' % class_name) metacls = cls.__class__ if type is None: bases = (cls,) else: bases = (type, cls) classdict = metacls.__prepare__(class_name, bases) _order_ = [] # special processing needed for names? if isinstance(names, basestring): names = names.replace(',', ' ').split() if isinstance(names, (tuple, list)) and isinstance(names[0], basestring): names = [(e, i + start) for (i, e) in enumerate(names)] # Here, names is either an iterable of (name, value) or a mapping. item = None # in case names is empty for item in names: if isinstance(item, basestring): member_name, member_value = item, names[item] else: member_name, member_value = item classdict[member_name] = member_value _order_.append(member_name) # only set _order_ in classdict if name/value was not from a mapping if not isinstance(item, basestring): classdict['_order_'] = ' '.join(_order_) enum_class = metacls.__new__(metacls, class_name, bases, classdict) # TODO: replace the frame hack if a blessed way to know the calling # module is ever developed if module is None: try: module = _sys._getframe(2).f_globals['__name__'] except (AttributeError, ValueError): pass if module is None: _make_class_unpicklable(enum_class) else: enum_class.__module__ = module return enum_class @staticmethod def _get_mixins_(bases): """Returns the type for creating enum members, and the first inherited enum class. bases: the tuple of bases that was given to __new__ """ if not bases or Enum is None: return object, Enum # double check that we are not subclassing a class with existing # enumeration members; while we're at it, see if any other data # type has been mixed in so we can use the correct __new__ member_type = first_enum = None for base in bases: if (base is not Enum and issubclass(base, Enum) and base._member_names_): raise TypeError("Cannot extend enumerations") # base is now the last base in bases if not issubclass(base, Enum): raise TypeError("new enumerations must be created as " "`ClassName([mixin_type,] enum_type)`") # get correct mix-in type (either mix-in type of Enum subclass, or # first base if last base is Enum) if not issubclass(bases[0], Enum): member_type = bases[0] # first data type first_enum = bases[-1] # enum type else: for base in bases[0].__mro__: # most common: (IntEnum, int, Enum, object) # possible: (<Enum 'AutoIntEnum'>, <Enum 'IntEnum'>, # <class 'int'>, <Enum 'Enum'>, # <class 'object'>) if issubclass(base, Enum): if first_enum is None: first_enum = base else: if member_type is None: member_type = base return member_type, first_enum if pyver < 3.0: @staticmethod def _find_new_(classdict, member_type, first_enum): """Returns the __new__ to be used for creating the enum members. classdict: the class dictionary given to __new__ member_type: the data type whose __new__ will be used by default first_enum: enumeration to check for an overriding __new__ """ # now find the correct __new__, checking to see of one was defined # by the user; also check earlier enum classes in case a __new__ # was # saved as __member_new__ __new__ = classdict.get('__new__', None) if __new__: return None, True, True # __new__, save_new, use_args N__new__ = getattr(None, '__new__') O__new__ = getattr(object, '__new__') if Enum is None: E__new__ = N__new__ else: E__new__ = Enum.__dict__['__new__'] # check all possibles for __member_new__ before falling back to # __new__ for method in ('__member_new__', '__new__'): for possible in (member_type, first_enum): try: target = possible.__dict__[method] except (AttributeError, KeyError): target = getattr(possible, method, None) if target not in [ None, N__new__, O__new__, E__new__, ]: if method == '__member_new__': classdict['__new__'] = target return None, False, True if isinstance(target, staticmethod): target = target.__get__(member_type) __new__ = target break if __new__ is not None: break else: __new__ = object.__new__ # if a non-object.__new__ is used then whatever value/tuple was # assigned to the enum member name will be passed to __new__ and # to the # new enum member's __init__ if __new__ is object.__new__: use_args = False else: use_args = True return __new__, False, use_args else: @staticmethod def _find_new_(classdict, member_type, first_enum): """Returns the __new__ to be used for creating the enum members. classdict: the class dictionary given to __new__ member_type: the data type whose __new__ will be used by default first_enum: enumeration to check for an overriding __new__ """ # now find the correct __new__, checking to see of one was defined # by the user; also check earlier enum classes in case a __new__ # was # saved as __member_new__ __new__ = classdict.get('__new__', None) # should __new__ be saved as __member_new__ later? save_new = __new__ is not None if __new__ is None: # check all possibles for __member_new__ before falling back to # __new__ for method in ('__member_new__', '__new__'): for possible in (member_type, first_enum): target = getattr(possible, method, None) if target not in ( None, None.__new__, object.__new__, Enum.__new__, ): __new__ = target break if __new__ is not None: break else: __new__ = object.__new__ # if a non-object.__new__ is used then whatever value/tuple was # assigned to the enum member name will be passed to __new__ and # to the # new enum member's __init__ if __new__ is object.__new__: use_args = False else: use_args = True return __new__, save_new, use_args ######################################################## # In order to support Python 2 and 3 with a single # codebase we have to create the Enum methods separately # and then use the `type(name, bases, dict)` method to # create the class. ######################################################## temp_enum_dict = {} temp_enum_dict[ '__doc__'] = "Generic enumeration.\n\n Derive from this class to " \ "define new enumerations.\n\n" def __new__(cls, value): # all enum instances are actually created during class construction # without calling this method; this method is called by the metaclass' # __call__ (i.e. Color(3) ), and by pickle if type(value) is cls: # For lookups like Color(Color.red) value = value.value # return value # by-value search for a matching enum member # see if it's in the reverse mapping (for hashable values) try: if value in cls._value2member_map_: return cls._value2member_map_[value] except TypeError: # not there, now do long search -- O(n) behavior for member in cls._member_map_.values(): if member.value == value: return member raise ValueError("%s is not a valid %s" % (value, cls.__name__)) temp_enum_dict['__new__'] = __new__ del __new__ def __repr__(self): return "<%s.%s: %r>" % ( self.__class__.__name__, self._name_, self._value_) temp_enum_dict['__repr__'] = __repr__ del __repr__ def __str__(self): return "%s.%s" % (self.__class__.__name__, self._name_) temp_enum_dict['__str__'] = __str__ del __str__ if pyver >= 3.0: def __dir__(self): added_behavior = [ m for cls in self.__class__.mro() for m in cls.__dict__ if m[0] != '_' and m not in self._member_map_ ] return (['__class__', '__doc__', '__module__', ] + added_behavior) temp_enum_dict['__dir__'] = __dir__ del __dir__ def __format__(self, format_spec): # mixed-in Enums should use the mixed-in type's __format__, otherwise # we can get strange results with the Enum name showing up instead of # the value # pure Enum branch if self._member_type_ is object: cls = str val = str(self) # mix-in branch else: cls = self._member_type_ val = self.value return cls.__format__(val, format_spec) temp_enum_dict['__format__'] = __format__ del __format__ #################################### # Python's less than 2.6 use __cmp__ if pyver < 2.6: def __cmp__(self, other): if type(other) is self.__class__: if self is other: return 0 return -1 return NotImplemented raise TypeError("unorderable types: %s() and %s()" % ( self.__class__.__name__, other.__class__.__name__)) temp_enum_dict['__cmp__'] = __cmp__ del __cmp__ else: def __le__(self, other): raise TypeError("unorderable types: %s() <= %s()" % ( self.__class__.__name__, other.__class__.__name__)) temp_enum_dict['__le__'] = __le__ del __le__ def __lt__(self, other): raise TypeError("unorderable types: %s() < %s()" % ( self.__class__.__name__, other.__class__.__name__)) temp_enum_dict['__lt__'] = __lt__ del __lt__ def __ge__(self, other): raise TypeError("unorderable types: %s() >= %s()" % ( self.__class__.__name__, other.__class__.__name__)) temp_enum_dict['__ge__'] = __ge__ del __ge__ def __gt__(self, other): raise TypeError("unorderable types: %s() > %s()" % ( self.__class__.__name__, other.__class__.__name__)) temp_enum_dict['__gt__'] = __gt__ del __gt__ def __eq__(self, other): if type(other) is self.__class__: return self is other return NotImplemented temp_enum_dict['__eq__'] = __eq__ del __eq__ def __ne__(self, other): if type(other) is self.__class__: return self is not other return NotImplemented temp_enum_dict['__ne__'] = __ne__ del __ne__ def __hash__(self): return hash(self._name_) temp_enum_dict['__hash__'] = __hash__ del __hash__ def __reduce_ex__(self, proto): return self.__class__, (self._value_,) temp_enum_dict['__reduce_ex__'] = __reduce_ex__ del __reduce_ex__ # _RouteClassAttributeToGetattr is used to provide access to the `name` # and `value` properties of enum members while keeping some measure of # protection from modification, while still allowing for an enumeration # to have members named `name` and `value`. This works because enumeration # members are not set directly on the enum class -- __getattr__ is # used to look them up. @_RouteClassAttributeToGetattr def name(self): return self._name_ temp_enum_dict['name'] = name del name @_RouteClassAttributeToGetattr def value(self): return self._value_ temp_enum_dict['value'] = value del value @classmethod def _convert(cls, name, module, filter, source=None): """ Create a new Enum subclass that replaces a collection of global constants """ # convert all constants from source (or module) that pass filter() to # a new Enum called name, and export the enum and its members back to # module; # also, replace the __reduce_ex__ method so unpickling works in # previous Python versions module_globals = vars(_sys.modules[module]) if source: source = vars(source) else: source = module_globals members = dict( (name, value) for name, value in source.items() if filter(name)) cls = cls(name, members, module=module) cls.__reduce_ex__ = _reduce_ex_by_name module_globals.update(cls.__members__) module_globals[name] = cls return cls temp_enum_dict['_convert'] = _convert del _convert Enum = EnumMeta('Enum', (object,), temp_enum_dict) del temp_enum_dict # Enum has now been created ########################### class IntEnum(int, Enum): """Enum where members are also (and must be) ints""" def _reduce_ex_by_name(self, proto): return self.name def unique(enumeration): """Class decorator that ensures only unique members exist in an enumeration.""" duplicates = [] for name, member in enumeration.__members__.items(): if name != member.name: duplicates.append((name, member.name)) if duplicates: duplicate_names = ', '.join( ["%s -> %s" % (alias, name) for (alias, name) in duplicates] ) raise ValueError('duplicate names found in %r: %s' % (enumeration, duplicate_names) ) return enumeration
34.93
79
0.582689
5d8387d3c8a8a5ad1875e4abdb6e104ee9304d43
1,868
py
Python
api/tests/unit/segments/test_conditions.py
SolidStateGroup/Bullet-Train-API
ea47ccbdadf665a806ae4e0eff6ad1a2f1b0ba19
[ "BSD-3-Clause" ]
126
2019-12-13T18:41:43.000Z
2020-11-10T13:33:55.000Z
api/tests/unit/segments/test_conditions.py
SolidStateGroup/Bullet-Train-API
ea47ccbdadf665a806ae4e0eff6ad1a2f1b0ba19
[ "BSD-3-Clause" ]
30
2019-12-12T16:52:01.000Z
2020-11-09T18:55:29.000Z
api/tests/unit/segments/test_conditions.py
SolidStateGroup/Bullet-Train-API
ea47ccbdadf665a806ae4e0eff6ad1a2f1b0ba19
[ "BSD-3-Clause" ]
20
2020-02-14T21:55:36.000Z
2020-11-03T22:29:03.000Z
import pytest from environments.identities.traits.models import Trait from segments.models import ( EQUAL, GREATER_THAN, GREATER_THAN_INCLUSIVE, LESS_THAN, LESS_THAN_INCLUSIVE, NOT_EQUAL, Condition, ) @pytest.mark.parametrize( "operator, trait_value, condition_value, result", [ (EQUAL, "1.0.0", "1.0.0:semver", True), (EQUAL, "1.0.0", "1.0.1:semver", False), (NOT_EQUAL, "1.0.0", "1.0.0:semver", False), (NOT_EQUAL, "1.0.0", "1.0.1:semver", True), (GREATER_THAN, "1.0.1", "1.0.0:semver", True), (GREATER_THAN, "1.0.0", "1.0.0-beta:semver", True), (GREATER_THAN, "1.0.1", "1.2.0:semver", False), (GREATER_THAN, "1.0.1", "1.0.1:semver", False), (GREATER_THAN, "1.2.4", "1.2.3-pre.2+build.4:semver", True), (LESS_THAN, "1.0.0", "1.0.1:semver", True), (LESS_THAN, "1.0.0", "1.0.0:semver", False), (LESS_THAN, "1.0.1", "1.0.0:semver", False), (LESS_THAN, "1.0.0-rc.2", "1.0.0-rc.3:semver", True), (GREATER_THAN_INCLUSIVE, "1.0.1", "1.0.0:semver", True), (GREATER_THAN_INCLUSIVE, "1.0.1", "1.2.0:semver", False), (GREATER_THAN_INCLUSIVE, "1.0.1", "1.0.1:semver", True), (LESS_THAN_INCLUSIVE, "1.0.0", "1.0.1:semver", True), (LESS_THAN_INCLUSIVE, "1.0.0", "1.0.0:semver", True), (LESS_THAN_INCLUSIVE, "1.0.1", "1.0.0:semver", False), ], ) def test_does_identity_match_for_semver_values( identity, operator, trait_value, condition_value, result ): # Given condition = Condition(operator=operator, property="version", value=condition_value) traits = [ Trait( trait_key="version", string_value=trait_value, identity=identity, ) ] # Then assert condition.does_identity_match(identity, traits) is result
35.245283
87
0.590471
550d1c9604a9e68abc2d6dbb15cd0cb0b1868811
3,133
py
Python
30_psycopg2_for_pgsql_interfacing.py
nagasudhirpulla/python_wrldc_training
c3a3216c0a11e1dac03d4637b4b59b28f1bb83c6
[ "MIT" ]
null
null
null
30_psycopg2_for_pgsql_interfacing.py
nagasudhirpulla/python_wrldc_training
c3a3216c0a11e1dac03d4637b4b59b28f1bb83c6
[ "MIT" ]
null
null
null
30_psycopg2_for_pgsql_interfacing.py
nagasudhirpulla/python_wrldc_training
c3a3216c0a11e1dac03d4637b4b59b28f1bb83c6
[ "MIT" ]
2
2020-09-30T16:32:18.000Z
2020-10-23T01:13:51.000Z
''' Using psycopg2 module to interface with a postgreSQL database pip install psycopg2 ''' # %% # import psycopg2 module import pandas as pd import datetime as dt import psycopg2 # get these variables from some config mechanism so that connection is not exposed and hardcoded hostStr = 'x.x.x.x' dbStr = 'hrd_training' uNameStr = 'hrd_training' dbPassStr = 'hrd#456' # %% # push data into a postgreSQL database # create a connection object conn = psycopg2.connect(host=hostStr, dbname=dbStr, user=uNameStr, password=dbPassStr) # get a cursor object from the connection cur = conn.cursor() # create sql for insertion dataInsertionTuples = [ ('util1', '2020-07-01 00:00:00.000', 25, 'urs', 102.5), ('util2', '2020-07-02 00:00:00.000', 26, 'sced', 50.7) ] dataText = ','.join(cur.mogrify('(%s,%s,%s,%s,%s)', row).decode( "utf-8") for row in dataInsertionTuples) sqlTxt = 'INSERT INTO public.schedules(\ sch_utility, sch_date, sch_block, sch_type, sch_val)\ VALUES {0} on conflict (sch_utility, sch_date, sch_block, sch_type) \ do update set sch_val = excluded.sch_val'.format(dataText) # execute the sql to perform insertion cur.execute(sqlTxt) # commit the changes conn.commit() # closing database connection and cursor if(conn): # close the cursor object to avoid memory leaks cur.close() # close the connection object also conn.close() # %% # extract data from postgreSQL database try: # get the connection object conn = psycopg2.connect(host=hostStr, dbname=dbStr, user=uNameStr, password=dbPassStr) # get the cursor from connection cur = conn.cursor() # create the query postgreSQL_select_Query = "select sch_date + (15 * (sch_block-1) * interval '1 minute') as sch_time, \ sch_val from public.schedules where sch_utility=%s and sch_type=%s \ and sch_date between %s and %s order by sch_date, sch_block" # execute the query cur.execute(postgreSQL_select_Query, ('util1', 'urs', dt.datetime(2020, 7, 1), dt.datetime(2020, 7, 1))) # fetch all the records from cursor records = cur.fetchall() # get the column names returned from the query colNames = [row[0] for row in cur.description] # create a dataframe from the fetched records records = pd.DataFrame.from_records(records, columns=colNames) # ============================================================================= # iterate through all the fetched records # for rowIter in range(records.shape[0]): # print("datetime = ", records['sch_time'].iloc[rowIter]) # print("value = ", records['sch_val'].iloc[rowIter]) # ============================================================================= except (Exception, psycopg2.Error) as error: print("Error while fetching data from PostgreSQL", error) records = 0 finally: # closing database connection and cursor if(conn): # close the cursor object to avoid memory leaks cur.close() # close the connection object also conn.close() # %%
32.298969
106
0.638047
e97687de3427378489a91eaa65da3b8f5bee7b3b
15,952
py
Python
pandas/core/arrays/_mixins.py
mujtahidalam/pandas
526468c8fe6fc5157aaf2fce327c5ab2a3350f49
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause" ]
1
2021-04-28T05:15:42.000Z
2021-04-28T05:15:42.000Z
pandas/core/arrays/_mixins.py
mujtahidalam/pandas
526468c8fe6fc5157aaf2fce327c5ab2a3350f49
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
pandas/core/arrays/_mixins.py
mujtahidalam/pandas
526468c8fe6fc5157aaf2fce327c5ab2a3350f49
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
from __future__ import annotations from functools import wraps from typing import ( Any, Sequence, TypeVar, cast, ) import numpy as np from pandas._libs import lib from pandas._typing import ( F, PositionalIndexer2D, Shape, type_t, ) from pandas.compat.numpy import function as nv from pandas.errors import AbstractMethodError from pandas.util._decorators import ( cache_readonly, doc, ) from pandas.util._validators import ( validate_bool_kwarg, validate_fillna_kwargs, ) from pandas.core.dtypes.common import is_dtype_equal from pandas.core.dtypes.dtypes import ExtensionDtype from pandas.core.dtypes.missing import array_equivalent from pandas.core import missing from pandas.core.algorithms import ( take, unique, value_counts, ) from pandas.core.array_algos.transforms import shift from pandas.core.arrays.base import ExtensionArray from pandas.core.construction import extract_array from pandas.core.indexers import check_array_indexer from pandas.core.sorting import nargminmax NDArrayBackedExtensionArrayT = TypeVar( "NDArrayBackedExtensionArrayT", bound="NDArrayBackedExtensionArray" ) def ravel_compat(meth: F) -> F: """ Decorator to ravel a 2D array before passing it to a cython operation, then reshape the result to our own shape. """ @wraps(meth) def method(self, *args, **kwargs): if self.ndim == 1: return meth(self, *args, **kwargs) flags = self._ndarray.flags flat = self.ravel("K") result = meth(flat, *args, **kwargs) order = "F" if flags.f_contiguous else "C" return result.reshape(self.shape, order=order) return cast(F, method) class NDArrayBackedExtensionArray(ExtensionArray): """ ExtensionArray that is backed by a single NumPy ndarray. """ _ndarray: np.ndarray def _from_backing_data( self: NDArrayBackedExtensionArrayT, arr: np.ndarray ) -> NDArrayBackedExtensionArrayT: """ Construct a new ExtensionArray `new_array` with `arr` as its _ndarray. This should round-trip: self == self._from_backing_data(self._ndarray) """ raise AbstractMethodError(self) def _box_func(self, x): """ Wrap numpy type in our dtype.type if necessary. """ return x def _validate_scalar(self, value): # used by NDArrayBackedExtensionIndex.insert raise AbstractMethodError(self) # ------------------------------------------------------------------------ def take( self: NDArrayBackedExtensionArrayT, indices: Sequence[int], *, allow_fill: bool = False, fill_value: Any = None, axis: int = 0, ) -> NDArrayBackedExtensionArrayT: if allow_fill: fill_value = self._validate_fill_value(fill_value) new_data = take( self._ndarray, # error: Argument 2 to "take" has incompatible type "Sequence[int]"; # expected "ndarray" indices, # type: ignore[arg-type] allow_fill=allow_fill, fill_value=fill_value, axis=axis, ) return self._from_backing_data(new_data) def _validate_fill_value(self, fill_value): """ If a fill_value is passed to `take` convert it to a representation suitable for self._ndarray, raising TypeError if this is not possible. Parameters ---------- fill_value : object Returns ------- fill_value : native representation Raises ------ TypeError """ raise AbstractMethodError(self) # ------------------------------------------------------------------------ # TODO: make this a cache_readonly; for that to work we need to remove # the _index_data kludge in libreduction @property def shape(self) -> Shape: return self._ndarray.shape def __len__(self) -> int: return self.shape[0] @cache_readonly def ndim(self) -> int: return len(self.shape) @cache_readonly def size(self) -> int: return self._ndarray.size @cache_readonly def nbytes(self) -> int: return self._ndarray.nbytes def reshape( self: NDArrayBackedExtensionArrayT, *args, **kwargs ) -> NDArrayBackedExtensionArrayT: new_data = self._ndarray.reshape(*args, **kwargs) return self._from_backing_data(new_data) def ravel( self: NDArrayBackedExtensionArrayT, *args, **kwargs ) -> NDArrayBackedExtensionArrayT: new_data = self._ndarray.ravel(*args, **kwargs) return self._from_backing_data(new_data) @property def T(self: NDArrayBackedExtensionArrayT) -> NDArrayBackedExtensionArrayT: new_data = self._ndarray.T return self._from_backing_data(new_data) # ------------------------------------------------------------------------ def equals(self, other) -> bool: if type(self) is not type(other): return False if not is_dtype_equal(self.dtype, other.dtype): return False return bool(array_equivalent(self._ndarray, other._ndarray)) def _values_for_argsort(self) -> np.ndarray: return self._ndarray # Signature of "argmin" incompatible with supertype "ExtensionArray" def argmin(self, axis: int = 0, skipna: bool = True): # type:ignore[override] # override base class by adding axis keyword validate_bool_kwarg(skipna, "skipna") if not skipna and self.isna().any(): raise NotImplementedError return nargminmax(self, "argmin", axis=axis) # Signature of "argmax" incompatible with supertype "ExtensionArray" def argmax(self, axis: int = 0, skipna: bool = True): # type:ignore[override] # override base class by adding axis keyword validate_bool_kwarg(skipna, "skipna") if not skipna and self.isna().any(): raise NotImplementedError return nargminmax(self, "argmax", axis=axis) def copy(self: NDArrayBackedExtensionArrayT) -> NDArrayBackedExtensionArrayT: new_data = self._ndarray.copy() return self._from_backing_data(new_data) def repeat( self: NDArrayBackedExtensionArrayT, repeats, axis=None ) -> NDArrayBackedExtensionArrayT: """ Repeat elements of an array. See Also -------- numpy.ndarray.repeat """ nv.validate_repeat((), {"axis": axis}) new_data = self._ndarray.repeat(repeats, axis=axis) return self._from_backing_data(new_data) def unique(self: NDArrayBackedExtensionArrayT) -> NDArrayBackedExtensionArrayT: new_data = unique(self._ndarray) return self._from_backing_data(new_data) @classmethod @doc(ExtensionArray._concat_same_type) def _concat_same_type( cls: type[NDArrayBackedExtensionArrayT], to_concat: Sequence[NDArrayBackedExtensionArrayT], axis: int = 0, ) -> NDArrayBackedExtensionArrayT: dtypes = {str(x.dtype) for x in to_concat} if len(dtypes) != 1: raise ValueError("to_concat must have the same dtype (tz)", dtypes) new_values = [x._ndarray for x in to_concat] new_values = np.concatenate(new_values, axis=axis) # error: Argument 1 to "_from_backing_data" of "NDArrayBackedExtensionArray" has # incompatible type "List[ndarray]"; expected "ndarray" return to_concat[0]._from_backing_data(new_values) # type: ignore[arg-type] @doc(ExtensionArray.searchsorted) def searchsorted(self, value, side="left", sorter=None): value = self._validate_searchsorted_value(value) return self._ndarray.searchsorted(value, side=side, sorter=sorter) def _validate_searchsorted_value(self, value): return value @doc(ExtensionArray.shift) def shift(self, periods=1, fill_value=None, axis=0): fill_value = self._validate_shift_value(fill_value) new_values = shift(self._ndarray, periods, axis, fill_value) return self._from_backing_data(new_values) def _validate_shift_value(self, fill_value): # TODO: after deprecation in datetimelikearraymixin is enforced, # we can remove this and ust validate_fill_value directly return self._validate_fill_value(fill_value) def __setitem__(self, key, value): key = check_array_indexer(self, key) value = self._validate_setitem_value(value) self._ndarray[key] = value def _validate_setitem_value(self, value): return value def __getitem__( self: NDArrayBackedExtensionArrayT, key: PositionalIndexer2D, ) -> NDArrayBackedExtensionArrayT | Any: if lib.is_integer(key): # fast-path result = self._ndarray[key] if self.ndim == 1: return self._box_func(result) return self._from_backing_data(result) # error: Value of type variable "AnyArrayLike" of "extract_array" cannot be # "Union[int, slice, ndarray]" # error: Incompatible types in assignment (expression has type "ExtensionArray", # variable has type "Union[int, slice, ndarray]") key = extract_array( # type: ignore[type-var,assignment] key, extract_numpy=True ) key = check_array_indexer(self, key) result = self._ndarray[key] if lib.is_scalar(result): return self._box_func(result) result = self._from_backing_data(result) return result @doc(ExtensionArray.fillna) def fillna( self: NDArrayBackedExtensionArrayT, value=None, method=None, limit=None ) -> NDArrayBackedExtensionArrayT: value, method = validate_fillna_kwargs( value, method, validate_scalar_dict_value=False ) mask = self.isna() # error: Argument 2 to "check_value_size" has incompatible type # "ExtensionArray"; expected "ndarray" value = missing.check_value_size( value, mask, len(self) # type: ignore[arg-type] ) if mask.any(): if method is not None: # TODO: check value is None # (for now) when self.ndim == 2, we assume axis=0 func = missing.get_fill_func(method, ndim=self.ndim) new_values, _ = func(self._ndarray.T.copy(), limit=limit, mask=mask.T) new_values = new_values.T # TODO: PandasArray didn't used to copy, need tests for this new_values = self._from_backing_data(new_values) else: # fill with value new_values = self.copy() new_values[mask] = value else: # We validate the fill_value even if there is nothing to fill if value is not None: self._validate_setitem_value(value) new_values = self.copy() return new_values # ------------------------------------------------------------------------ # Reductions def _reduce(self, name: str, *, skipna: bool = True, **kwargs): meth = getattr(self, name, None) if meth: return meth(skipna=skipna, **kwargs) else: msg = f"'{type(self).__name__}' does not implement reduction '{name}'" raise TypeError(msg) def _wrap_reduction_result(self, axis: int | None, result): if axis is None or self.ndim == 1: return self._box_func(result) return self._from_backing_data(result) # ------------------------------------------------------------------------ def __repr__(self) -> str: if self.ndim == 1: return super().__repr__() from pandas.io.formats.printing import format_object_summary # the short repr has no trailing newline, while the truncated # repr does. So we include a newline in our template, and strip # any trailing newlines from format_object_summary lines = [ format_object_summary(x, self._formatter(), indent_for_name=False).rstrip( ", \n" ) for x in self ] data = ",\n".join(lines) class_name = f"<{type(self).__name__}>" return f"{class_name}\n[\n{data}\n]\nShape: {self.shape}, dtype: {self.dtype}" # ------------------------------------------------------------------------ # __array_function__ methods def putmask(self: NDArrayBackedExtensionArrayT, mask: np.ndarray, value) -> None: """ Analogue to np.putmask(self, mask, value) Parameters ---------- mask : np.ndarray[bool] value : scalar or listlike Raises ------ TypeError If value cannot be cast to self.dtype. """ value = self._validate_setitem_value(value) np.putmask(self._ndarray, mask, value) def where( self: NDArrayBackedExtensionArrayT, mask: np.ndarray, value ) -> NDArrayBackedExtensionArrayT: """ Analogue to np.where(mask, self, value) Parameters ---------- mask : np.ndarray[bool] value : scalar or listlike Raises ------ TypeError If value cannot be cast to self.dtype. """ value = self._validate_setitem_value(value) res_values = np.where(mask, self._ndarray, value) return self._from_backing_data(res_values) def delete( self: NDArrayBackedExtensionArrayT, loc, axis: int = 0 ) -> NDArrayBackedExtensionArrayT: res_values = np.delete(self._ndarray, loc, axis=axis) return self._from_backing_data(res_values) def swapaxes( self: NDArrayBackedExtensionArrayT, axis1, axis2 ) -> NDArrayBackedExtensionArrayT: res_values = self._ndarray.swapaxes(axis1, axis2) return self._from_backing_data(res_values) # ------------------------------------------------------------------------ # Additional array methods # These are not part of the EA API, but we implement them because # pandas assumes they're there. def value_counts(self, dropna: bool = True): """ Return a Series containing counts of unique values. Parameters ---------- dropna : bool, default True Don't include counts of NA values. Returns ------- Series """ if self.ndim != 1: raise NotImplementedError from pandas import ( Index, Series, ) if dropna: # error: Unsupported operand type for ~ ("ExtensionArray") values = self[~self.isna()]._ndarray # type: ignore[operator] else: values = self._ndarray result = value_counts(values, sort=False, dropna=dropna) index_arr = self._from_backing_data(np.asarray(result.index._data)) index = Index(index_arr, name=result.index.name) return Series(result._values, index=index, name=result.name) # ------------------------------------------------------------------------ # numpy-like methods @classmethod def _empty( cls: type_t[NDArrayBackedExtensionArrayT], shape: Shape, dtype: ExtensionDtype ) -> NDArrayBackedExtensionArrayT: """ Analogous to np.empty(shape, dtype=dtype) Parameters ---------- shape : tuple[int] dtype : ExtensionDtype """ # The base implementation uses a naive approach to find the dtype # for the backing ndarray arr = cls._from_sequence([], dtype=dtype) backing = np.empty(shape, dtype=arr._ndarray.dtype) return arr._from_backing_data(backing)
32.488798
88
0.606131
417cfee5c46ffb45a3f15d6195be10b0722a8e2a
3,955
py
Python
flytekit/tools/fast_registration.py
v01dXYZ/flytekit
dfb89c619c209e6c88ae335bfb7a10892b50808a
[ "Apache-2.0" ]
null
null
null
flytekit/tools/fast_registration.py
v01dXYZ/flytekit
dfb89c619c209e6c88ae335bfb7a10892b50808a
[ "Apache-2.0" ]
1
2021-02-05T02:57:25.000Z
2021-02-05T02:57:25.000Z
flytekit/tools/fast_registration.py
v01dXYZ/flytekit
dfb89c619c209e6c88ae335bfb7a10892b50808a
[ "Apache-2.0" ]
null
null
null
import os as _os import subprocess as _subprocess import tarfile as _tarfile import tempfile as _tempfile from pathlib import Path as _Path import dirhash as _dirhash from flytekit.interfaces.data import data_proxy as _data_proxy from flytekit.interfaces.data.data_proxy import Data as _Data _tmp_versions_dir = "tmp/versions" def compute_digest(source_dir: _os.PathLike) -> str: """ Walks the entirety of the source dir to compute a deterministic hex digest of the dir contents. :param _os.PathLike source_dir: :return Text: """ return f"fast{_dirhash.dirhash(source_dir, 'md5', match=['*.py'])}" def _write_marker(marker: _os.PathLike): try: open(marker, "x") except FileExistsError: pass def filter_tar_file_fn(tarinfo: _tarfile.TarInfo) -> _tarfile.TarInfo: """ Excludes designated file types from tar archive :param _tarfile.TarInfo tarinfo: :return _tarfile.TarInfo: """ if tarinfo.name.endswith(".pyc"): return None if tarinfo.name.startswith(".cache"): return None if "__pycache__" in tarinfo.name: return None return tarinfo def get_additional_distribution_loc(remote_location: str, identifier: str) -> str: """ :param Text remote_location: :param Text identifier: :return Text: """ return _os.path.join(remote_location, "{}.{}".format(identifier, "tar.gz")) def upload_package(source_dir: _os.PathLike, identifier: str, remote_location: str, dry_run=False) -> str: """ Uploads the contents of the source dir as a tar package to a destination specified by the unique identifier and remote_location. :param _os.PathLike source_dir: :param Text identifier: :param Text remote_location: :param bool dry_run: :return Text: """ tmp_versions_dir = _os.path.join(_os.getcwd(), _tmp_versions_dir) _os.makedirs(tmp_versions_dir, exist_ok=True) marker = _Path(_os.path.join(tmp_versions_dir, identifier)) full_remote_path = get_additional_distribution_loc(remote_location, identifier) if _os.path.exists(marker): print("Local marker for identifier {} already exists, skipping upload".format(identifier)) return full_remote_path if _Data.data_exists(full_remote_path): print("Remote file {} already exists, skipping upload".format(full_remote_path)) _write_marker(marker) return full_remote_path with _tempfile.NamedTemporaryFile() as fp: # Write using gzip with _tarfile.open(fp.name, "w:gz") as tar: tar.add(source_dir, arcname="", filter=filter_tar_file_fn) if dry_run: print("Would upload {} to {}".format(fp.name, full_remote_path)) else: _Data.put_data(fp.name, full_remote_path) print("Uploaded {} to {}".format(fp.name, full_remote_path)) # Finally, touch the marker file so we have a flag in the future to avoid re-uploading the package dir as an # optimization _write_marker(marker) return full_remote_path def download_distribution(additional_distribution: str, destination: str): """ Downloads a remote code distribution and overwrites any local files. :param Text additional_distribution: :param _os.PathLike destination: """ _data_proxy.Data.get_data(additional_distribution, destination) tarfile_name = _os.path.basename(additional_distribution) file_suffix = _Path(tarfile_name).suffixes if len(file_suffix) != 2 or file_suffix[0] != ".tar" or file_suffix[1] != ".gz": raise ValueError("Unrecognized additional distribution format for {}".format(additional_distribution)) # This will overwrite the existing user flyte workflow code in the current working code dir. result = _subprocess.run( ["tar", "-xvf", _os.path.join(destination, tarfile_name), "-C", destination], stdout=_subprocess.PIPE, ) result.check_returncode()
35.630631
115
0.7067
210d095e7d12c1c350b77c93504cbdb471c60e16
250
py
Python
tests/test_decimals.py
ulamlabs/aioxrpy
89f420a4f225b698b853a1557dff7beedd7d32ea
[ "MIT" ]
7
2020-04-22T06:34:50.000Z
2021-02-22T11:02:40.000Z
tests/test_decimals.py
ulamlabs/aioxrpy
89f420a4f225b698b853a1557dff7beedd7d32ea
[ "MIT" ]
5
2020-04-06T07:38:28.000Z
2020-04-08T11:08:11.000Z
tests/test_decimals.py
ulamlabs/aioxrpy
89f420a4f225b698b853a1557dff7beedd7d32ea
[ "MIT" ]
2
2020-11-29T13:24:56.000Z
2021-01-17T18:14:22.000Z
from decimal import Decimal from aioxrpy import decimals def test_xrp_to_drops(): assert decimals.xrp_to_drops(Decimal('123.456789')) == 123456789 def test_drops_to_xrp(): assert decimals.drops_to_xrp(123456789) == Decimal('123.456789')
20.833333
68
0.764
99fa375f5acfe97cf48995e46de3d62c24b2147d
6,769
py
Python
pplot/scatter.py
thorwhalen/ut
353a4629c35a2cca76ef91a4d5209afe766433b4
[ "MIT" ]
4
2016-12-17T20:06:10.000Z
2021-11-19T04:45:29.000Z
pplot/scatter.py
thorwhalen/ut
353a4629c35a2cca76ef91a4d5209afe766433b4
[ "MIT" ]
11
2021-01-06T05:35:11.000Z
2022-03-11T23:28:31.000Z
pplot/scatter.py
thorwhalen/ut
353a4629c35a2cca76ef91a4d5209afe766433b4
[ "MIT" ]
3
2015-06-12T10:44:16.000Z
2021-07-26T18:39:47.000Z
__author__ = 'thor' import numpy as np import pandas as pd import matplotlib.pyplot as mpl_plt from sklearn.decomposition import PCA from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.manifold import TSNE import prettyplotlib as ppl # Get "Set2" colors from ColorBrewer (all colorbrewer scales: http://bl.ocks.org/mbostock/5577023) default_colors = ['#e41a1c', '#377eb8', '#4eae4b', '#994fa1', '#ff8101', '#fdfc33', '#a8572c', '#f482be', '#999999'] default_color_blind_colors = ['#b84c7d', '#59b96f', '#7f62b8', '#adb342', '#b94c3f', '#43c9b0', '#c17e36', '#738a39'] MAX_PTS_FOR_TSNE = 1500 def plot_with_label_color(X, y, shuffle=False, decompose=None, y_to_color=default_color_blind_colors, **kwargs): if decompose is not None: if decompose == True: if len(X) < MAX_PTS_FOR_TSNE: decompose = 'tsne' else: decompose = 'pca' if isinstance(decompose, str): if decompose == 'pca': decompose = Pipeline(steps=[('scale', StandardScaler()), ('decompose', PCA(n_components=2, whiten=True))]) elif decompose == 'tsne': if len(X) > MAX_PTS_FOR_TSNE: print(("TSNE would be too slow with thatm much data: Taking a set of {} random pts...".format( MAX_PTS_FOR_TSNE))) idx = np.random.choice(len(X), size=MAX_PTS_FOR_TSNE, replace=False) X = X[idx, :] y = y[idx] decompose = Pipeline(steps=[('scale', StandardScaler()), ('decompose', TSNE(n_components=2))]) X = decompose.fit_transform(X) else: X = decompose(X) if isinstance(y[0], str): y = LabelEncoder().fit_transform(y) if len(np.unique(y)) <= len(y_to_color): kwargs['alpha'] = kwargs.get('alpha', 0.5) if shuffle: permi = np.random.permutation(len(X)) X = X[permi, :] y = y[permi] for i in range(len(X)): mpl_plt.plot(X[i, 0], X[i, 1], 'o', color=y_to_color[y[i]], **kwargs) else: for yy in np.unique(y): lidx = y == yy mpl_plt.plot(X[lidx, 0], X[lidx, 1], 'o', color=y_to_color[yy], **kwargs) else: kwargs['alpha'] = kwargs.get('alpha', 0.4) mpl_plt.scatter(X[:, 0], X[:, 1], c=y, **kwargs) return decompose def df_scatter_plot(df=None, x=None, y=None, label=None, **kwargs): if df is None: if y is None and x is not None: x, y = x[:, 0], x[:, 1] assert x is not None and y is not None and label is not None, "you need to specify x, y, and label" df = pd.DataFrame({'x': x, 'y': y, 'label': label}) label = 'label' x = 'x' y = 'y' elif label is None: if len(df.columns) != 3: raise ValueError("I can't (or rather won't) guess the label if there's not exactly 3 columns. " "You need to specify it") else: label = [t for t in df.columns if t not in [x, y]][0] colors = kwargs.pop('colors', None) label_list = kwargs.pop('label_list', np.array(df[label].unique())) fig, ax = mpl_plt.subplots(1) for i, this_label in enumerate(label_list): d = df[df[label] == this_label] xvals = np.array(d[x]) yvals = np.array(d[y]) if colors: mpl_plt.scatter(ax, xvals, yvals, label=this_label, facecolor=colors[i], **kwargs) else: mpl_plt.scatter(ax, xvals, yvals, label=this_label, **kwargs) mpl_plt.legend(ax) def factor_scatter_matrix(df, factor, color_map=None, **kwargs): '''Create a scatter matrix of the variables in df, with differently colored points depending on the value of df[factor]. inputs: df: pandas.DataFrame containing the columns to be plotted, as well as factor. factor: string or pandas.Series. The column indicating which group each row belongs to. palette: A list of hex codes, at least as long as the number of groups. If omitted, a predefined palette will be used, but it only includes 9 groups. ''' # import matplotlib.colors from scipy.stats import gaussian_kde # from pyqt_fit import kde if isinstance(df, np.ndarray): df = pd.DataFrame(df) if isinstance(factor, np.ndarray): factor = pd.Series(factor) if isinstance(factor, str): factor_name = factor # save off the name factor = df[factor] # extract column df = df.drop(factor_name, axis=1) # remove from df, so it doesn't get a row and col in the plot. else: df = df.copy() classes = list(set(factor)) if color_map is None: color_map = ['#e41a1c', '#377eb8', '#4eae4b', '#994fa1', '#ff8101', '#fdfc33', '#a8572c', '#f482be', '#999999'] if not isinstance(color_map, dict): color_map = dict(list(zip(classes, color_map))) if len(classes) > len(color_map): raise ValueError('''Too many groups for the number of colors provided. We only have {} colors in the palette, but you have {} groups.'''.format(len(color_map), len(classes))) colors = factor.apply(lambda gr: color_map[gr]) scatter_matrix_kwargs = dict({'figsize': (10, 10), 'marker': 'o', 'c': colors, 'diagonal': None}, **kwargs.get('scatter_matrix_kwargs', {})) axarr = pd.tools.plotting.scatter_matrix(df, **scatter_matrix_kwargs) columns = list(df.columns) for rc in range(len(columns)): for group in classes: y = df[factor == group].iloc[:, rc].values gkde = gaussian_kde(y) ind = np.linspace(y.min(), y.max(), 1000) # if columns[rc] in log_axes: # est = kde.KDE1D(ind, method='linear_combination', lower=0) # kde_ind = kde.TransformKDE(est, kde.LogTransform) # else: # kde_ind = gkde.evaluate(ind) axarr[rc][rc].plot(ind, gkde.evaluate(ind), c=color_map[group]) # for r in xrange(len(columns)): # for c in xrange(len(columns)): # # a = axarr[r][c] # if columns[r] in log_axes: # # print "%d,%d: %s" % columns[r] # a.set_yscale('symlog') # if columns[c] in log_axes: # # print "%d,%d: %s" % columns[c] # a.set_xscale('symlog') return axarr, color_map
40.291667
119
0.560792
1ad2e96d4a806e8d1104d88e59152369da5ebafb
4,554
py
Python
docker-images/taigav2/taiga-back/taiga/projects/tasks/apps.py
mattcongy/itshop
6be025a9eaa7fe7f495b5777d1f0e5a3184121c9
[ "MIT" ]
1
2017-05-29T19:01:06.000Z
2017-05-29T19:01:06.000Z
docker-images/taigav2/taiga-back/taiga/projects/tasks/apps.py
mattcongy/itshop
6be025a9eaa7fe7f495b5777d1f0e5a3184121c9
[ "MIT" ]
null
null
null
docker-images/taigav2/taiga-back/taiga/projects/tasks/apps.py
mattcongy/itshop
6be025a9eaa7fe7f495b5777d1f0e5a3184121c9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (C) 2014-2016 Andrey Antukh <[email protected]> # Copyright (C) 2014-2016 Jesús Espino <[email protected]> # Copyright (C) 2014-2016 David Barragán <[email protected]> # Copyright (C) 2014-2016 Alejandro Alonso <[email protected]> # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from django.apps import AppConfig from django.apps import apps from django.db.models import signals def connect_tasks_signals(): from taiga.projects.tagging import signals as tagging_handlers from . import signals as handlers # Finished date signals.pre_save.connect(handlers.set_finished_date_when_edit_task, sender=apps.get_model("tasks", "Task"), dispatch_uid="set_finished_date_when_edit_task") # Tags signals.pre_save.connect(tagging_handlers.tags_normalization, sender=apps.get_model("tasks", "Task"), dispatch_uid="tags_normalization_task") def connect_tasks_close_or_open_us_and_milestone_signals(): from . import signals as handlers # Cached prev object version signals.pre_save.connect(handlers.cached_prev_task, sender=apps.get_model("tasks", "Task"), dispatch_uid="cached_prev_task") # Open/Close US and Milestone signals.post_save.connect(handlers.try_to_close_or_open_us_and_milestone_when_create_or_edit_task, sender=apps.get_model("tasks", "Task"), dispatch_uid="try_to_close_or_open_us_and_milestone_when_create_or_edit_task") signals.post_delete.connect(handlers.try_to_close_or_open_us_and_milestone_when_delete_task, sender=apps.get_model("tasks", "Task"), dispatch_uid="try_to_close_or_open_us_and_milestone_when_delete_task") def connect_tasks_custom_attributes_signals(): from taiga.projects.custom_attributes import signals as custom_attributes_handlers signals.post_save.connect(custom_attributes_handlers.create_custom_attribute_value_when_create_task, sender=apps.get_model("tasks", "Task"), dispatch_uid="create_custom_attribute_value_when_create_task") def connect_all_tasks_signals(): connect_tasks_signals() connect_tasks_close_or_open_us_and_milestone_signals() connect_tasks_custom_attributes_signals() def disconnect_tasks_signals(): signals.pre_save.disconnect(sender=apps.get_model("tasks", "Task"), dispatch_uid="set_finished_date_when_edit_task") signals.pre_save.disconnect(sender=apps.get_model("tasks", "Task"), dispatch_uid="tags_normalization") def disconnect_tasks_close_or_open_us_and_milestone_signals(): signals.pre_save.disconnect(sender=apps.get_model("tasks", "Task"), dispatch_uid="cached_prev_task") signals.post_save.disconnect(sender=apps.get_model("tasks", "Task"), dispatch_uid="try_to_close_or_open_us_and_milestone_when_create_or_edit_task") signals.post_delete.disconnect(sender=apps.get_model("tasks", "Task"), dispatch_uid="try_to_close_or_open_us_and_milestone_when_delete_task") def disconnect_tasks_custom_attributes_signals(): signals.post_save.disconnect(sender=apps.get_model("tasks", "Task"), dispatch_uid="create_custom_attribute_value_when_create_task") def disconnect_all_tasks_signals(): disconnect_tasks_signals() disconnect_tasks_close_or_open_us_and_milestone_signals() disconnect_tasks_custom_attributes_signals() class TasksAppConfig(AppConfig): name = "taiga.projects.tasks" verbose_name = "Tasks" def ready(self): connect_all_tasks_signals()
46
111
0.706851
cb1aa6cceafdf894251c54a9b468c7f91850ca32
1,305
py
Python
characters/migrations/0001_initial.py
mpirnat/django-tutorial-v2
3d128301357e687542c6627f9d8eca026e04faaa
[ "MIT" ]
6
2015-01-06T20:53:15.000Z
2021-09-09T12:12:03.000Z
characters/migrations/0001_initial.py
mpirnat/django-tutorial-v2
3d128301357e687542c6627f9d8eca026e04faaa
[ "MIT" ]
null
null
null
characters/migrations/0001_initial.py
mpirnat/django-tutorial-v2
3d128301357e687542c6627f9d8eca026e04faaa
[ "MIT" ]
2
2015-01-06T20:53:20.000Z
2021-09-09T12:12:04.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Character', fields=[ ('id', models.AutoField(auto_created=True, serialize=False, primary_key=True, verbose_name='ID')), ('name', models.CharField(max_length=200)), ('background', models.TextField()), ('level', models.IntegerField()), ('experience_points', models.IntegerField()), ('max_hit_points', models.IntegerField()), ('current_hit_points', models.IntegerField()), ('strength', models.IntegerField()), ('dexterity', models.IntegerField()), ('constitution', models.IntegerField()), ('intelligence', models.IntegerField()), ('wisdom', models.IntegerField()), ('charisma', models.IntegerField()), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ], options={ }, bases=(models.Model,), ), ]
35.27027
114
0.537165
17eda8e58efed3c3276d19797363f932ca1b8d4b
249
py
Python
opendeep/optimization/__init__.py
vitruvianscience/OpenDeep
e96efc449101094354b615cf15afe6d03644fc36
[ "Apache-2.0" ]
252
2015-03-13T21:55:22.000Z
2021-09-06T21:37:38.000Z
opendeep/optimization/__init__.py
afcarl/OpenDeep
e96efc449101094354b615cf15afe6d03644fc36
[ "Apache-2.0" ]
16
2015-03-14T06:47:04.000Z
2016-09-23T19:13:35.000Z
opendeep/optimization/__init__.py
afcarl/OpenDeep
e96efc449101094354b615cf15afe6d03644fc36
[ "Apache-2.0" ]
68
2015-03-14T00:05:53.000Z
2020-06-04T13:36:13.000Z
from __future__ import division, absolute_import, print_function from .adadelta import AdaDelta from .adasecant import AdaSecant from .optimizer import * from .rmsprop import RMSProp from .stochastic_gradient_descent import SGD from . import loss
24.9
64
0.835341
3cfc2349f803e6d930a415680185f7b662ff8814
9,580
py
Python
doc/conf.py
tomasojea/seaborn
9b03f8138949402a351fa06e2598144812aae586
[ "BSD-3-Clause" ]
null
null
null
doc/conf.py
tomasojea/seaborn
9b03f8138949402a351fa06e2598144812aae586
[ "BSD-3-Clause" ]
1
2020-10-31T23:31:41.000Z
2020-10-31T23:31:41.000Z
doc/conf.py
tomasojea/seaborn
9b03f8138949402a351fa06e2598144812aae586
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # seaborn documentation build configuration file, created by # sphinx-quickstart on Mon Jul 29 23:25:46 2013. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os import sphinx_bootstrap_theme # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. sys.path.insert(0, os.path.abspath('sphinxext')) extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.autosummary', 'sphinx.ext.intersphinx', 'matplotlib.sphinxext.plot_directive', 'gallery_generator', 'numpydoc', 'sphinx_issues', ] # Sphinx-issues configuration issues_github_path = 'mwaskom/seaborn' # Generate the API documentation when building autosummary_generate = True numpydoc_show_class_members = False # Include the example source for plots in API docs plot_include_source = True plot_formats = [("png", 90)] plot_html_show_formats = False plot_html_show_source_link = False # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'seaborn' import time copyright = u'2012-{}'.format(time.strftime("%Y")) # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. sys.path.insert(0, os.path.abspath(os.path.pardir)) import seaborn version = seaborn.__version__ # The full version, including alpha/beta/rc tags. release = seaborn.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'bootstrap' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'source_link_position': "footer", 'bootswatch_theme': "paper", 'navbar_sidebarrel': False, 'bootstrap_version': "3", 'navbar_links': [ ("Gallery", "examples/index"), ("Tutorial", "tutorial"), ("API", "api"), ], } # Add any paths that contain custom themes here, relative to this directory. html_theme_path = sphinx_bootstrap_theme.get_html_theme_path() # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = "_static/favicon.ico" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static', 'example_thumbs'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = False # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'seaborndoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'seaborn.tex', u'seaborn Documentation', u'Michael Waskom', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'seaborn', u'seaborn Documentation', [u'Michael Waskom'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'seaborn', u'seaborn Documentation', u'Michael Waskom', 'seaborn', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # Add the 'copybutton' javascript, to hide/show the prompt in code # examples, originally taken from scikit-learn's doc/conf.py def setup(app): app.add_javascript('copybutton.js') app.add_stylesheet('style.css') # -- Intersphinx ------------------------------------------------ intersphinx_mapping = { 'numpy': ('https://numpy.org/doc/stable/', None), 'scipy': ('https://docs.scipy.org/doc/scipy/reference/', None), 'matplotlib': ('https://matplotlib.org/', None), 'pandas': ('https://pandas.pydata.org/pandas-docs/stable/', None), 'statsmodels': ('https://www.statsmodels.org/stable/', None) }
31.933333
80
0.704697
6fa787aec5174e63cf4e0740b510dbddc3da5d91
1,993
py
Python
bluefoglite/common/collective_comm/broadcast.py
Bluefog-Lib/Bluefog-Lite
7175a1731f1a401ee55ce8ad94855f0c03ad5604
[ "Apache-2.0" ]
null
null
null
bluefoglite/common/collective_comm/broadcast.py
Bluefog-Lib/Bluefog-Lite
7175a1731f1a401ee55ce8ad94855f0c03ad5604
[ "Apache-2.0" ]
null
null
null
bluefoglite/common/collective_comm/broadcast.py
Bluefog-Lib/Bluefog-Lite
7175a1731f1a401ee55ce8ad94855f0c03ad5604
[ "Apache-2.0" ]
null
null
null
import math from typing import List from bluefoglite.common.tcp.agent import AgentContext from bluefoglite.common.tcp.buffer import SpecifiedBuffer def broadcast_one_to_all( buf: SpecifiedBuffer, root_rank: int, context: AgentContext, *, tag=0 ): # assume the input are all well-defined and behaved. if context.rank != root_rank: buf.recv(root_rank) return handles: List[int] = [] for i in range(context.size): if i == context.rank: continue handles.append(buf.isend(i)) for h in handles: buf.waitCompletion(h) def broadcast_ring( buf: SpecifiedBuffer, root_rank: int, context: AgentContext, *, tag=0 ): virtual_rank = (context.rank - root_rank) % context.size next_rank = (context.rank + 1) % context.size prev_rank = (context.rank - 1) % context.size for r in range(context.size - 1): if virtual_rank == r: buf.send(next_rank) elif virtual_rank == r + 1: buf.recv(prev_rank) else: pass def broadcast_spreading( buf: SpecifiedBuffer, root_rank: int, context: AgentContext, *, tag=0 ): # Using the 0->1 | 0->2, 1->3 | 0->4, 1->5, 2->6, 3->9 style. virtual_rank = (context.rank - root_rank) % context.size rounds = math.ceil(math.log2(context.size)) for r in range(rounds): rank_diff = 1 << r if virtual_rank < rank_diff: virutal_send_to = virtual_rank + rank_diff if virutal_send_to > context.size: continue real_send_to = (virutal_send_to + root_rank) % context.size buf.send(real_send_to) elif rank_diff <= virtual_rank < 2 * rank_diff: virutal_recv_from = virtual_rank - rank_diff if virutal_recv_from < 0: # impossible. continue real_recv_from = (virutal_recv_from + root_rank) % context.size buf.recv(real_recv_from) else: pass
30.661538
75
0.617662
d3e19254657066386277d00ca1ce44a5504fa530
706
py
Python
024.py
xianlinfeng/project_euler_python3
77eca44eb2b1d13bc70d6dc0258b737449d43a23
[ "MIT" ]
null
null
null
024.py
xianlinfeng/project_euler_python3
77eca44eb2b1d13bc70d6dc0258b737449d43a23
[ "MIT" ]
null
null
null
024.py
xianlinfeng/project_euler_python3
77eca44eb2b1d13bc70d6dc0258b737449d43a23
[ "MIT" ]
null
null
null
import itertools def next(nums): for i in range(len(nums)-1, 0, -1): if nums[i-1] < nums[i]: _, j = min((v, j) for (j, v) in enumerate(nums[i:]) if v > nums[i-1]) nums[i-1], nums[i+j] = nums[i+j], nums[i-1] nums[i:] = sorted(nums[i:]) return nums else: pass return None def compute(): """ method 2 """ arr = list(range(10)) temp = itertools.islice(itertools.permutations(arr), 999999, None) return "".join(str(x) for x in next(temp)) if __name__ == "__main__": List = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] for i in range(1, 1000000): List = next(List) print(List)
24.344828
74
0.494334
574a832e9184b5c4a7275d6e754cd3e5b4958e75
7,078
py
Python
rllab/sampler/base.py
Bobeye/rllab
53c0afb73f93c4a78ff21507914d7f7735c21ea9
[ "MIT" ]
1,838
2017-08-10T04:19:28.000Z
2022-03-29T07:41:19.000Z
rllab/sampler/base.py
Bobeye/rllab
53c0afb73f93c4a78ff21507914d7f7735c21ea9
[ "MIT" ]
120
2016-10-05T09:16:16.000Z
2017-07-27T22:57:31.000Z
rllab/sampler/base.py
Bobeye/rllab
53c0afb73f93c4a78ff21507914d7f7735c21ea9
[ "MIT" ]
498
2017-08-16T03:34:28.000Z
2022-03-31T04:41:32.000Z
import numpy as np from rllab.misc import special from rllab.misc import tensor_utils from rllab.algos import util import rllab.misc.logger as logger class Sampler(object): def start_worker(self): """ Initialize the sampler, e.g. launching parallel workers if necessary. """ raise NotImplementedError def obtain_samples(self, itr): """ Collect samples for the given iteration number. :param itr: Iteration number. :return: A list of paths. """ raise NotImplementedError def process_samples(self, itr, paths): """ Return processed sample data (typically a dictionary of concatenated tensors) based on the collected paths. :param itr: Iteration number. :param paths: A list of collected paths. :return: Processed sample data. """ raise NotImplementedError def shutdown_worker(self): """ Terminate workers if necessary. """ raise NotImplementedError class BaseSampler(Sampler): def __init__(self, algo): """ :type algo: BatchPolopt """ self.algo = algo def process_samples(self, itr, paths): baselines = [] returns = [] if hasattr(self.algo.baseline, "predict_n"): all_path_baselines = self.algo.baseline.predict_n(paths) else: all_path_baselines = [self.algo.baseline.predict(path) for path in paths] for idx, path in enumerate(paths): path_baselines = np.append(all_path_baselines[idx], 0) deltas = path["rewards"] + \ self.algo.discount * path_baselines[1:] - \ path_baselines[:-1] path["advantages"] = special.discount_cumsum( deltas, self.algo.discount * self.algo.gae_lambda) path["returns"] = special.discount_cumsum(path["rewards"], self.algo.discount) baselines.append(path_baselines[:-1]) returns.append(path["returns"]) ev = special.explained_variance_1d( np.concatenate(baselines), np.concatenate(returns) ) if not self.algo.policy.recurrent: observations = tensor_utils.concat_tensor_list([path["observations"] for path in paths]) actions = tensor_utils.concat_tensor_list([path["actions"] for path in paths]) rewards = tensor_utils.concat_tensor_list([path["rewards"] for path in paths]) returns = tensor_utils.concat_tensor_list([path["returns"] for path in paths]) advantages = tensor_utils.concat_tensor_list([path["advantages"] for path in paths]) env_infos = tensor_utils.concat_tensor_dict_list([path["env_infos"] for path in paths]) agent_infos = tensor_utils.concat_tensor_dict_list([path["agent_infos"] for path in paths]) if self.algo.center_adv: advantages = util.center_advantages(advantages) if self.algo.positive_adv: advantages = util.shift_advantages_to_positive(advantages) average_discounted_return = \ np.mean([path["returns"][0] for path in paths]) undiscounted_returns = [sum(path["rewards"]) for path in paths] ent = np.mean(self.algo.policy.distribution.entropy(agent_infos)) samples_data = dict( observations=observations, actions=actions, rewards=rewards, returns=returns, advantages=advantages, env_infos=env_infos, agent_infos=agent_infos, paths=paths, ) else: max_path_length = max([len(path["advantages"]) for path in paths]) # make all paths the same length (pad extra advantages with 0) obs = [path["observations"] for path in paths] obs = tensor_utils.pad_tensor_n(obs, max_path_length) if self.algo.center_adv: raw_adv = np.concatenate([path["advantages"] for path in paths]) adv_mean = np.mean(raw_adv) adv_std = np.std(raw_adv) + 1e-8 adv = [(path["advantages"] - adv_mean) / adv_std for path in paths] else: adv = [path["advantages"] for path in paths] adv = np.asarray([tensor_utils.pad_tensor(a, max_path_length) for a in adv]) actions = [path["actions"] for path in paths] actions = tensor_utils.pad_tensor_n(actions, max_path_length) rewards = [path["rewards"] for path in paths] rewards = tensor_utils.pad_tensor_n(rewards, max_path_length) returns = [path["returns"] for path in paths] returns = tensor_utils.pad_tensor_n(returns, max_path_length) agent_infos = [path["agent_infos"] for path in paths] agent_infos = tensor_utils.stack_tensor_dict_list( [tensor_utils.pad_tensor_dict(p, max_path_length) for p in agent_infos] ) env_infos = [path["env_infos"] for path in paths] env_infos = tensor_utils.stack_tensor_dict_list( [tensor_utils.pad_tensor_dict(p, max_path_length) for p in env_infos] ) valids = [np.ones_like(path["returns"]) for path in paths] valids = tensor_utils.pad_tensor_n(valids, max_path_length) average_discounted_return = \ np.mean([path["returns"][0] for path in paths]) undiscounted_returns = [sum(path["rewards"]) for path in paths] ent = np.sum(self.algo.policy.distribution.entropy(agent_infos) * valids) / np.sum(valids) samples_data = dict( observations=obs, actions=actions, advantages=adv, rewards=rewards, returns=returns, valids=valids, agent_infos=agent_infos, env_infos=env_infos, paths=paths, ) logger.log("fitting baseline...") if hasattr(self.algo.baseline, 'fit_with_samples'): self.algo.baseline.fit_with_samples(paths, samples_data) else: self.algo.baseline.fit(paths) logger.log("fitted") logger.record_tabular('Iteration', itr) logger.record_tabular('AverageDiscountedReturn', average_discounted_return) logger.record_tabular('AverageReturn', np.mean(undiscounted_returns)) logger.record_tabular('ExplainedVariance', ev) logger.record_tabular('NumTrajs', len(paths)) logger.record_tabular('Entropy', ent) logger.record_tabular('Perplexity', np.exp(ent)) logger.record_tabular('StdReturn', np.std(undiscounted_returns)) logger.record_tabular('MaxReturn', np.max(undiscounted_returns)) logger.record_tabular('MinReturn', np.min(undiscounted_returns)) return samples_data
38.677596
115
0.606527
47bde410c420828145f25d848ddb4876fcf582ac
3,845
py
Python
helper.py
ctangarife/nsearch
7de1534db51d9441ec28db4c7c2f7256630a3db0
[ "Apache-2.0" ]
null
null
null
helper.py
ctangarife/nsearch
7de1534db51d9441ec28db4c7c2f7256630a3db0
[ "Apache-2.0" ]
null
null
null
helper.py
ctangarife/nsearch
7de1534db51d9441ec28db4c7c2f7256630a3db0
[ "Apache-2.0" ]
1
2020-10-30T19:57:16.000Z
2020-10-30T19:57:16.000Z
import dbmodule from dbmodule import * class Helper: def __init__(self,args="",commnad=""): self.args = args self.commnad = commnad #process the commnads def process(self): if self.commnad == "search": if not self.args: dbmodule.lastresults = dbmodule.searchAll() self.printlastResult() else: dbmodule.lastresults = dbmodule.searchByCriterial(**self.__searchparams()) self.printlastResult() elif self.commnad == "addfav": dbmodule.createFavorite(**self.__addfavparams()) elif self.commnad == "modfav": dbmodule.updateFavorite(**self.__modfavparams()) elif self.commnad == "delfav": dbmodule.deleteFavorite(**self.__delfavparams()) elif self.commnad == "showfav": if not self.args: dbmodule.lastresults = dbmodule.getFavorites() self.printlastResult(True) else: dbmodule.lastresults = dbmodule.getFavorites(**self.__showfavparams()) self.printlastResult(True) else: print "Error" # Display the last results def printlastResult(self,fav=False): if fav: print("\033[1;32m*** {0:40} {1:40}\033[0m".format(*["Name","Ranking"])) for key,value in dbmodule.lastresults.items(): print("\033[1;32m[+] {0:40} {1:35}\033[0m".format(*[value["name"],value["ranking"]])) else: print("\033[1;32m*** {0:40} {1:40}\033[0m".format(*["Name","Author"])) for key,value in dbmodule.lastresults.items(): print("\033[1;32m[+] {0:40} {1:35}\033[0m".format(*[value["name"],value["author"]])) # Display the documentation per script def displayDoc(self): scriptFile = open(dbmodule.scriptsPath+self.args,'r') lines = scriptFile.read().splitlines() for line in lines: if line.startswith("license"): break print('\033[1;96m'+line+'\033[0m') scriptFile.close() # used for the autocomplete def resultitems(self): i = 0 items = [] for k,v in dbmodule.lastresults.items(): items.insert(i,v["name"]) i = i + 1 return items # private function to set params for search command def __searchparams(self): if self.args.find('name:') != -1 or self.args.find('category:') != -1 or self.args.find('author:') != -1: return self.__setParams() #private funtion to set params for addfav command def __addfavparams(self): if self.args.find('name:') != -1 or self.args.find('ranking:') != -1: return self.__setParams() #private funtion to set params for delfav command def __delfavparams(self): if self.args.find('name:') != -1: return self.__setParams() #private function to set params for modfav command def __modfavparams(self): if self.args.find('name:') != -1 or self.args.find('newname:') != -1 or self.args.find('newranking:') != -1: return self.__setParams() #private function to set paramas for showfav command def __showfavparams(self): if self.args.find('name:') != -1 or self.args.find('ranking:') != -1: return self.__setParams() # Set Params validations def __setParams(self): argsdic = {} if len(self.args.split(":")) >= 4: argsdic.update({ self.args.split(":")[0]:self.args.split(":")[1].split(" ")[0], self.args.split(":")[1].split(" ")[1]:self.args.split(":")[2].split(" ")[0], self.args.split(":")[2].split(" ")[1]:self.args.split(":")[3].split(" ")[0]}) elif len(self.args.split(":")) == 3: argsdic.update({ self.args.split(":")[0]:self.args.split(":")[1].split(" ")[0], self.args.split(":")[1].split(" ")[1]:self.args.split(":")[2].split(" ")[0]}) elif len(self.args.split(":")) == 2: argsdic.update({self.args.split(":")[0]:self.args.split(":")[1].split(" ")[0]}) else: print "Plase enter a correct commands" return argsdic
35.601852
112
0.615605
dfebf930087efed7d62463d4094004bd0ed755fd
70,669
py
Python
src/sage/graphs/generators/random.py
tashakim/sage
467fbc70a08b552b3de33d9065204ee9cbfb02c7
[ "BSL-1.0" ]
4
2020-07-17T04:49:44.000Z
2020-07-29T06:33:51.000Z
src/sage/graphs/generators/random.py
Ivo-Maffei/sage
467fbc70a08b552b3de33d9065204ee9cbfb02c7
[ "BSL-1.0" ]
null
null
null
src/sage/graphs/generators/random.py
Ivo-Maffei/sage
467fbc70a08b552b3de33d9065204ee9cbfb02c7
[ "BSL-1.0" ]
null
null
null
# -*- coding: utf-8 -*- r""" Random Graphs The methods defined here appear in :mod:`sage.graphs.graph_generators`. """ ########################################################################### # # Copyright (C) 2006 Robert L. Miller <[email protected]> # and Emily A. Kirkman # Copyright (C) 2009 Michael C. Yurko <[email protected]> # # Distributed under the terms of the GNU General Public License (GPL) # http://www.gnu.org/licenses/ ########################################################################### from __future__ import print_function, division import sys # import from Sage library from sage.graphs.graph import Graph from sage.misc.randstate import current_randstate from sage.misc.prandom import randint def RandomGNP(n, p, seed=None, fast=True, algorithm='Sage'): r""" Returns a random graph on `n` nodes. Each edge is inserted independently with probability `p`. INPUT: - ``n`` -- number of nodes of the graph - ``p`` -- probability of an edge - ``seed`` - a ``random.Random`` seed or a Python ``int`` for the random number generator (default: ``None``). - ``fast`` -- boolean set to True (default) to use the algorithm with time complexity in `O(n+m)` proposed in [BB2005a]_. It is designed for generating large sparse graphs. It is faster than other algorithms for *LARGE* instances (try it to know whether it is useful for you). - ``algorithm`` -- By default (```algorithm='Sage'``), this function uses the algorithm implemented in ```sage.graphs.graph_generators_pyx.pyx``. When ``algorithm='networkx'``, this function calls the NetworkX function ``fast_gnp_random_graph``, unless ``fast=False``, then ``gnp_random_graph``. Try them to know which algorithm is the best for you. The ``fast`` parameter is not taken into account by the 'Sage' algorithm so far. REFERENCES: - [ER1959]_ - [Gil1959]_ PLOTTING: When plotting, this graph will use the default spring-layout algorithm, unless a position dictionary is specified. EXAMPLES: We show the edge list of a random graph on 6 nodes with probability `p = .4`:: sage: set_random_seed(0) sage: graphs.RandomGNP(6, .4).edges(labels=False) [(0, 1), (0, 5), (1, 2), (2, 4), (3, 4), (3, 5), (4, 5)] We plot a random graph on 12 nodes with probability `p = .71`:: sage: gnp = graphs.RandomGNP(12,.71) sage: gnp.show() # long time We view many random graphs using a graphics array:: sage: g = [] sage: j = [] sage: for i in range(9): ....: k = graphs.RandomGNP(i+3,.43) ....: g.append(k) sage: for i in range(3): ....: n = [] ....: for m in range(3): ....: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False)) ....: j.append(n) sage: G = graphics_array(j) sage: G.show() # long time sage: graphs.RandomGNP(4,1) Complete graph: Graph on 4 vertices TESTS:: sage: graphs.RandomGNP(50,.2,algorithm=50) Traceback (most recent call last): ... ValueError: 'algorithm' must be equal to 'networkx' or to 'Sage'. sage: set_random_seed(0) sage: graphs.RandomGNP(50,.2, algorithm="Sage").size() 243 sage: graphs.RandomGNP(50,.2, algorithm="networkx").size() 260 # 32-bit 245 # 64-bit """ if n < 0: raise ValueError("The number of nodes must be positive or null.") if 0.0 > p or 1.0 < p: raise ValueError("The probability p must be in [0..1].") if seed is None: seed = int(current_randstate().long_seed() % sys.maxsize) if p == 1: from sage.graphs.generators.basic import CompleteGraph return CompleteGraph(n) if algorithm == 'networkx': import networkx if fast: G = networkx.fast_gnp_random_graph(n, p, seed=seed) else: G = networkx.gnp_random_graph(n, p, seed=seed) return Graph(G) elif algorithm in ['Sage', 'sage']: # We use the Sage generator from sage.graphs.graph_generators_pyx import RandomGNP as sageGNP return sageGNP(n, p) else: raise ValueError("'algorithm' must be equal to 'networkx' or to 'Sage'.") def RandomBarabasiAlbert(n, m, seed=None): r""" Return a random graph created using the Barabasi-Albert preferential attachment model. A graph with `m` vertices and no edges is initialized, and a graph of `n` vertices is grown by attaching new vertices each with `m` edges that are attached to existing vertices, preferentially with high degree. INPUT: - ``n`` -- number of vertices in the graph - ``m`` -- number of edges to attach from each new node - ``seed`` -- a ``random.Random`` seed or a Python ``int`` for the random number generator (default: ``None``) EXAMPLES: We show the edge list of a random graph on 6 nodes with `m = 2`:: sage: G = graphs.RandomBarabasiAlbert(6,2) sage: G.order(), G.size() (6, 8) sage: G.degree_sequence() # random [4, 3, 3, 2, 2, 2] We plot a random graph on 12 nodes with `m = 3`:: sage: ba = graphs.RandomBarabasiAlbert(12,3) sage: ba.show() # long time We view many random graphs using a graphics array:: sage: g = [] sage: j = [] sage: for i in range(1,10): ....: k = graphs.RandomBarabasiAlbert(i+3, 3) ....: g.append(k) sage: for i in range(3): ....: n = [] ....: for m in range(3): ....: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False)) ....: j.append(n) sage: G = graphics_array(j) sage: G.show() # long time When `m = 1`, the generated graph is a tree:: sage: graphs.RandomBarabasiAlbert(6, 1).is_tree() True """ if seed is None: seed = int(current_randstate().long_seed() % sys.maxsize) import networkx return Graph(networkx.barabasi_albert_graph(n, m, seed=seed)) def RandomBipartite(n1, n2, p, set_position=False): r""" Returns a bipartite graph with `n1+n2` vertices such that any edge from `[n1]` to `[n2]` exists with probability `p`. INPUT: - ``n1, n2`` -- Cardinalities of the two sets - ``p`` -- Probability for an edge to exist - ``set_position`` -- boolean (default ``False``); if set to ``True``, we assign positions to the vertices so that the set of cardinality `n1` is on the line `y=1` and the set of cardinality `n2` is on the line `y=0`. EXAMPLES:: sage: g = graphs.RandomBipartite(5, 2, 0.5) sage: g.vertices() [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1)] TESTS:: sage: g = graphs.RandomBipartite(5, -3, 0.5) Traceback (most recent call last): ... ValueError: n1 and n2 should be integers strictly greater than 0 sage: g = graphs.RandomBipartite(5, 3, 1.5) Traceback (most recent call last): ... ValueError: parameter p is a probability, and so should be a real value between 0 and 1 :trac:`12155`:: sage: graphs.RandomBipartite(5, 6, .2).complement() complement(Random bipartite graph of order 5+6 with edge probability 0.200000000000000): Graph on 11 vertices Test assigned positions:: sage: graphs.RandomBipartite(1, 2, .1, set_position=True).get_pos() {(0, 0): (1, 1.0), (1, 0): (0, 0), (1, 1): (2.0, 0.0)} sage: graphs.RandomBipartite(2, 1, .1, set_position=True).get_pos() {(0, 0): (0, 1), (0, 1): (2.0, 1.0), (1, 0): (1, 0.0)} sage: graphs.RandomBipartite(2, 2, .1, set_position=True).get_pos() {(0, 0): (0, 1), (0, 1): (2.0, 1.0), (1, 0): (0, 0), (1, 1): (2.0, 0.0)} sage: graphs.RandomBipartite(2, 2, .1, set_position=False).get_pos() """ if not (p >= 0 and p <= 1): raise ValueError("parameter p is a probability, and so should be a real value between 0 and 1") if not (n1 > 0 and n2 > 0): raise ValueError("n1 and n2 should be integers strictly greater than 0") from numpy.random import uniform g=Graph(name="Random bipartite graph of order "+str(n1) +"+"+str(n2)+" with edge probability "+str(p)) S1 = [(0,i) for i in range(n1)] S2 = [(1,i) for i in range(n2)] g.add_vertices(S1) g.add_vertices(S2) for w in range(n2): for v in range(n1): if uniform() <= p : g.add_edge((0, v), (1, w)) # We now assign positions to vertices: # - vertices in S1 are placed on the line from (0, 1) to (max(n1, n2), 1) # - vertices in S2 are placed on the line from (0, 0) to (max(n1, n2), 0) # If S1 or S2 has a single vertex, it is centered in the line. if set_position: nmax = max(n1, n2) g._line_embedding(S1, first=(0, 1), last=(nmax, 1)) g._line_embedding(S2, first=(0, 0), last=(nmax, 0)) return g def RandomRegularBipartite(n1, n2, d1, set_position=False): r""" Return a random regular bipartite graph on `n1 + n2` vertices. The bipartite graph has `n1 * d1` edges. Hence, `n2` must divide `n1 * d1`. Each vertex of the set of cardinality `n1` has degree `d1` (which can be at most `n2`) and each vertex in the set of cardinality `n2` has degree `(n1 * d1) / n2`. The bipartite graph has no multiple edges. This generator implements an algorithm inspired by that of [MW1990]_ for the uniform generation of random regular bipartite graphs. It performs well when `d1 = o(n2^{1/3})` or (`n2 - d1 = o(n2^{1/3})`). In other cases, the running time can be huge. Note that the currently implemented algorithm does not generate uniformly random graphs. INPUT: - ``n1, n2`` -- number of vertices in each side - ``d1`` -- degree of the vertices in the set of cardinality `n1`. - ``set_position`` -- boolean (default ``False``); if set to ``True``, we assign positions to the vertices so that the set of cardinality `n1` is on the line `y=1` and the set of cardinality `n2` is on the line `y=0`. EXAMPLES:: sage: g = graphs.RandomRegularBipartite(4, 6, 3) sage: g.order(), g.size() (10, 12) sage: set(g.degree()) {2, 3} sage: graphs.RandomRegularBipartite(1, 2, 2, set_position=True).get_pos() {0: (1, 1.0), 1: (0, 0), 2: (2.0, 0.0)} sage: graphs.RandomRegularBipartite(2, 1, 1, set_position=True).get_pos() {0: (0, 1), 1: (2.0, 1.0), 2: (1, 0.0)} sage: graphs.RandomRegularBipartite(2, 3, 3, set_position=True).get_pos() {0: (0, 1), 1: (3.0, 1.0), 2: (0, 0), 3: (1.5, 0.0), 4: (3.0, 0.0)} sage: graphs.RandomRegularBipartite(2, 3, 3, set_position=False).get_pos() TESTS: Giving invalid parameters:: sage: graphs.RandomRegularBipartite(0, 2, 1) Traceback (most recent call last): ... ValueError: n1 and n2 must be integers greater than 0 sage: graphs.RandomRegularBipartite(2, 3, 2) Traceback (most recent call last): ... ValueError: the product n1 * d1 must be a multiple of n2 sage: graphs.RandomRegularBipartite(1, 1, 2) Traceback (most recent call last): ... ValueError: d1 must be less than or equal to n2 """ if n1 < 1 or n2 < 1: raise ValueError("n1 and n2 must be integers greater than 0") if d1 > n2: raise ValueError("d1 must be less than or equal to n2") d2 = (n1 * d1) // n2 if n1 * d1 != n2 * d2: raise ValueError("the product n1 * d1 must be a multiple of n2") complement = False if d1 > n2/2 or d2 > n1/2: # We build the complement graph instead complement = True d1 = n2 - d1 d2 = n1 - d2 E = set() F = set() if d1: from sage.misc.prandom import shuffle, choice M1 = n1 * d1 * (d1 - 1) M2 = n2 * d2 * (d2 - 1) M = n1 * d1 + n2 * d2 UB_parallel = (M1 * M2) / M**2 # We create a set of n1 * d1 random edges with possible repetitions. We # require that the number of repeated edges is bounded and that an edge # can be repeated only once. L = [u for u in range(n1) for i in range(d1)] R = [u for u in range(n1, n1 + n2) for i in range(d2)] restart = True while restart: restart = False shuffle(R) E = set() F = set() for e in zip(L, R): if e in E: if e in F: # We have more than 2 times e => restart restart = True break else: F.add(e) if len(F) >= UB_parallel: # We have too many parallel edges restart = True break else: E.add(e) # We remove multiple edges by applying random forward d-switching. That is, # given edge e that is repeated twice, we select single edges f and g with # no common end points, and then create 4 new edges. We forbid creating new # multiple edges. while F: # random forward d-switching e = F.pop() E.discard(e) TE = tuple(E.difference(F)) # We select 2 vertex disjoint edges while True: f = choice(TE) if e[0] == f[0] or e[1] == f[1]: continue g = choice(TE) if e[0] != g[0] and e[1] != g[1] and f[0] != g[0] and f[1] != g[1]: new_edges = [(f[0], e[1]), (e[0], f[1]), (e[0], g[1]), (g[0], e[1])] if not E.intersection(new_edges): # We are not creating new parallel edges. # To generate uniformly random graphs we would have to # implement a probabilistic restart of the whole algorithm # here, see [MW1990]. break E.discard(f) E.discard(g) E.update(new_edges) if complement: from sage.graphs.generators.basic import CompleteBipartiteGraph E = E.symmetric_difference(CompleteBipartiteGraph(n1, n2).edges(labels=False)) d1, d2 = n2 - d1, n1 - d2 name = "Random regular bipartite graph of order {}+{} and degrees {} and {}".format(n1, n2, d1, d2) G = Graph(list(E), name=name) # We now assign positions to vertices: # - vertices 0,..,n1-1 are placed on the line (0, 1) to (max(n1, n2), 1) # - vertices n1,..,n1+n2-1 are placed on the line (0, 0) to (max(n1, n2), 0) # If n1 (or n2) is 1, the vertex is centered in the line. if set_position: nmax = max(n1, n2) G._line_embedding(list(range(n1)), first=(0, 1), last=(nmax, 1)) G._line_embedding(list(range(n1, n1+n2)), first=(0, 0), last=(nmax, 0)) return G def RandomBlockGraph(m, k, kmax=None, incidence_structure=False): r""" Return a Random Block Graph. A block graph is a connected graph in which every biconnected component (block) is a clique. .. SEEALSO:: - :wikipedia:`Block_graph` for more details on these graphs - :meth:`~sage.graphs.graph.Graph.is_block_graph` -- test if a graph is a block graph - :meth:`~sage.graphs.generic_graph.GenericGraph.blocks_and_cut_vertices` - :meth:`~sage.graphs.generic_graph.GenericGraph.blocks_and_cuts_tree` - :meth:`~sage.combinat.designs.incidence_structures.IncidenceStructure` INPUT: - ``m`` -- integer; number of blocks (at least one). - ``k`` -- integer; minimum number of vertices of a block (at least two). - ``kmax`` -- integer (default: ``None``) By default, each block has `k` vertices. When the parameter `kmax` is specified (with `kmax \geq k`), the number of vertices of each block is randomly chosen between `k` and `kmax`. - ``incidence_structure`` -- boolean (default: ``False``) when set to ``True``, the incidence structure of the graphs is returned instead of the graph itself, that is the list of the lists of vertices in each block. This is useful for the creation of some hypergraphs. OUTPUT: A Graph when ``incidence_structure==False`` (default), and otherwise an incidence structure. EXAMPLES: A block graph with a single block is a clique:: sage: B = graphs.RandomBlockGraph(1, 4) sage: B.is_clique() True A block graph with blocks of order 2 is a tree:: sage: B = graphs.RandomBlockGraph(10, 2) sage: B.is_tree() True Every biconnected component of a block graph is a clique:: sage: B = graphs.RandomBlockGraph(5, 3, kmax=6) sage: blocks,cuts = B.blocks_and_cut_vertices() sage: all(B.is_clique(block) for block in blocks) True A block graph with blocks of order `k` has `m*(k-1)+1` vertices:: sage: m, k = 6, 4 sage: B = graphs.RandomBlockGraph(m, k) sage: B.order() == m*(k-1)+1 True Test recognition methods:: sage: B = graphs.RandomBlockGraph(6, 2, kmax=6) sage: B.is_block_graph() True sage: B in graph_classes.Block True Asking for the incidence structure:: sage: m, k = 6, 4 sage: IS = graphs.RandomBlockGraph(m, k, incidence_structure=True) sage: from sage.combinat.designs.incidence_structures import IncidenceStructure sage: IncidenceStructure(IS) Incidence structure with 19 points and 6 blocks sage: m*(k-1)+1 19 TESTS: A block graph has at least one block, so `m\geq 1`:: sage: B = graphs.RandomBlockGraph(0, 1) Traceback (most recent call last): ... ValueError: the number `m` of blocks must be >= 1 A block has at least 2 vertices, so `k\geq 2`:: sage: B = graphs.RandomBlockGraph(1, 1) Traceback (most recent call last): ... ValueError: the minimum number `k` of vertices in a block must be >= 2 The maximum size of a block is at least its minimum size, so `k\leq kmax`:: sage: B = graphs.RandomBlockGraph(1, 3, kmax=2) Traceback (most recent call last): ... ValueError: the maximum number `kmax` of vertices in a block must be >= `k` """ from sage.misc.prandom import choice from sage.sets.disjoint_set import DisjointSet if m < 1: raise ValueError("the number `m` of blocks must be >= 1") if k < 2: raise ValueError("the minimum number `k` of vertices in a block must be >= 2") if kmax is None: kmax = k elif kmax < k: raise ValueError("the maximum number `kmax` of vertices in a block must be >= `k`") if m == 1: # A block graph with a single block is a clique IS = [ list(range(randint(k, kmax))) ] elif kmax == 2: # A block graph with blocks of order 2 is a tree IS = [ list(e) for e in RandomTree(m+1).edges(labels=False) ] else: # We start with a random tree of order m T = RandomTree(m) # We create a block of order in range [k,kmax] per vertex of the tree B = {u:[(u,i) for i in range(randint(k, kmax))] for u in T} # For each edge of the tree, we choose 1 vertex in each of the # corresponding blocks and we merge them. We use a disjoint set data # structure to keep a unique identifier per merged vertices DS = DisjointSet([i for u in B for i in B[u]]) for u,v in T.edges(labels=0): DS.union(choice(B[u]), choice(B[v])) # We relabel vertices in the range [0, m*(k-1)] and build the incidence # structure new_label = {root:i for i,root in enumerate(DS.root_to_elements_dict())} IS = [ [new_label[DS.find(v)] for v in B[u]] for u in B ] if incidence_structure: return IS # We finally build the block graph if k == kmax: BG = Graph(name = "Random Block Graph with {} blocks of order {}".format(m, k)) else: BG = Graph(name = "Random Block Graph with {} blocks of order {} to {}".format(m, k, kmax)) for block in IS: BG.add_clique( block ) return BG def RandomBoundedToleranceGraph(n): r""" Returns a random bounded tolerance graph. The random tolerance graph is built from a random bounded tolerance representation by using the function `ToleranceGraph`. This representation is a list `((l_0,r_0,t_0), (l_1,r_1,t_1), ..., (l_k,r_k,t_k))` where `k = n-1` and `I_i = (l_i,r_i)` denotes a random interval and `t_i` a random positive value less then or equal to the length of the interval `I_i`. The width of the representation is limited to n**2 * 2**n. .. NOTE:: The tolerance representation used to create the graph can be recovered using ``get_vertex()`` or ``get_vertices()``. INPUT: - ``n`` -- number of vertices of the random graph. EXAMPLES: Every (bounded) tolerance graph is perfect. Hence, the chromatic number is equal to the clique number :: sage: g = graphs.RandomBoundedToleranceGraph(8) sage: g.clique_number() == g.chromatic_number() True """ from sage.misc.prandom import randint from sage.graphs.generators.intersection import ToleranceGraph W = n ** 2 * 2 ** n tolrep = [(l_r[0], l_r[1], randint(0, l_r[1] - l_r[0])) for l_r in [sorted((randint(0, W), randint(0, W))) for i in range(n)]] return ToleranceGraph(tolrep) def RandomGNM(n, m, dense=False, seed=None): """ Returns a graph randomly picked out of all graphs on n vertices with m edges. INPUT: - ``n`` - number of vertices. - ``m`` - number of edges. - ``dense`` - whether to use NetworkX's dense_gnm_random_graph or gnm_random_graph - ``seed`` - a ``random.Random`` seed or a Python ``int`` for the random number generator (default: ``None``). EXAMPLES: We show the edge list of a random graph on 5 nodes with 10 edges. :: sage: graphs.RandomGNM(5, 10).edges(labels=False) [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)] We plot a random graph on 12 nodes with m = 12. :: sage: gnm = graphs.RandomGNM(12, 12) sage: gnm.show() # long time We view many random graphs using a graphics array:: sage: g = [] sage: j = [] sage: for i in range(9): ....: k = graphs.RandomGNM(i+3, i^2-i) ....: g.append(k) sage: for i in range(3): ....: n = [] ....: for m in range(3): ....: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False)) ....: j.append(n) sage: G = graphics_array(j) sage: G.show() # long time """ if seed is None: seed = int(current_randstate().long_seed() % sys.maxsize) import networkx if dense: return Graph(networkx.dense_gnm_random_graph(n, m, seed=seed)) else: return Graph(networkx.gnm_random_graph(n, m, seed=seed)) def RandomNewmanWattsStrogatz(n, k, p, seed=None): r""" Return a Newman-Watts-Strogatz small world random graph on `n` vertices. From the NetworkX documentation: first create a ring over `n` nodes. Then each node in the ring is connected with its `k` nearest neighbors. Then shortcuts are created by adding new edges as follows: for each edge `u-v` in the underlying "`n`-ring with `k` nearest neighbors"; with probability `p` add a new edge `u-w` with randomly-chosen existing node `w`. In contrast with ``networkx.watts_strogatz_graph()``, no edges are removed. INPUT: - ``n`` -- number of vertices - ``k`` -- each vertex is connected to its `k` nearest neighbors - ``p`` -- the probability of adding a new edge for each edge - ``seed`` -- a ``random.Random`` seed or a Python ``int`` for the random number generator (default: ``None``) EXAMPLES: We check that the generated graph contains a cycle of order `n`:: sage: G = graphs.RandomNewmanWattsStrogatz(7, 2, 0.2) sage: G.order(), G.size() (7, 9) # 64-bit (7, 10) # 32-bit sage: C7 = graphs.CycleGraph(7) sage: G.subgraph_search(C7) Subgraph of (): Graph on 7 vertices sage: G.diameter() <= C7.diameter() True :: sage: G = graphs.RandomNewmanWattsStrogatz(12, 2, .3) sage: G.show() # long time TESTS: We check that when `k = 2` and `p = 0`, the generated graph is a cycle:: sage: G = graphs.RandomNewmanWattsStrogatz(7, 2, 0) sage: G.is_cycle() True We check that when `k = 4` and `p = 0`, the generated graph is a circulant graph of parameters ``[1, 2]``:: sage: G = graphs.RandomNewmanWattsStrogatz(7, 4, 0) sage: G.is_isomorphic(graphs.CirculantGraph(7, [1, 2])) True REFERENCE: [NWS2002]_ """ if seed is None: seed = int(current_randstate().long_seed() % sys.maxsize) import networkx return Graph(networkx.newman_watts_strogatz_graph(n, k, p, seed=seed)) def RandomHolmeKim(n, m, p, seed=None): r""" Return a random graph generated by the Holme and Kim algorithm for graphs with power law degree distribution and approximate average clustering. INPUT: - ``n`` -- number of vertices - ``m`` -- number of random edges to add for each new node - ``p`` -- probability of adding a triangle after adding a random edge - ``seed`` -- a ``random.Random`` seed or a Python ``int`` for the random number generator (default: ``None``) From the NetworkX documentation: the average clustering has a hard time getting above a certain cutoff that depends on `m`. This cutoff is often quite low. Note that the transitivity (fraction of triangles to possible triangles) seems to go down with network size. It is essentially the Barabasi-Albert growth model with an extra step that each random edge is followed by a chance of making an edge to one of its neighbors too (and thus a triangle). This algorithm improves on B-A in the sense that it enables a higher average clustering to be attained if desired. It seems possible to have a disconnected graph with this algorithm since the initial `m` nodes may not be all linked to a new node on the first iteration like the BA model. EXAMPLES: We check that a random graph on 8 nodes with 2 random edges per node and a probability `p = 0.5` of forming triangles contains a triangle:: sage: G = graphs.RandomHolmeKim(8, 2, 0.5) sage: G.order(), G.size() (8, 12) sage: C3 = graphs.CycleGraph(3) sage: G.subgraph_search(C3) Subgraph of (): Graph on 3 vertices :: sage: G = graphs.RandomHolmeKim(12, 3, .3) sage: G.show() # long time REFERENCE: [HK2002a]_ """ if seed is None: seed = int(current_randstate().long_seed() % sys.maxsize) import networkx return Graph(networkx.powerlaw_cluster_graph(n, m, p, seed=seed)) def RandomIntervalGraph(n): r""" Returns a random interval graph. An interval graph is built from a list `(a_i,b_i)_{1\leq i \leq n}` of intervals : to each interval of the list is associated one vertex, two vertices being adjacent if the two corresponding intervals intersect. A random interval graph of order `n` is generated by picking random values for the `(a_i,b_j)`, each of the two coordinates being generated from the uniform distribution on the interval `[0,1]`. This definitions follows [BF2001]_. .. NOTE:: The vertices are named 0, 1, 2, and so on. The intervals used to create the graph are saved with the graph and can be recovered using ``get_vertex()`` or ``get_vertices()``. INPUT: - ``n`` (integer) -- the number of vertices in the random graph. EXAMPLES: As for any interval graph, the chromatic number is equal to the clique number :: sage: g = graphs.RandomIntervalGraph(8) sage: g.clique_number() == g.chromatic_number() True """ from sage.misc.prandom import random from sage.graphs.generators.intersection import IntervalGraph intervals = [tuple(sorted((random(), random()))) for i in range(n)] return IntervalGraph(intervals,True) # Random Chordal Graphs def growing_subtrees(T, k): r""" Return a list of the vertex sets of ``n`` randomly chosen subtrees of ``T``. For a tree of order `n`, the collection contains `n` subtrees with maximum order `k` and average order `\frac{k + 1}{2}`. This method is part of :meth:`~sage.graphs.generators.random.RandomChordalGraph`. ALGORITHM: For each subtree `T_i`, the algorithm picks a size `k_i` randomly from `[1,k]`. Then a random node of `T` is chosen as the first node of `T_i`. In each of the subsequent `k_i - 1` iterations, it picks a random node in the neighborhood of `T_i` and adds it to `T_i`. See [SHET2018]_ for more details. INPUT: - ``T`` -- a tree - ``k`` -- a strictly positive integer; maximum size of a subtree EXAMPLES:: sage: from sage.graphs.generators.random import growing_subtrees sage: T = graphs.RandomTree(10) sage: S = growing_subtrees(T, 5) sage: len(S) 10 """ from sage.misc.prandom import sample n = T.order() S = [] for _ in range(n): ki = randint(1, k) if ki == n: Vi = frozenset(T) else: x = T.random_vertex() Ti = set([x]) neighbors = set(T.neighbor_iterator(x)) for j in range(ki - 1): # Select a random neighbor z outside of Ti and add it to Ti z = sample(neighbors, 1)[0] Ti.add(z) neighbors.update(y for y in T.neighbor_iterator(z) if y not in Ti) Vi = frozenset(Ti) S.append(Vi) return S def connecting_nodes(T, l): r""" Return a list of the vertex sets of ``n`` randomly chosen subtrees of ``T``. This method is part of :meth:`~sage.graphs.generators.random.RandomChordalGraph`. ALGORITHM: For each subtree `T_i`, we first select `k_i` nodes of `T`, where `k_i` is a random integer from a Poisson distribution with mean `l`. `T_i` is then generated to be the minimal subtree that contains the selected `k_i` nodes. This implies that a subtree will most likely have many more nodes than those selected initially, and this must be taken into consideration when choosing `l`. See [SHET2018]_ for more details. INPUT: - ``T`` -- a tree - ``l`` -- a strictly positive real number; mean of a Poisson distribution EXAMPLES:: sage: from sage.graphs.generators.random import connecting_nodes sage: T = graphs.RandomTree(10) sage: S = connecting_nodes(T, 5) sage: len(S) 10 """ from sage.combinat.permutation import Permutations from sage.data_structures.bitset import Bitset from numpy.random import poisson n = T.order() V = list(T) P = Permutations(V) active = Bitset(capacity=n) # Choose a root root = T.random_vertex() # Perform BFS from root and identify parent in root to leaf orientation parent = {root: root} dist = {root: 0} bfs = [root] i = 0 while i < n: u = bfs[i] d = dist[u] for v in T.neighbor_iterator(u): if v not in parent: parent[v] = u dist[v] = d + 1 bfs.append(v) i += 1 S = [] for _ in range(n): ki = poisson(l) if not ki: ki = 1 elif ki >= n: Ti = frozenset(V) if ki < n: # Select ki vertices at random Vi = set(P.random_element()[:ki]) # Arrange them by distance to root and mark them as active d = max(dist[u] for u in Vi) Li = [set() for _ in range(d + 1)] active.clear() for u in Vi: Li[dist[u]].add(u) active.add(u) # Add to Vi the vertices of a minimal subtree containing Vi. # To do so, add the parents of the vertices at distance d to Vi, # mark them as active and add them to the set of vertices at # distance d - 1. Then mark the vertices at distance d as # inactive. Repeat the same procedure for the vertices at distance # d - 1, d - 2, etc. This procedure ends when at most one active # vertex remains. while len(active) > 1: for u in Li[d]: p = parent[u] Vi.add(p) Li[d - 1].add(p) active.add(p) active.discard(u) d -= 1 Ti = frozenset(Vi) S.append(Ti) return S def pruned_tree(T, f, s): r""" Return a list of the vertex sets of ``n`` randomly chosen subtrees of ``T``. This method is part of :meth:`~sage.graphs.generators.random.RandomChordalGraph`. ALGORITHM: For each subtree `T_i`, it randomly selects a fraction `f` of the edges on the tree and removes them. The number of edges to delete, say `l`, is calculated as `\lfloor((n - 1)f\rfloor`, which will leave `l + 1` subtrees in total. Then, it determines the sizes of the `l + 1` subtrees and stores the distinct values. Finally, it picks a random size `k_i` from the set of largest `100(1-s)\%` of distinct values, and randomly chooses a subtree with size `k_i`. See [SHET2018]_ for more details. INPUT: - ``T`` -- a tree - ``f`` -- a rational number; the edge deletion fraction. This value must be choosen in `[0..1]`. - ``s`` -- a real number between 0 and 1; selection barrier for the size of trees EXAMPLES:: sage: from sage.graphs.generators.random import pruned_tree sage: T = graphs.RandomTree(11) sage: S = pruned_tree(T, 1/10, 0.5) sage: len(S) 11 """ n = T.order() ke = int((n - 1) * f) if not ke: # No removed edge. Only one possible subtree return [tuple(T)] * n elif ke == n - 1: # All edges are removed. Only n possible subtrees return [(u,) for u in T] random_edge_iterator = T.random_edge_iterator(labels=False) TT = T.copy() S = [] for _ in range(n): # Choose ke = (n - 1) * f edges and remove them from TT E = set() while len(E) < ke: E.add(next(random_edge_iterator)) TT.delete_edges(E) # Compute the connected components of TT and arrange them by sizes CC = {} for c in TT.connected_components(sort=False): l = len(c) if l in CC: CC[l].append(c) else: CC[l] = [c] # Randomly select a subtree size ki from the highest 100(1 - s) % # subtree sizes sizes = sorted(set(CC.keys()), reverse=True) ki = sizes[randint(0, int(len(sizes) * (1 - s)))] # Randomly select a subtree of size ki Ti = frozenset(CC[ki][randint(0, len(CC[ki]) - 1)]) S.append(Ti) TT.add_edges(E) return S def RandomChordalGraph(n, algorithm="growing", k=None, l=None, f=None, s=None): r""" Return a random chordal graph of order ``n``. A Graph `G` is said to be chordal if it contains no induced hole (a cycle of length at least 4). Equivalently, `G` is chordal if it has a perfect elimination orderings, if each minimal separator is a clique, or if it is the intersection graphs of subtrees of a tree. See the :wikipedia:`Chordal_graph`. This generator implements the algorithms proposed in [SHET2018]_ for generating random chordal graphs as the intersection graph of `n` subtrees of a tree of order `n`. The returned graph is not necessarily connected. INPUT: - ``n`` -- integer; the number of nodes of the graph - ``algorithm`` -- string (default: ``"growing"``); the choice of the algorithm for randomly selecting `n` subtrees of a random tree of order `n`. Possible choices are: - ``"growing"`` -- for each subtree `T_i`, the algorithm picks a size `k_i` randomly from `[1,k]`. Then a random node of `T` is chosen as the first node of `T_i`. In each of the subsequent `k_i - 1` iterations, it picks a random node in the neighborhood of `T_i` and adds it to `T_i`. - ``"connecting"`` -- for each subtree `T_i`, it first selects `k_i` nodes of `T`, where `k_i` is a random integer from a Poisson distribution with mean `l`. `T_i` is then generated to be the minimal subtree containing the selected `k_i` nodes. This implies that a subtree will most likely have many more nodes than those selected initially, and this must be taken into consideration when choosing `l`. - ``"pruned"`` -- for each subtree `T_i`, it randomly selects a fraction `f` of the edges on the tree and removes them. The number of edges to delete, say `l`, is calculated as `\lfloor (n - 1) f \rfloor`, which will leave `l + 1` subtrees in total. Then, it determines the sizes of the `l + 1` subtrees and stores the distinct values. Finally, it picks a random size `k_i` from the set of largest `100(1-s)\%` of distinct values, and randomly chooses a subtree with size `k_i`. - ``k`` -- integer (default: ``None``); maximum size of a subtree. If not specified (``None``), the maximum size is set to `\sqrt{n}`. This parameter is used only when ``algorithm="growing"``. See :meth:`~sage.graphs.generators.random.growing_subtrees` for more details. - ``l`` -- a strictly positive real number (default: ``None``); mean of a Poisson distribution. If not specified, the mean in set to `\log_2{n}`. This parameter is used only when ``algorithm="connecting"``. See :meth:`~sage.graphs.generators.random.connecting_nodes` for more details. - ``f`` -- a rational number (default: ``None``); the edge deletion fraction. This value must be choosen in `[0..1]`. If not specified, this parameter is set to `\frac{1}{n-1}`. This parameter is used only when ``algorithm="pruned"``. See :meth:`~sage.graphs.generators.random.pruned_tree` for more details. - ``s`` -- a real number between 0 and 1 (default: ``None``); selection barrier for the size of trees. If not specified, this parameter is set to `0.5`. This parameter is used only when ``algorithm="pruned"``. See :meth:`~sage.graphs.generators.random.pruned_tree` for more details. EXAMPLES:: sage: from sage.graphs.generators.random import RandomChordalGraph sage: T = RandomChordalGraph(20, algorithm="growing", k=5) sage: T.is_chordal() True sage: T = RandomChordalGraph(20, algorithm="connecting", l=3) sage: T.is_chordal() True sage: T = RandomChordalGraph(20, algorithm="pruned", f=1/3, s=.5) sage: T.is_chordal() True TESTS:: sage: from sage.graphs.generators.random import RandomChordalGraph sage: all(RandomChordalGraph(i).is_chordal() for i in range(4)) True sage: RandomChordalGraph(3, algorithm="Carmen Cru") Traceback (most recent call last): ... NotImplementedError: unknown algorithm 'Carmen Cru' sage: RandomChordalGraph(3, algorithm="growing", k=0) Traceback (most recent call last): ... ValueError: parameter k must be >= 1 sage: RandomChordalGraph(3, algorithm="connecting", l=0) Traceback (most recent call last): ... ValueError: parameter l must be > 0 sage: RandomChordalGraph(3, algorithm="pruned", f=2) Traceback (most recent call last): ... ValueError: parameter f must be 0 <= f <= 1 sage: RandomChordalGraph(3, algorithm="pruned", s=1) Traceback (most recent call last): ... ValueError: parameter s must be 0 < s < 1 .. SEEALSO:: - :meth:`~sage.graphs.graph_generators.growing_subtrees` - :meth:`~sage.graphs.graph_generators.connecting_nodes` - :meth:`~sage.graphs.graph_generators.pruned_tree` - :wikipedia:`Chordal_graph` - :meth:`~sage.graphs.generic_graph.GenericGraph.is_chordal` - :meth:`~sage.graphs.graph_generators.GraphGenerators.IntersectionGraph` """ if n < 2: return Graph(n, name="Random Chordal Graph") # 1. Generate a random tree of order n T = RandomTree(n) # 2. Generate n non-empty subtrees of T: {T1,...,Tn} if algorithm == "growing": if k is None: from sage.rings.integer import Integer k = int(Integer(n).sqrt()) elif k < 1: raise ValueError("parameter k must be >= 1") S = growing_subtrees(T, k) elif algorithm == "connecting": if l is None: from sage.rings.integer import Integer l = Integer(n).log(2) elif l <= 0: raise ValueError("parameter l must be > 0") S = connecting_nodes(T, l) elif algorithm == "pruned": if f is None: from sage.rings.rational import Rational f = 1 / Rational(n - 1) elif f < 0 or f > 1: raise ValueError("parameter f must be 0 <= f <= 1") if s is None: s = .5 elif s <= 0 or s >= 1: raise ValueError("parameter s must be 0 < s < 1") S = pruned_tree(T, f, s) else: raise NotImplementedError("unknown algorithm '{}'".format(algorithm)) # 3. Build the intersection graph of {V(T1),...,V(Tn)} vertex_to_subtrees = [[] for _ in range(n)] for i,s in enumerate(S): for x in s: vertex_to_subtrees[x].append(i) G = Graph(n, name="Random Chordal Graph") for X in vertex_to_subtrees: G.add_clique(X) return G def RandomLobster(n, p, q, seed=None): """ Returns a random lobster. A lobster is a tree that reduces to a caterpillar when pruning all leaf vertices. A caterpillar is a tree that reduces to a path when pruning all leaf vertices (q=0). INPUT: - ``n`` - expected number of vertices in the backbone - ``p`` - probability of adding an edge to the backbone - ``q`` - probability of adding an edge (claw) to the arms - ``seed`` - a ``random.Random`` seed or a Python ``int`` for the random number generator (default: ``None``). EXAMPLES: We show the edge list of a random graph with 3 backbone nodes and probabilities `p = 0.7` and `q = 0.3`:: sage: graphs.RandomLobster(3, 0.7, 0.3).edges(labels=False) [] # 32-bit [(0, 1), (0, 5), (1, 2), (1, 6), (2, 3), (2, 7), (3, 4), (3, 8)] # 64-bit :: sage: G = graphs.RandomLobster(9, .6, .3) sage: G.show() # long time """ if seed is None: seed = int(current_randstate().long_seed() % sys.maxsize) import networkx return Graph(networkx.random_lobster(n, p, q, seed=seed)) def RandomTree(n): r""" Returns a random tree on `n` nodes numbered `0` through `n-1`. By Cayley's theorem, there are `n^{n-2}` trees with vertex set `\{0,1,...,n-1\}`. This constructor chooses one of these uniformly at random. ALGORITHM: The algorithm works by generating an `(n-2)`-long random sequence of numbers chosen independently and uniformly from `\{0,1,\ldots,n-1\}` and then applies an inverse Prufer transformation. INPUT: - ``n`` - number of vertices in the tree EXAMPLES:: sage: G = graphs.RandomTree(10) sage: G.is_tree() True sage: G.show() # long time TESTS: Ensuring that we encounter no unexpected surprise :: sage: all( graphs.RandomTree(10).is_tree() ....: for i in range(100) ) True """ from sage.misc.prandom import randint g = Graph() # create random Prufer code code = [ randint(0,n-1) for i in range(n-2) ] # We count the number of symbols of each type. # count[k] is the no. of times k appears in code # # (count[k] is set to -1 when the corresponding vertex is not # available anymore) count = [0] * n for k in code: count[k] += 1 g.add_vertices(range(n)) for s in code: for x in range(n): if count[x] == 0: break count[x] = -1 g.add_edge(x,s) count[s] -= 1 # Adding as an edge the last two available vertices last_edge = [ v for v in range(n) if count[v] != -1 ] g.add_edge(last_edge) return g def RandomTreePowerlaw(n, gamma=3, tries=1000, seed=None): """ Return a tree with a power law degree distribution, or ``False`` on failure. From the NetworkX documentation: a trial power law degree sequence is chosen and then elements are swapped with new elements from a power law distribution until the sequence makes a tree (size = order - 1). INPUT: - ``n`` -- number of vertices - ``gamma`` -- exponent of power law distribution - ``tries`` -- number of attempts to adjust sequence to make a tree - ``seed`` -- a ``random.Random`` seed or a Python ``int`` for the random number generator (default: ``None``) EXAMPLES: We check that the generated graph is a tree:: sage: G = graphs.RandomTreePowerlaw(10, 3) sage: G.is_tree() True sage: G.order(), G.size() (10, 9) :: sage: G = graphs.RandomTreePowerlaw(15, 2) sage: if G: ....: G.show() # random output, long time """ if seed is None: seed = int(current_randstate().long_seed() % sys.maxsize) import networkx try: return Graph(networkx.random_powerlaw_tree(n, gamma, seed=seed, tries=tries)) except networkx.NetworkXError: return False def RandomRegular(d, n, seed=None): r""" Return a random `d`-regular graph on `n` vertices, or ``False`` on failure. Since every edge is incident to two vertices, `n\times d` must be even. INPUT: - ``d`` -- degree - ``n`` -- number of vertices - ``seed`` -- a ``random.Random`` seed or a Python ``int`` for the random number generator (default: ``None``) EXAMPLES: We check that a random graph with 8 nodes each of degree 3 is 3-regular:: sage: G = graphs.RandomRegular(3, 8) sage: G.is_regular(k=3) True sage: G.degree_histogram() [0, 0, 0, 8] :: sage: G = graphs.RandomRegular(3, 20) sage: if G: ....: G.show() # random output, long time REFERENCES: - [KV2003]_ - [SW1999]_ """ if seed is None: seed = int(current_randstate().long_seed() % sys.maxsize) import networkx try: N = networkx.random_regular_graph(d, n, seed=seed) if N is False: return False return Graph(N, sparse=True) except Exception: return False def RandomShell(constructor, seed=None): """ Return a random shell graph for the constructor given. INPUT: - ``constructor`` -- a list of 3-tuples `(n, m, d)`, each representing a shell, where: - ``n`` -- the number of vertices in the shell - ``m`` -- the number of edges in the shell - ``d`` -- the ratio of inter (next) shell edges to intra shell edges - ``seed`` -- a ``random.Random`` seed or a Python ``int`` for the random number generator (default: ``None``) EXAMPLES:: sage: G = graphs.RandomShell([(10,20,0.8),(20,40,0.8)]) sage: G.order(), G.size() (30, 52) sage: G.show() # long time """ if seed is None: seed = int(current_randstate().long_seed() % sys.maxsize) import networkx return Graph(networkx.random_shell_graph(constructor, seed=seed)) def RandomToleranceGraph(n): r""" Returns a random tolerance graph. The random tolerance graph is built from a random tolerance representation by using the function `ToleranceGraph`. This representation is a list `((l_0,r_0,t_0), (l_1,r_1,t_1), ..., (l_k,r_k,t_k))` where `k = n-1` and `I_i = (l_i,r_i)` denotes a random interval and `t_i` a random positive value. The width of the representation is limited to n**2 * 2**n. .. NOTE:: The vertices are named 0, 1, ..., n-1. The tolerance representation used to create the graph is saved with the graph and can be recovered using ``get_vertex()`` or ``get_vertices()``. INPUT: - ``n`` -- number of vertices of the random graph. EXAMPLES: Every tolerance graph is perfect. Hence, the chromatic number is equal to the clique number :: sage: g = graphs.RandomToleranceGraph(8) sage: g.clique_number() == g.chromatic_number() True TESTS:: sage: g = graphs.RandomToleranceGraph(-2) Traceback (most recent call last): ... ValueError: The number `n` of vertices must be >= 0. """ from sage.misc.prandom import randint from sage.graphs.generators.intersection import ToleranceGraph if n<0: raise ValueError('The number `n` of vertices must be >= 0.') W = n**2 * 2**n tolrep = [tuple(sorted((randint(0,W), randint(0,W)))) + (randint(0,W),) for i in range(n)] return ToleranceGraph(tolrep) # uniform random triangulation using Schaeffer-Poulalhon algorithm def _auxiliary_random_forest_word(n, k): r""" Return a random word used to generate random triangulations. INPUT: - ``n`` -- an integer - ``k`` -- an integer OUTPUT: A binary sequence `w` of length `4n+2k-4` with `n` ones, such that any proper prefix `u` of `w` satisfies `3|u|_1 - |u|_0 \geq -2k+4` (where `|u|_1` and `|u|_0` are respectively the number of 1s and 0s in `u`). Those words are the expected input of :func:`_contour_and_graph_from_words`. ALGORITHM: A random word with these numbers of `0` and `1` plus one additional `0` is chosen. This word is then rotated such the prefix property is fulfilled for each proper prefix and only violated by the final `0` (which is deleted afterwards). There is exactly one such rotation (compare Section 4.3 in [PS2006]_). Let us consider a word `w` satisfying the expected conditions. By drawing a step `(1,3)` for each `1` and a step `(1,-1)` for each `0` in `w`, one gets a path starting at height `0`, ending at height `-2k+3` (before removing the final `0`) and staying above (or on) the horizontal line of height `-2k+4` except at the end point. Now consider an arbitrary word `w` with `n` ones and `3n+2k-3` zeros. By cutting the word at the first position of minimum height, let us write `w=uv`. One can then see that the word `vu` touches the line of height `-2k+3` only after the last step. Further one can see that this is the only rotation of the word `w` with this property. EXAMPLES:: sage: from sage.graphs.generators.random import _auxiliary_random_forest_word sage: with(seed(94364165)): ....: _auxiliary_random_forest_word(4, 3) ....: _auxiliary_random_forest_word(3, 5) [1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0] [1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] TESTS:: sage: def partial_sums(w): ....: steps = {1: 3, 0: -1} ....: curr_sum = 0 ....: for x in w: ....: curr_sum += steps[x] ....: yield curr_sum sage: for k in range(3,6): ....: for n in range(k, 10): ....: w = _auxiliary_random_forest_word(n, k) ....: assert len(w) == 4*n + 2*k - 4 ....: assert w.count(1) == n ....: for partial_sum in partial_sums(w): ....: assert partial_sum >= -2*k + 4 """ from sage.misc.prandom import shuffle w = [0] * (3*n + 2*k - 3) + [1] * n shuffle(w) # Finding the admissible shift partial_sum = 0 min_value = 0 min_pos = 0 for i, x in enumerate(w): if x: partial_sum += 3 else: partial_sum -= 1 if partial_sum < min_value: min_value = partial_sum min_pos = i return w[min_pos+1:] + w[:min_pos] def _contour_and_graph_from_words(pendant_word, forest_word): r""" Return the contour word and the graph of inner vertices of the `k`-gonal forest associated with the words ``pendant_word`` and ``forest_word``. INPUT: - ``pendant_word`` -- a word with `k-1` zeros and `k-3` ones - ``forest_word`` -- a word in `0` and `1` as given by :func:`_auxiliary_random_word` with the parameter ``k`` set to the number of zeros in ``pendant_word`` plus `1` ``forest_word`` must satisfy the conditions hinted in Proposition 5.4 of [PS2006]_ (see :func:`_auxiliary_random_forest_word`). OUTPUT: a pair ``(seq, G)`` where: - ``seq`` is a sequence of pairs (label, integer) representing the contour walk along the `k`-gonal forest associated with the words ``pendant_word`` and ``forest_word``. - ``G`` is the `k`-gonal forest associated with the words ``pendant_word`` and ``forest_word``. The underlying bijection from words to `k`-gonal forests is described in Section 5.1 of [PS2006]_. The ``pendant_word`` corresponds to the factor `\binom{2k-4}{k-3}` in the counting formula of Proposition 5.4 and the ``forest_word`` corresponds to the factor `\frac{2k-3}{3m+2k-3} \binom{4m+2k-4}{m}`. In the ``forest_word``, the letter `1` means going away from the root ("up") from an inner vertex to another inner vertex. The letter `0` denotes all other steps of the discovery, i.e. either discovering a leaf vertex or going toward the root ("down"). Inner vertices are tagged with 'in' and leaves are tagged with 'lf'. Inner vertices are moreover labelled by integers, and leaves by the label of the neighbor inner vertex. EXAMPLES:: sage: from sage.graphs.generators.random import _contour_and_graph_from_words sage: seq, G = _contour_and_graph_from_words([0, 0], [1, 0, 0, 0, 0, 0]) sage: seq [('in', 0), ('in', 3), ('lf', 3), ('in', 3), ('lf', 3), ('in', 3), ('in', 0), ('in', 1), ('in', 2)] sage: G Graph on 4 vertices sage: from sage.graphs.generators.random import _auxiliary_random_forest_word sage: _, G = _contour_and_graph_from_words([0, 1, 0, 0, 1, 0], _auxiliary_random_forest_word(20, 5)) # random sage: len(G.faces()) 2 sage: longw = [1,1,0,1,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] sage: _, G = _contour_and_graph_from_words([0, 0], longw) sage: G.get_embedding() {0: [1, 2, 3], 1: [2, 0], 2: [0, 1], 3: [0, 4], 4: [3, 5, 6], 5: [4], 6: [4, 7, 8], 7: [6], 8: [6]} """ k = (len(pendant_word)+4) // 2 index = 0 # numbering of inner vertices word = [('in',0)] # the word representing the contour walk # start with the outer face, a cycle of length k edges = [[i, (i+1) % k] for i in range(k)] embedding = {i: [(i+1) % k, (i-1+k) % k] for i in range(k)} # add the pendant edges for x in pendant_word: if x: word.extend([('lf', index), ('in', index)]) else: index += 1 word.append(('in', index)) # add trees curr_word_pos = 0 curr_forest_word_pos = 0 while curr_forest_word_pos < len(forest_word): x = forest_word[curr_forest_word_pos] # insert a tree at current position if x: index += 1 embedding[index] = [word[curr_word_pos][1]] embedding[word[curr_word_pos][1]].append(index) edges.append([word[curr_word_pos][1], index]) # stack of leaves still to be created leaf_stack = [index, index] # stack of active inner nodes inner_stack = [word[curr_word_pos][1], index] word.insert(curr_word_pos+1, ('in', index)) curr_word_pos += 1 while len(inner_stack) > 1: curr_forest_word_pos += 1 x = forest_word[curr_forest_word_pos] if x: index += 1 embedding[index] = inner_stack[-1:] embedding[inner_stack[-1]].append(index) leaf_stack.extend([index, index]) inner_stack.append(index) edges.append(inner_stack[-2:]) word.insert(curr_word_pos+1, ('in', index)) curr_word_pos += 1 else: # up and down to a new leaf if leaf_stack and inner_stack[-1] == leaf_stack[-1]: leaf_stack.pop() word.insert(curr_word_pos+1, ('lf', inner_stack[-1])) word.insert(curr_word_pos+2, ('in', inner_stack[-1])) curr_word_pos += 2 # going down to a known inner vertex else: inner_stack.pop() word.insert(curr_word_pos+1, ('in', inner_stack[-1])) curr_word_pos += 1 # go to next insertion position else: curr_word_pos += 1 if word[curr_word_pos][0] == 'lf': curr_word_pos += 1 curr_forest_word_pos += 1 G = Graph(edges, format='list_of_edges') G.set_embedding(embedding) return word, G def RandomTriangulation(n, set_position=False, k=3): r""" Return a random inner triangulation of an outer face of degree ``k`` with ``n`` vertices in total. An inner triangulation is a plane graph all of whose faces (except the outer/unbounded face) are triangles (3-cycles). INPUT: - ``n`` -- the number of vertices of the graph - ``k`` -- the size of the outer face - ``set_position`` -- boolean (default ``False``); if set to ``True``, this will compute coordinates for a planar drawing of the graph. OUTPUT: A random graph chosen uniformly among the inner triangulations of a *rooted* `k`-gon with `n` vertices (including the `k` vertices from the outer face). This is a planar graph and comes with a combinatorial embedding. The vertices of the root edge are labelled ``-1`` and ``-2`` and the outer face is the face returned by :meth:`Graph.faces` in which ``-1`` and ``-2`` are consecutive vertices in this order. Because some triangulations have nontrivial automorphism groups, this may not be equal to the uniform distribution among inner triangulations of unrooted `k`-gons. ALGORITHM: The algorithm is taken from [PS2006]_, Section 5. Starting from a planar `k`-gonal forest (represented by its contour as a sequence of vertices), one performs local closures, until no one is possible. A local closure amounts to replace in the cyclic contour word a sequence ``in1, in2, in3, lf, in3`` by ``in1, in3``. At every step of the algorithm, newly created edges are recorded in a graph, which will be returned at the end. The combinatorial embedding is also computed and recorded in the output graph. .. SEEALSO:: :meth:`~sage.graphs.graph_generators.GraphGenerators.triangulations`, :func:`~sage.homology.examples.RandomTwoSphere`. EXAMPLES:: sage: G = graphs.RandomTriangulation(6, True); G Graph on 6 vertices sage: G.is_planar() True sage: G.girth() 3 sage: G.plot(vertex_size=0, vertex_labels=False) Graphics object consisting of 13 graphics primitives sage: H = graphs.RandomTriangulation(7, k=5) sage: sorted(len(f) for f in H.faces()) [3, 3, 3, 3, 3, 3, 3, 5] TESTS:: sage: G.get_embedding() is not None True sage: graphs.RandomTriangulation(3, k=4) Traceback (most recent call last): ... ValueError: The number 'n' of vertices must be at least the size 'k' of the outer face. sage: graphs.RandomTriangulation(3, k=2) Traceback (most recent call last): ... ValueError: The size 'k' of the outer face must be at least 3. sage: for i in range(10): ....: g = graphs.RandomTriangulation(30) # random ....: assert g.is_planar() sage: for k in range(3, 10): ....: g = graphs.RandomTriangulation(10, k=k) # random ....: assert g.is_planar(on_embedding=g.get_embedding()) """ if k < 3: raise ValueError("The size 'k' of the outer face must be at least 3.") if n < k: raise ValueError("The number 'n' of vertices must be at least the size " "'k' of the outer face.") from sage.misc.prandom import shuffle pendant_word = [0] * (k-1) + [1] * (k-3) shuffle(pendant_word) forest_word = _auxiliary_random_forest_word(n-k, k) word, graph = _contour_and_graph_from_words(pendant_word, forest_word) edges = [] embedding = graph.get_embedding() pattern = ['in', 'in', 'in', 'lf', 'in'] # 'partial closures' def rotate_word_to_next_occurrence(word): """ Rotate ``word`` so that the given pattern occurs at the beginning. If the given pattern is not found, return the empty list. """ N = len(word) for i in range(N): if all(word[(i + j) % N][0] == pattern[j] for j in range(5)): return word[i:] + word[:i] return [] # We greedily perform the replacements 'in1,in2,in3,lf,in3'->'in1,in3'. while True: word2 = rotate_word_to_next_occurrence(word) if len(word2) >= 5: word = [word2[0]] + word2[4:] in1, in2, in3 = [u[1] for u in word2[:3]] edges.append([in1, in3]) # edge 'in1,in3' idx = embedding[in1].index(in2) embedding[in1].insert(idx, in3) idx = embedding[in3].index(in2) embedding[in3].insert(idx + 1, in1) else: break graph.add_edges(edges) graph.set_embedding(embedding) graph.relabel({0: -2, 1: -1}) assert graph.num_edges() == 3*n - 3 - k assert graph.num_verts() == n if set_position: graph.layout(layout="planar", save_pos=True) return graph def blossoming_contour(t, shift=0): """ Return a random blossoming of a binary tree `t`, as a contour word. This is doing several things simultaneously: - complete the binary tree, by adding leaves labelled ``xb``, - add a vertex labelled ``n`` at the middle of every inner edge, with a leaf labelled ``x`` either on the left or on the right (at random), - number all vertices (but not leaves) by integers starting from `shift`, - compute the counter-clockwise contour word of the result. Initial vertices receive the label ``i``. This is an auxiliary function, used for the generation of random planar bicubic maps. INPUT: - `t` -- a binary tree (non-empty) - ``shift`` -- an integer (default `0`), used as a starting index OUTPUT: contour word of a random blossoming of `t` EXAMPLES:: sage: from sage.graphs.generators.random import blossoming_contour sage: print(blossoming_contour(BinaryTrees(1).an_element())) [('i', 0), ('xb',), ('i', 0), ('xb',), ('i', 0)] sage: t = BinaryTrees(2).random_element() sage: print(blossoming_contour(t)) # random [('i', 0), ('xb',), ('i', 0), ('n', 2), ('i', 1), ('xb',), ('i', 1), ('xb',), ('i', 1), ('n', 2), ('x',), ('n', 2), ('i', 0)] sage: w = blossoming_contour(BinaryTrees(3).random_element()); len(w) 21 sage: w.count(('xb',)) 4 sage: w.count(('x',)) 2 TESTS:: sage: from sage.graphs.generators.random import blossoming_contour sage: blossoming_contour(BinaryTrees(0).an_element()) Traceback (most recent call last): ... ValueError: tree must be non-empty """ if not t: raise ValueError('tree must be non-empty') t1, t2 = t leaf_xb = ('xb',) leaf_x = ('x',) n1 = t1.node_number() n = t.node_number() # adding buds on edges in t1 if not t1: tt1 = [leaf_xb] elif randint(0, 1): label1 = ('n', shift) tt1 = [label1, leaf_x, label1] + blossoming_contour(t1, shift + 1) tt1 += [label1] else: label1 = ('n', shift + 2 * n1 - 1) tt1 = [label1] + blossoming_contour(t1, shift) tt1 += [label1, leaf_x, label1] # adding buds on edges in t2 if not t2: tt2 = [leaf_xb] elif randint(0, 1): label2 = ('n', shift + 2 * n1 + 1) tt2 = [label2, leaf_x, label2] tt2 += blossoming_contour(t2, shift + 2 * n1 + 2) + [label2] else: label2 = ('n', shift + 2 * n - 2) tt2 = [label2] + blossoming_contour(t2, shift + 2 * n1 + 1) tt2 += [label2, leaf_x, label2] label = [('i', shift + 2 * n1)] return label + tt1 + label + tt2 + label def RandomBicubicPlanar(n): """ Return the graph of a random bipartite cubic map with `3 n` edges. INPUT: `n` -- an integer (at least `1`) OUTPUT: a graph with multiple edges (no embedding is provided) The algorithm used is described in [Sch1999]_. This samples a random rooted bipartite cubic map, chosen uniformly at random. First one creates a random binary tree with `n` vertices. Next one turns this into a blossoming tree (at random) and reads the contour word of this blossoming tree. Then one performs a rotation on this word so that this becomes a balanced word. There are three ways to do that, one is picked at random. Then a graph is build from the balanced word by iterated closure (adding edges). In the returned graph, the three edges incident to any given vertex are colored by the integers 0, 1 and 2. .. SEEALSO:: the auxiliary method :func:`blossoming_contour` EXAMPLES:: sage: n = randint(200, 300) sage: G = graphs.RandomBicubicPlanar(n) sage: G.order() == 2*n True sage: G.size() == 3*n True sage: G.is_bipartite() and G.is_planar() and G.is_regular(3) True sage: dic = {'red':[v for v in G.vertices() if v[0] == 'n'], ....: 'blue': [v for v in G.vertices() if v[0] != 'n']} sage: G.plot(vertex_labels=False,vertex_size=20,vertex_colors=dic) Graphics object consisting of ... graphics primitives .. PLOT:: :width: 300 px G = graphs.RandomBicubicPlanar(200) V0 = [v for v in G.vertices() if v[0] == 'n'] V1 = [v for v in G.vertices() if v[0] != 'n'] dic = {'red': V0, 'blue': V1} sphinx_plot(G.plot(vertex_labels=False,vertex_colors=dic)) """ from sage.combinat.binary_tree import BinaryTrees from sage.rings.finite_rings.integer_mod_ring import Zmod if not n: raise ValueError("n must be at least 1") # first pick a random binary tree t = BinaryTrees(n).random_element() # next pick a random blossoming of this tree, compute its contour contour = blossoming_contour(t) + [('xb',)] # adding the final xb # first step : rotate the contour word to one of 3 balanced N = len(contour) double_contour = contour + contour pile = [] not_touched = [i for i in range(N) if contour[i][0] in ['x', 'xb']] for i, w in enumerate(double_contour): if w[0] == 'x' and i < N: pile.append(i) elif w[0] == 'xb' and (i % N) in not_touched: if pile: j = pile.pop() not_touched.remove(i % N) not_touched.remove(j) # random choice among 3 possibilities for a balanced word idx = not_touched[randint(0, 2)] w = contour[idx + 1:] + contour[:idx + 1] # second step : create the graph by closure from the balanced word G = Graph(multiedges=True) pile = [] Z3 = Zmod(3) colour = Z3.zero() not_touched = [i for i, v in enumerate(w) if v[0] in ['x', 'xb']] for i, v in enumerate(w): # internal edges if v[0] == 'i': colour += 1 if w[i + 1][0] == 'n': G.add_edge((w[i], w[i + 1], colour)) elif v[0] == 'n': colour += 2 elif v[0] == 'x': pile.append(i) elif v[0] == 'xb' and i in not_touched: if pile: j = pile.pop() G.add_edge((w[i + 1], w[j - 1], colour)) not_touched.remove(i) not_touched.remove(j) # there remains to add three edges to elements of "not_touched" # from a new vertex labelled "n" for i in not_touched: taken_colours = [edge[2] for edge in G.edges_incident(w[i - 1])] colour = [u for u in Z3 if u not in taken_colours][0] G.add_edge((('n', -1), w[i - 1], colour)) return G
33.845307
130
0.587627
c619c8bc8cc5f33a81302b10d642eb086f495e30
8,508
py
Python
tests/test_identifier.py
xli/client-sdk-python
1d0ec7f7b395bd827b778f1903001088e799fb05
[ "Apache-2.0" ]
1
2021-02-15T14:41:34.000Z
2021-02-15T14:41:34.000Z
tests/test_identifier.py
xli/client-sdk-python
1d0ec7f7b395bd827b778f1903001088e799fb05
[ "Apache-2.0" ]
null
null
null
tests/test_identifier.py
xli/client-sdk-python
1d0ec7f7b395bd827b778f1903001088e799fb05
[ "Apache-2.0" ]
null
null
null
# Copyright (c) The Diem Core Contributors # SPDX-License-Identifier: Apache-2.0 import pytest from diem import identifier, utils, InvalidSubAddressError, InvalidAccountAddressError test_onchain_address = "f72589b71ff4f8d139674a3f7369c69b" test_sub_address = "cf64428bdeb62af2" none_sub_address = None zero_sub_address = "00" * 8 @pytest.fixture( scope="module", params=[ ( "dm", "dm1p7ujcndcl7nudzwt8fglhx6wxnvqqqqqqqqqqqqqd8p9cq", "dm1p7ujcndcl7nudzwt8fglhx6wxn08kgs5tm6mz4us2vfufk", ), ( "tdm", "tdm1p7ujcndcl7nudzwt8fglhx6wxnvqqqqqqqqqqqqqv88j4s", "tdm1p7ujcndcl7nudzwt8fglhx6wxn08kgs5tm6mz4ustv0tyx", ), ], ) def hrp_addresses(request): return request.param def test_identifier_hrps(): assert identifier.HRPS == {1: "dm", 2: "tdm", 3: "tdm", 4: "tdm"} def test_encode_addr_success(hrp_addresses): hrp, enocded_addr_with_none_subaddr, enocded_addr_with_subaddr = hrp_addresses # test with none sub_address enocded_addr = identifier.encode_account(test_onchain_address, None, hrp) assert enocded_addr == enocded_addr_with_none_subaddr # even with zero sub_address, expected should not change from above enocded_addr = identifier.encode_account(test_onchain_address, zero_sub_address, hrp) assert enocded_addr == enocded_addr_with_none_subaddr # test with some subaddress enocded_addr = identifier.encode_account(test_onchain_address, test_sub_address, hrp) assert enocded_addr == enocded_addr_with_subaddr # accept AccountAddress and bytes sub-address as params too enocded_addr = identifier.encode_account( utils.account_address(test_onchain_address), utils.sub_address(test_sub_address), hrp ) assert enocded_addr == enocded_addr_with_subaddr def test_encode_addr_fail(hrp_addresses): hrp = hrp_addresses[0] # wrong subadress (length should be 8 bytes) with pytest.raises(InvalidSubAddressError): identifier.encode_account(test_onchain_address, test_sub_address[:-2], hrp) # wrong address (length should be 16 bytes) with pytest.raises(InvalidAccountAddressError): identifier.encode_account(test_onchain_address + "ff", test_sub_address[:-2], hrp) def test_decode_addr_success(hrp_addresses): hrp, enocded_addr_with_none_subaddr, enocded_addr_with_subaddr = hrp_addresses # test enocded_addr_with_none_subaddr addr, subaddr = identifier.decode_account(enocded_addr_with_none_subaddr, hrp) assert addr.to_hex() == test_onchain_address assert subaddr is None # test enocded_addr_with_subaddr addr, subaddr = identifier.decode_account(enocded_addr_with_subaddr, hrp) assert addr.to_hex() == test_onchain_address assert subaddr.hex() == test_sub_address def test_encode_decode_with_random_hrp(): # test with none sub_address id = identifier.encode_account(test_onchain_address, None, "abc") addr, sub = identifier.decode_account(id, "abc") assert addr.to_hex() == test_onchain_address assert sub is None def test_decode_addr_fail(hrp_addresses): hrp, enocded_addr_with_none_subaddr, enocded_addr_with_subaddr = hrp_addresses # fail to decode invalid hrp invalid_hrp_encoded_address = "btc1p7ujcndcl7nudzwt8fglhx6wxn08kgs5tm6mz4usw5p72t" with pytest.raises(ValueError): identifier.decode_account(invalid_hrp_encoded_address, hrp) # fail to decode invalid "expected" hrp with pytest.raises(ValueError): identifier.decode_account(enocded_addr_with_none_subaddr, "xdm") # fail to decode invalid version invalid_version_encoded_address = enocded_addr_with_none_subaddr.replace("1p7", "1q7") # p (1) -> q (2) with pytest.raises(ValueError): identifier.decode_account(invalid_version_encoded_address, hrp) # fail to decode due to checksum error invalid_checksum_encoded_address = enocded_addr_with_none_subaddr.replace("d8p9cq", "d8p9c7").replace( "v88j4s", "v88j4q" ) with pytest.raises(ValueError): identifier.decode_account(invalid_checksum_encoded_address, hrp) # fail to decode mixed case per BIP 173 mixedcase_encoded_address = enocded_addr_with_none_subaddr.replace("qqqqqqqqqqqqq", "qqQqqqqqqqqqq") with pytest.raises(ValueError): identifier.decode_account(mixedcase_encoded_address, hrp) # fail to decode shorter payload short_encoded_address = enocded_addr_with_none_subaddr.replace("qqqqqqqqqqqqq", "qqqqqqqqqqq") with pytest.raises(ValueError): identifier.decode_account(short_encoded_address, hrp) # fail to decode larger payload large_encoded_address = enocded_addr_with_none_subaddr.replace("qqqqqqqqqqqqq", "qqqqqqqqqqqqqq") with pytest.raises(ValueError): identifier.decode_account(large_encoded_address, hrp) # fail to decode invalid separator invalid_separator_encoded_address = enocded_addr_with_none_subaddr.replace("1p7", "0p7") with pytest.raises(ValueError): identifier.decode_account(invalid_separator_encoded_address, hrp) # fail to decode invalid character invalid_char_encoded_address = enocded_addr_with_none_subaddr.replace("1p7", "1pb") with pytest.raises(ValueError): identifier.decode_account(invalid_char_encoded_address, hrp) def test_intent_identifier(hrp_addresses): hrp, enocded_addr_with_none_subaddr, enocded_addr_with_subaddr = hrp_addresses account_id = identifier.encode_account(test_onchain_address, None, hrp) intent_id = identifier.encode_intent(account_id, "XUS", 123) assert intent_id == "diem://%s?c=%s&am=%d" % (enocded_addr_with_none_subaddr, "XUS", 123) intent = identifier.decode_intent(intent_id, hrp) assert intent.account_address == utils.account_address(test_onchain_address) assert intent.account_address_bytes.hex() == test_onchain_address assert intent.sub_address is None assert intent.currency_code == "XUS" assert intent.amount == 123 assert account_id == intent.account_id def test_intent_identifier_with_sub_address(hrp_addresses): hrp, enocded_addr_with_none_subaddr, enocded_addr_with_subaddr = hrp_addresses account_id = identifier.encode_account(test_onchain_address, test_sub_address, hrp) intent_id = identifier.encode_intent(account_id, "XUS", 123) assert intent_id == "diem://%s?c=%s&am=%d" % (enocded_addr_with_subaddr, "XUS", 123) intent = identifier.decode_intent(intent_id, hrp) assert intent.account_address_bytes.hex() == test_onchain_address assert intent.sub_address == bytes.fromhex(test_sub_address) assert intent.currency_code == "XUS" assert intent.amount == 123 def test_intent_identifier_decode_errors(hrp_addresses): hrp, enocded_addr_with_none_subaddr, enocded_addr_with_subaddr = hrp_addresses # amount is not int with pytest.raises(identifier.InvalidIntentIdentifierError): identifier.decode_intent("diem://%s?c=XUS&am=str" % (enocded_addr_with_none_subaddr), hrp) # amount not exist with pytest.raises(identifier.InvalidIntentIdentifierError): identifier.decode_intent("diem://%s?c=XUS" % (enocded_addr_with_none_subaddr), hrp) # too many amount with pytest.raises(identifier.InvalidIntentIdentifierError): identifier.decode_intent("diem://%s?c=XUS&am=2&am=3" % (enocded_addr_with_none_subaddr), hrp) # amount is none with pytest.raises(identifier.InvalidIntentIdentifierError): identifier.decode_intent("diem://%s?c=XUS&am=" % (enocded_addr_with_none_subaddr), hrp) # currency code not exist with pytest.raises(identifier.InvalidIntentIdentifierError): identifier.decode_intent("diem://%s?am=2" % (enocded_addr_with_none_subaddr), hrp) # scheme not match with pytest.raises(identifier.InvalidIntentIdentifierError): identifier.decode_intent("hello://%s?am=2&c=XUS" % (enocded_addr_with_none_subaddr), hrp) # hrp not match with pytest.raises(identifier.InvalidIntentIdentifierError): identifier.decode_intent("diem://%s?am=2&c=XUS" % (enocded_addr_with_none_subaddr), "xdm") def test_decode_hrp(hrp_addresses): hrp, enocded_addr_with_none_subaddr, enocded_addr_with_subaddr = hrp_addresses assert identifier.decode_hrp(enocded_addr_with_none_subaddr) == hrp assert identifier.decode_hrp(enocded_addr_with_subaddr) == hrp with pytest.raises(ValueError): identifier.decode_hrp("")
40.903846
108
0.758463
0713c2a792bbc06aa2d8a28412fa9d9603d8b18a
47,126
py
Python
dev/services/wms/mwfc/wms_cfg.py
zxh547/dea-config
41c07261921c667454074ce1c8c8f162baa04d0b
[ "Apache-2.0" ]
null
null
null
dev/services/wms/mwfc/wms_cfg.py
zxh547/dea-config
41c07261921c667454074ce1c8c8f162baa04d0b
[ "Apache-2.0" ]
null
null
null
dev/services/wms/mwfc/wms_cfg.py
zxh547/dea-config
41c07261921c667454074ce1c8c8f162baa04d0b
[ "Apache-2.0" ]
null
null
null
response_cfg = { "Access-Control-Allow-Origin": "*", # CORS header "Cache-Control": "public, max-age=3600" } service_cfg = { # Required config "title": "Combined WMS Server", "url": "https://mwfc.datakube.gadevs.ga/wms/", "published_CRSs": { "EPSG:3857": { # Web Mercator "geographic": False, "horizontal_coord": "x", "vertical_coord": "y", }, "EPSG:4326": { # WGS-84 "geographic": True, "vertical_coord_first": True }, "EPSG:3577": { # GDA-94, internal representation "geographic": False, "horizontal_coord": "easting", "vertical_coord": "northing", }, }, "layer_limit": 1, "max_width": 512, "max_height": 512, "abstract": """Historic Landsat imagery for Australia.""", "keywords": [ "Geomedian", "australia", "time-series", ], "contact_info": { "person": "Digital Earth Australia", "organisation": "Geoscience Australia", "position": "Technical Lead", "address": { "type": "postal", "address": "GPO Box 378", "city": "Canberra", "state": "ACT", "postcode": "2906", "country": "Australia", }, "telephone": "", "fax": "", "email": "", }, "fees": "", "access_constraints": "", "wcs_formats": { "GeoTIFF": { "renderer": "datacube_wms.wcs_utils.get_tiff", "mime": "image/geotiff", "extension": "tif", "multi-time": False }, "netCDF": { "renderer": "datacube_wms.wcs_utils.get_netcdf", "mime": "application/x-netcdf", "extension": "nc", "multi-time": True, } }, "native_wcs_format": "GeoTIFF", "default_geographic_CRS": "EPSG:4326", "wcs": True, "wms": True, "use_default_extent": True } layer_cfg = [ { # Name and title of the platform layer. # Platform layers are not mappable. The name is for internal server use only. "name": "Geomedian_AU_NBART", "title": "Geomedian_au_nbart_surface_reflectance", "abstract": "Images from the Geomedian Surface Reflectance on Level2 Products", # Products available for this platform. # For each product, the "name" is the Datacube name, and the label is used # to describe the label to end-users. "products": [ { # Included as a keyword for the layer "label": "LANDSAT_8", # Included as a keyword for the layer "type": "SR", # Included as a keyword for the layer "variant": "Level 2", # The WMS name for the layer "name": "ls8_nbart_geomedian_annual", # The Datacube name for the associated data product "product_name": "ls8_nbart_geomedian_annual", # The Datacube name for the associated pixel-quality product (optional) # The name of the associated Datacube pixel-quality product # "pq_dataset": "ls8_level1_usgs", # The name of the measurement band for the pixel-quality product # (Only required if pq_dataset is set) # "pq_manual_data_merge": True, # "data_manual_merge": True, # "pq_band": "quality", # "always_fetch_bands": [ "quality" ], # Min zoom factor - sets the zoom level where the cutover from indicative polygons # to actual imagery occurs. "min_zoom_factor": 500.0, # The fill-colour of the indicative polygons when zoomed out. # Triplets (rgb) or quadruplets (rgba) of integers 0-255. "zoomed_out_fill_colour": [150, 180, 200, 160], # Time Zone. In hours added to UTC (maybe negative) # Used for rounding off scene times to a date. # 9 is good value for imagery of Australia. "time_zone": 9, # Extent mask function # Determines what portions of dataset is potentially meaningful data. "extent_mask_func": lambda data, band: data[band] != data[band].attrs['nodata'], # Flags listed here are ignored in GetFeatureInfo requests. # (defaults to empty list) "ignore_info_flags": [], "data_manual_merge": True, "always_fetch_bands": [ ], "apply_solar_corrections": False, # A function that extracts the "sub-product" id (e.g. path number) from a dataset. Function should return a (small) integer # If None or not specified, the product has no sub-layers. # "sub_product_extractor": lambda ds: int(s3_path_pattern.search(ds.uris[0]).group("path")), # A prefix used to describe the sub-layer in the GetCapabilities response. # E.g. sub-layer 109 will be described as "Landsat Path 109" # "sub_product_label": "Landsat Path", # Bands to include in time-dimension "pixel drill". # Don't activate in production unless you really know what you're doing. # "band_drill": ["nir", "red", "green", "blue"], # Styles. # # See band_mapper.py # # The various available spectral bands, and ways to combine them # into a single rgb image. # The examples here are ad hoc # "styles": [ # Examples of styles which are linear combinations of the available spectral bands. # { "name": "simple_rgb", "title": "Simple RGB", "abstract": "Simple true-colour image, using the red, green and blue bands", "components": { "red": { "red": 1.0 }, "green": { "green": 1.0 }, "blue": { "blue": 1.0 } }, # The raw band value range to be compressed to an 8 bit range for the output image tiles. # Band values outside this range are clipped to 0 or 255 as appropriate. "scale_range": [0.0, 3000.0] }, { "name": "infra_red", "title": "False colour multi-band infra-red", "abstract": "Simple false-colour image, using the near and short-wave infra-red bands", "components": { "red": { "swir1": 1.0 }, "green": { "swir2": 1.0 }, "blue": { "nir": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "infrared_green", "title": "False colour SWIR, NIR and green", "abstract": "False Colour image with SWIR1->Red, NIR->Green, and Green->Blue", "components": { "red": { "swir1": 1.0 }, "green": { "nir": 1.0 }, "blue": { "green": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "blue", "title": "Spectral band 2 - Blue", "abstract": "Blue band, approximately 453nm to 511nm", "components": { "red": { "blue": 1.0 }, "green": { "blue": 1.0 }, "blue": { "blue": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "green", "title": "Spectral band 3 - Green", "abstract": "Green band, approximately 534nm to 588nm", "components": { "red": { "green": 1.0 }, "green": { "green": 1.0 }, "blue": { "green": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "red", "title": "Spectral band 4 - Red", "abstract": "Red band, roughly 637nm to 672nm", "components": { "red": { "red": 1.0 }, "green": { "red": 1.0 }, "blue": { "red": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "nir", "title": "Spectral band 5 - Near infra-red", "abstract": "Near infra-red band, roughly 853nm to 876nm", "components": { "red": { "nir": 1.0 }, "green": { "nir": 1.0 }, "blue": { "nir": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "swir1", "title": "Spectral band 6 - Short wave infra-red 1", "abstract": "Short wave infra-red band 1, roughly 1575nm to 1647nm", "components": { "red": { "swir1": 1.0 }, "green": { "swir1": 1.0 }, "blue": { "swir1": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "swir2", "title": "Spectral band 7 - Short wave infra-red 2", "abstract": "Short wave infra-red band 2, roughly 2117nm to 2285nm", "components": { "red": { "swir2": 1.0 }, "green": { "swir2": 1.0 }, "blue": { "swir2": 1.0 } }, "scale_range": [0.0, 3000.0] }, # # Examples of non-linear heat-mapped styles. { "name": "ndvi", "title": "NDVI", "abstract": "Normalised Difference Vegetation Index - a derived index that correlates well with the existence of vegetation", "heat_mapped": True, "index_function": lambda data: (data["nir"] - data["red"]) / (data["nir"] + data["red"]), "needed_bands": ["red", "nir"], # Areas where the index_function returns outside the range are masked. "range": [0.0, 1.0], }, { "name": "ndwi", "title": "NDWI", "abstract": "Normalised Difference Water Index - a derived index that correlates well with the existence of water", "heat_mapped": True, "index_function": lambda data: (data["green"] - data["nir"]) / (data["nir"] + data["green"]), "needed_bands": ["green", "nir"], "range": [0.0, 1.0], }, { "name": "ndbi", "title": "NDBI", "abstract": "Normalised Difference Buildup Index - a derived index that correlates with the existence of urbanisation", "heat_mapped": True, "index_function": lambda data: (data["swir2"] - data["nir"]) / (data["swir2"] + data["nir"]), "needed_bands": ["swir2", "nir"], "range": [0.0, 1.0], }, # Mask layers - examples of how to display raw pixel quality data. # This works by creatively mis-using the Heatmap style class. # { # "name": "cloud_mask", # "title": "Cloud Mask", # "abstract": "Highlight pixels with cloud.", # "heat_mapped": True, # "index_function": lambda data: data["red"] * 0.0 + 0.1, # "needed_bands": ["red"], # "range": [0.0, 1.0], # # Mask flags normally describe which areas SHOULD be shown. # (i.e. pixels for which any of the declared flags are true) # pq_mask_invert is intended to invert this logic. # (i.e. pixels for which none of the declared flags are true) # # i.e. Specifying like this shows pixels which are not clouds in either metric. # Specifying "cloud" and setting the "pq_mask_invert" to False would # show pixels which are not clouds in both metrics. # "pq_masks": [ # { # "flags": { # "cloud": False, # } # } # ], # }, # { # "name": "cloud_acca", # "title": "Cloud acca Mask", # "abstract": "Highlight pixels with cloud.", # "heat_mapped": True, # "index_function": lambda data: data["red"] * 0.0 + 0.4, # "needed_bands": ["red"], # "range": [0.0, 1.0], # "pq_masks": [ # { # "flags": { # "cloud": True, # } # } # ], # }, # { # "name": "cloud_fmask", # "title": "Cloud fmask Mask", # "abstract": "Highlight pixels with cloud.", # "heat_mapped": True, # "index_function": lambda data: data["red"] * 0.0 + 0.8, # "needed_bands": ["red"], # "range": [0.0, 1.0], # "pq_masks": [ # { # "flags": { # "cloud_fmask": "cloud", # }, # }, # ], # }, # { # "name": "contiguous_mask", # "title": "Contiguous Data Mask", # "abstract": "Highlight pixels with non-contiguous data", # "heat_mapped": True, # "index_function": lambda data: data["red"] * 0.0 + 0.3, # "needed_bands": ["red"], # "range": [0.0, 1.0], # "pq_masks": [ # { # "flags": { # "contiguous": False # }, # }, # ], # }, # Hybrid style - mixes a linear mapping and a heat mapped index { "name": "rgb_ndvi", "title": "NDVI plus RGB", "abstract": "Normalised Difference Vegetation Index (blended with RGB) - a derived index that correlates well with the existence of vegetation", "component_ratio": 0.6, "heat_mapped": True, "index_function": lambda data: (data["nir"] - data["red"]) / (data["nir"] + data["red"]), "needed_bands": ["red", "nir"], # Areas where the index_function returns outside the range are masked. "range": [0.0, 1.0], "components": { "red": { "red": 1.0 }, "green": { "green": 1.0 }, "blue": { "blue": 1.0 } }, "scale_range": [0.0, 3000.0] }, ], # Default style (if request does not specify style) # MUST be defined in the styles list above. # (Looks like Terria assumes this is the first style in the list, but this is # not required by the standard.) "default_style": "simple_rgb", }, { # Included as a keyword for the layer "label": "LANDSAT_7", # Included as a keyword for the layer "type": "SR", # Included as a keyword for the layer "variant": "Level 2", # The WMS name for the layer "name": "ls7_nbart_geomedian_annual", # The Datacube name for the associated data product "product_name": "ls7_nbart_geomedian_annual", # The Datacube name for the associated pixel-quality product (optional) # The name of the associated Datacube pixel-quality product # "pq_dataset": "ls8_level1_usgs", # The name of the measurement band for the pixel-quality product # (Only required if pq_dataset is set) # "pq_manual_data_merge": True, # "data_manual_merge": True, # "pq_band": "quality", # "always_fetch_bands": [ "quality" ], # Min zoom factor - sets the zoom level where the cutover from indicative polygons # to actual imagery occurs. "min_zoom_factor": 500.0, # The fill-colour of the indicative polygons when zoomed out. # Triplets (rgb) or quadruplets (rgba) of integers 0-255. "zoomed_out_fill_colour": [150, 180, 200, 160], # Time Zone. In hours added to UTC (maybe negative) # Used for rounding off scene times to a date. # 9 is good value for imagery of Australia. "time_zone": 9, # Extent mask function # Determines what portions of dataset is potentially meaningful data. "extent_mask_func": lambda data, band: data[band] != data[band].attrs['nodata'], # Flags listed here are ignored in GetFeatureInfo requests. # (defaults to empty list) "ignore_info_flags": [], "data_manual_merge": True, "always_fetch_bands": [], "apply_solar_corrections": False, # A function that extracts the "sub-product" id (e.g. path number) from a dataset. Function should return a (small) integer # If None or not specified, the product has no sub-layers. # "sub_product_extractor": lambda ds: int(s3_path_pattern.search(ds.uris[0]).group("path")), # A prefix used to describe the sub-layer in the GetCapabilities response. # E.g. sub-layer 109 will be described as "Landsat Path 109" # "sub_product_label": "Landsat Path", # Bands to include in time-dimension "pixel drill". # Don't activate in production unless you really know what you're doing. # "band_drill": ["nir", "red", "green", "blue"], # Styles. # # See band_mapper.py # # The various available spectral bands, and ways to combine them # into a single rgb image. # The examples here are ad hoc # "styles": [ # Examples of styles which are linear combinations of the available spectral bands. # { "name": "simple_rgb", "title": "Simple RGB", "abstract": "Simple true-colour image, using the red, green and blue bands", "components": { "red": { "red": 1.0 }, "green": { "green": 1.0 }, "blue": { "blue": 1.0 } }, # The raw band value range to be compressed to an 8 bit range for the output image tiles. # Band values outside this range are clipped to 0 or 255 as appropriate. "scale_range": [0.0, 3000.0] }, { "name": "infra_red", "title": "False colour multi-band infra-red", "abstract": "Simple false-colour image, using the near and short-wave infra-red bands", "components": { "red": { "swir1": 1.0 }, "green": { "swir2": 1.0 }, "blue": { "nir": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "infrared_green", "title": "False colour SWIR, NIR and green", "abstract": "False Colour image with SWIR1->Red, NIR->Green, and Green->Blue", "components": { "red": { "swir1": 1.0 }, "green": { "nir": 1.0 }, "blue": { "green": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "blue", "title": "Spectral band 2 - Blue", "abstract": "Blue band, approximately 453nm to 511nm", "components": { "red": { "blue": 1.0 }, "green": { "blue": 1.0 }, "blue": { "blue": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "green", "title": "Spectral band 3 - Green", "abstract": "Green band, approximately 534nm to 588nm", "components": { "red": { "green": 1.0 }, "green": { "green": 1.0 }, "blue": { "green": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "red", "title": "Spectral band 4 - Red", "abstract": "Red band, roughly 637nm to 672nm", "components": { "red": { "red": 1.0 }, "green": { "red": 1.0 }, "blue": { "red": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "nir", "title": "Spectral band 5 - Near infra-red", "abstract": "Near infra-red band, roughly 853nm to 876nm", "components": { "red": { "nir": 1.0 }, "green": { "nir": 1.0 }, "blue": { "nir": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "swir1", "title": "Spectral band 6 - Short wave infra-red 1", "abstract": "Short wave infra-red band 1, roughly 1575nm to 1647nm", "components": { "red": { "swir1": 1.0 }, "green": { "swir1": 1.0 }, "blue": { "swir1": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "swir2", "title": "Spectral band 7 - Short wave infra-red 2", "abstract": "Short wave infra-red band 2, roughly 2117nm to 2285nm", "components": { "red": { "swir2": 1.0 }, "green": { "swir2": 1.0 }, "blue": { "swir2": 1.0 } }, "scale_range": [0.0, 3000.0] }, # # Examples of non-linear heat-mapped styles. { "name": "ndvi", "title": "NDVI", "abstract": "Normalised Difference Vegetation Index - a derived index that correlates well with the existence of vegetation", "heat_mapped": True, "index_function": lambda data: (data["nir"] - data["red"]) / (data["nir"] + data["red"]), "needed_bands": ["red", "nir"], # Areas where the index_function returns outside the range are masked. "range": [0.0, 1.0], }, { "name": "ndwi", "title": "NDWI", "abstract": "Normalised Difference Water Index - a derived index that correlates well with the existence of water", "heat_mapped": True, "index_function": lambda data: (data["green"] - data["nir"]) / (data["nir"] + data["green"]), "needed_bands": ["green", "nir"], "range": [0.0, 1.0], }, { "name": "ndbi", "title": "NDBI", "abstract": "Normalised Difference Buildup Index - a derived index that correlates with the existence of urbanisation", "heat_mapped": True, "index_function": lambda data: (data["swir2"] - data["nir"]) / (data["swir2"] + data["nir"]), "needed_bands": ["swir2", "nir"], "range": [0.0, 1.0], }, { "name": "rgb_ndvi", "title": "NDVI plus RGB", "abstract": "Normalised Difference Vegetation Index (blended with RGB) - a derived index that correlates well with the existence of vegetation", "component_ratio": 0.6, "heat_mapped": True, "index_function": lambda data: (data["nir"] - data["red"]) / (data["nir"] + data["red"]), "needed_bands": ["red", "nir"], # Areas where the index_function returns outside the range are masked. "range": [0.0, 1.0], "components": { "red": { "red": 1.0 }, "green": { "green": 1.0 }, "blue": { "blue": 1.0 } }, "scale_range": [0.0, 3000.0] }, ], # Default style (if request does not specify style) # MUST be defined in the styles list above. # (Looks like Terria assumes this is the first style in the list, but this is # not required by the standard.) "default_style": "simple_rgb", }, { # Included as a keyword for the layer "label": "LANDSAT_5", # Included as a keyword for the layer "type": "SR", # Included as a keyword for the layer "variant": "Level 2", # The WMS name for the layer "name": "ls5_nbart_geomedian_annual", # The Datacube name for the associated data product "product_name": "ls5_nbart_geomedian_annual", # The Datacube name for the associated pixel-quality product (optional) # The name of the associated Datacube pixel-quality product # "pq_dataset": "ls8_level1_usgs", # The name of the measurement band for the pixel-quality product # (Only required if pq_dataset is set) # "pq_manual_data_merge": True, # "data_manual_merge": True, # "pq_band": "quality", # "always_fetch_bands": [ "quality" ], # Min zoom factor - sets the zoom level where the cutover from indicative polygons # to actual imagery occurs. "min_zoom_factor": 500.0, # The fill-colour of the indicative polygons when zoomed out. # Triplets (rgb) or quadruplets (rgba) of integers 0-255. "zoomed_out_fill_colour": [150, 180, 200, 160], # Time Zone. In hours added to UTC (maybe negative) # Used for rounding off scene times to a date. # 9 is good value for imagery of Australia. "time_zone": 9, # Extent mask function # Determines what portions of dataset is potentially meaningful data. "extent_mask_func": lambda data, band: data[band] != data[band].attrs['nodata'], # Flags listed here are ignored in GetFeatureInfo requests. # (defaults to empty list) "ignore_info_flags": [], "data_manual_merge": True, "always_fetch_bands": [], "apply_solar_corrections": False, # A function that extracts the "sub-product" id (e.g. path number) from a dataset. Function should return a (small) integer # If None or not specified, the product has no sub-layers. # "sub_product_extractor": lambda ds: int(s3_path_pattern.search(ds.uris[0]).group("path")), # A prefix used to describe the sub-layer in the GetCapabilities response. # E.g. sub-layer 109 will be described as "Landsat Path 109" # "sub_product_label": "Landsat Path", # Bands to include in time-dimension "pixel drill". # Don't activate in production unless you really know what you're doing. # "band_drill": ["nir", "red", "green", "blue"], # Styles. # # See band_mapper.py # # The various available spectral bands, and ways to combine them # into a single rgb image. # The examples here are ad hoc # "styles": [ # Examples of styles which are linear combinations of the available spectral bands. # { "name": "simple_rgb", "title": "Simple RGB", "abstract": "Simple true-colour image, using the red, green and blue bands", "components": { "red": { "red": 1.0 }, "green": { "green": 1.0 }, "blue": { "blue": 1.0 } }, # The raw band value range to be compressed to an 8 bit range for the output image tiles. # Band values outside this range are clipped to 0 or 255 as appropriate. "scale_range": [0.0, 3000.0] }, { "name": "infra_red", "title": "False colour multi-band infra-red", "abstract": "Simple false-colour image, using the near and short-wave infra-red bands", "components": { "red": { "swir1": 1.0 }, "green": { "swir2": 1.0 }, "blue": { "nir": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "infrared_green", "title": "False colour SWIR, NIR and green", "abstract": "False Colour image with SWIR1->Red, NIR->Green, and Green->Blue", "components": { "red": { "swir1": 1.0 }, "green": { "nir": 1.0 }, "blue": { "green": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "blue", "title": "Spectral band 2 - Blue", "abstract": "Blue band, approximately 453nm to 511nm", "components": { "red": { "blue": 1.0 }, "green": { "blue": 1.0 }, "blue": { "blue": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "green", "title": "Spectral band 3 - Green", "abstract": "Green band, approximately 534nm to 588nm", "components": { "red": { "green": 1.0 }, "green": { "green": 1.0 }, "blue": { "green": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "red", "title": "Spectral band 4 - Red", "abstract": "Red band, roughly 637nm to 672nm", "components": { "red": { "red": 1.0 }, "green": { "red": 1.0 }, "blue": { "red": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "nir", "title": "Spectral band 5 - Near infra-red", "abstract": "Near infra-red band, roughly 853nm to 876nm", "components": { "red": { "nir": 1.0 }, "green": { "nir": 1.0 }, "blue": { "nir": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "swir1", "title": "Spectral band 6 - Short wave infra-red 1", "abstract": "Short wave infra-red band 1, roughly 1575nm to 1647nm", "components": { "red": { "swir1": 1.0 }, "green": { "swir1": 1.0 }, "blue": { "swir1": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "swir2", "title": "Spectral band 7 - Short wave infra-red 2", "abstract": "Short wave infra-red band 2, roughly 2117nm to 2285nm", "components": { "red": { "swir2": 1.0 }, "green": { "swir2": 1.0 }, "blue": { "swir2": 1.0 } }, "scale_range": [0.0, 3000.0] }, { "name": "rgb_ndvi", "title": "NDVI plus RGB", "abstract": "Normalised Difference Vegetation Index (blended with RGB) - a derived index that correlates well with the existence of vegetation", "component_ratio": 0.6, "heat_mapped": True, "index_function": lambda data: (data["nir"] - data["red"]) / (data["nir"] + data["red"]), "needed_bands": ["red", "nir"], # Areas where the index_function returns outside the range are masked. "range": [0.0, 1.0], "components": { "red": { "red": 1.0 }, "green": { "green": 1.0 }, "blue": { "blue": 1.0 } }, "scale_range": [0.0, 3000.0] }, ], # Default style (if request does not specify style) # MUST be defined in the styles list above. # (Looks like Terria assumes this is the first style in the list, but this is # not required by the standard.) "default_style": "simple_rgb", } ] }, { "name": "mangrove_cover", "title": "Mangrove Cover", "abstract": "Mangrove Cover", "products": [ { "label": "Mangrove Cover", "type": "Level3", "variant": "Level 3", "name": "mangrove_cover", "product_name": "mangrove_cover", "min_zoom_factor": 500.0, "zoomed_out_fill_colour": [150, 180, 200, 160], "time_zone": 9, "extent_mask_func": lambda data, band: data["extent"] == 1, "ignore_info_flags": [], "data_manual_merge": False, "always_fetch_bands": ["extent"], "apply_solar_corrections": False, "styles": [ { "name": "mangrove", "title": "Mangrove Cover", "abstract": "Mangrove Cover", "value_map": { "canopy_cover_class": [ { "flags": { "woodland": True }, "values": { "red": 159, "green": 255, "blue": 76 } }, { "flags": { "open_forest": True }, "values": { "red": 94, "green": 204, "blue": 0 } }, { "flags": { "closed_forest": True }, "values": { "red": 59, "green": 127, "blue": 0 } }, ] } } ], # Default style (if request does not specify style) # MUST be defined in the styles list above. # (Looks like Terria assumes this is the first style in the list, but this is # not required by the standard.) "default_style": "mangrove", }, ] }, ]
45.576402
168
0.342338
964bb890edaa67f281e1b4301a9f5a4bb12f8e99
14,774
py
Python
raiden/blockchain_events_handler.py
anmolshl/raiden
f1cecb68cb43a2c00b2f719eadbe83137611a92a
[ "MIT" ]
null
null
null
raiden/blockchain_events_handler.py
anmolshl/raiden
f1cecb68cb43a2c00b2f719eadbe83137611a92a
[ "MIT" ]
null
null
null
raiden/blockchain_events_handler.py
anmolshl/raiden
f1cecb68cb43a2c00b2f719eadbe83137611a92a
[ "MIT" ]
null
null
null
import gevent import structlog from eth_utils import to_canonical_address from raiden.blockchain.events import get_channel_proxies, decode_event_to_internal from raiden.blockchain.state import get_channel_state from raiden.connection_manager import ConnectionManager from raiden.transfer import views from raiden.utils import pex, data_decoder from raiden.transfer.state import ( TransactionChannelNewBalance, TokenNetworkState, ) from raiden.transfer.state_change import ( ContractReceiveChannelClosed, ContractReceiveChannelNew, ContractReceiveChannelNewBalance, ContractReceiveChannelSettled, ContractReceiveChannelUnlock, ContractReceiveNewTokenNetwork, ContractReceiveSecretReveal, ContractReceiveRouteNew, ) from raiden.blockchain.abi import ( EVENT_TOKEN_ADDED, EVENT_TOKEN_ADDED2, EVENT_CHANNEL_NEW, EVENT_CHANNEL_NEW2, EVENT_CHANNEL_NEW_BALANCE, EVENT_CHANNEL_NEW_BALANCE2, EVENT_CHANNEL_WITHDRAW, EVENT_CHANNEL_UNLOCK, EVENT_BALANCE_PROOF_UPDATED, EVENT_TRANSFER_UPDATED, EVENT_CHANNEL_CLOSED, EVENT_CHANNEL_SETTLED, EVENT_CHANNEL_SECRET_REVEALED, EVENT_CHANNEL_SECRET_REVEALED2, ) log = structlog.get_logger(__name__) # pylint: disable=invalid-name def handle_tokennetwork_new(raiden, event, current_block_number): data = event.event_data manager_address = data['channel_manager_address'] registry_address = data['registry_address'] registry = raiden.chain.registry(registry_address) manager_proxy = registry.manager(manager_address) netting_channel_proxies = get_channel_proxies(raiden.chain, raiden.address, manager_proxy) # Install the filters first to avoid missing changes, as a consequence # some events might be applied twice. raiden.blockchain_events.add_channel_manager_listener(manager_proxy) for channel_proxy in netting_channel_proxies: raiden.blockchain_events.add_netting_channel_listener(channel_proxy) token_address = data_decoder(event.event_data['args']['token_address']) token_network_state = TokenNetworkState( manager_address, token_address, ) new_payment_network = ContractReceiveNewTokenNetwork( event.originating_contract, token_network_state, ) raiden.handle_state_change(new_payment_network, current_block_number) def handle_tokennetwork_new2(raiden, event, current_block_number): """ Handles a `TokenNetworkCreated` event. """ data = event.event_data token_network_address = data['token_network_address'] token_network_registry_address = event.originating_contract token_network_registry_proxy = raiden.chain.token_network_registry( token_network_registry_address, ) token_network_proxy = token_network_registry_proxy.token_network(token_network_address) raiden.blockchain_events.add_token_network_listener(token_network_proxy) token_address = data_decoder(event.event_data['args']['token_address']) token_network_state = TokenNetworkState( token_network_address, token_address, ) new_token_network = ContractReceiveNewTokenNetwork( event.originating_contract, token_network_state, ) raiden.handle_state_change(new_token_network, current_block_number) def handle_channel_new(raiden, event, current_block_number): data = event.event_data registry_address = data['registry_address'] token_network_address = event.originating_contract participant1 = data['participant1'] participant2 = data['participant2'] is_participant = raiden.address in (participant1, participant2) if is_participant: channel_proxy = raiden.chain.netting_channel(data['netting_channel']) token_address = channel_proxy.token_address() channel_state = get_channel_state( token_address, token_network_address, raiden.config['reveal_timeout'], channel_proxy, ) new_channel = ContractReceiveChannelNew( token_network_address, channel_state, ) raiden.handle_state_change(new_channel, current_block_number) partner_address = channel_state.partner_state.address connection_manager = raiden.connection_manager_for_token( registry_address, token_address, ) if ConnectionManager.BOOTSTRAP_ADDR != partner_address: raiden.start_health_check_for(partner_address) gevent.spawn(connection_manager.retry_connect, registry_address) # Start the listener *after* the channel is registered, to avoid None # exceptions (and not applying the event state change). # # TODO: install the filter on the same block or previous block in which # the channel state was queried raiden.blockchain_events.add_netting_channel_listener(channel_proxy) else: new_route = ContractReceiveRouteNew( token_network_address, participant1, participant2, ) raiden.handle_state_change(new_route, current_block_number) def handle_channel_new_balance(raiden, event, current_block_number): data = event.event_data registry_address = data['registry_address'] channel_identifier = event.originating_contract token_address = data['token_address'] participant_address = data['participant'] new_balance = data['balance'] deposit_block_number = data['block_number'] previous_channel_state = views.get_channelstate_by_tokenaddress( views.state_from_raiden(raiden), registry_address, token_address, channel_identifier, ) # Channels will only be registered if this node is a participant is_participant = previous_channel_state is not None if is_participant: previous_balance = previous_channel_state.our_state.contract_balance balance_was_zero = previous_balance == 0 token_network_identifier = views.get_token_network_identifier_by_token_address( views.state_from_raiden(raiden), registry_address, token_address, ) deposit_transaction = TransactionChannelNewBalance( participant_address, new_balance, deposit_block_number, ) newbalance_statechange = ContractReceiveChannelNewBalance( token_network_identifier, channel_identifier, deposit_transaction, ) raiden.handle_state_change(newbalance_statechange, current_block_number) if balance_was_zero: connection_manager = raiden.connection_manager_for_token( registry_address, token_address, ) gevent.spawn( connection_manager.join_channel, registry_address, participant_address, new_balance, ) def handle_channel_closed(raiden, event, current_block_number): registry_address = event.event_data['registry_address'] channel_identifier = event.originating_contract data = event.event_data channel_state = views.search_for_channel( views.state_from_raiden(raiden), registry_address, channel_identifier, ) if channel_state: token_network_identifier = views.get_token_network_identifier_by_token_address( views.state_from_raiden(raiden), registry_address, channel_state.token_address, ) channel_closed = ContractReceiveChannelClosed( token_network_identifier, channel_identifier, data['closing_address'], data['block_number'], ) raiden.handle_state_change(channel_closed, current_block_number) def handle_channel_settled(raiden, event, current_block_number): registry_address = event.event_data['registry_address'] data = event.event_data channel_identifier = event.originating_contract channel_state = views.search_for_channel( views.state_from_raiden(raiden), registry_address, channel_identifier, ) if channel_state: token_network_identifier = views.get_token_network_identifier_by_token_address( views.state_from_raiden(raiden), registry_address, channel_state.token_address, ) channel_settled = ContractReceiveChannelSettled( token_network_identifier, channel_identifier, data['block_number'], ) raiden.handle_state_change(channel_settled, current_block_number) def handle_channel_unlock(raiden, event, current_block_number): channel_identifier = event.originating_contract data = event.event_data registry_address = data['registry_address'] channel_state = views.search_for_channel( views.state_from_raiden(raiden), registry_address, channel_identifier, ) if channel_state: unlock_state_change = ContractReceiveChannelUnlock( registry_address, channel_state.token_address, channel_identifier, data['secret'], data['receiver_address'], ) raiden.handle_state_change(unlock_state_change, current_block_number) def handle_secret_revealed(raiden, event, current_block_number): secret_registry_address = event.originating_contract data = event.event_data registeredsecret_state_change = ContractReceiveSecretReveal( secret_registry_address, data['secrethash'], data['secret'], ) raiden.handle_state_change(registeredsecret_state_change, current_block_number) def on_blockchain_event(raiden, event, current_block_number): log.debug( 'EVENT', node=pex(raiden.address), chain_event=event, block_number=current_block_number, ) data = event.event_data if data['event'] == EVENT_TOKEN_ADDED: data['registry_address'] = to_canonical_address(data['args']['registry_address']) data['channel_manager_address'] = to_canonical_address( data['args']['channel_manager_address'], ) handle_tokennetwork_new(raiden, event, current_block_number) elif data['event'] == EVENT_CHANNEL_NEW: data['registry_address'] = to_canonical_address(data['args']['registry_address']) data['participant1'] = to_canonical_address(data['args']['participant1']) data['participant2'] = to_canonical_address(data['args']['participant2']) handle_channel_new(raiden, event, current_block_number) elif data['event'] == EVENT_CHANNEL_NEW_BALANCE: data['registry_address'] = to_canonical_address(data['args']['registry_address']) data['token_address'] = to_canonical_address(data['args']['token_address']) data['participant'] = to_canonical_address(data['args']['participant']) data['balance'] = data['args']['balance'] handle_channel_new_balance(raiden, event, current_block_number) elif data['event'] == EVENT_CHANNEL_CLOSED: data['registry_address'] = to_canonical_address(data['args']['registry_address']) data['closing_address'] = to_canonical_address(data['args']['closing_address']) handle_channel_closed(raiden, event, current_block_number) elif data['event'] == EVENT_CHANNEL_SETTLED: data['registry_address'] = to_canonical_address(data['args']['registry_address']) handle_channel_settled(raiden, event, current_block_number) elif data['event'] == EVENT_CHANNEL_SECRET_REVEALED: data['registry_address'] = to_canonical_address(data['args']['registry_address']) data['receiver_address'] = to_canonical_address(data['args']['receiver_address']) data['secret'] = data['args']['secret'] handle_channel_unlock(raiden, event, current_block_number) # fix for https://github.com/raiden-network/raiden/issues/1508 # balance proof updates are handled in the linked code, so no action is needed here # https://github.com/raiden-network/raiden/blob/da54ef4b20fb006c126fcb091b18269314c2003b/raiden/transfer/channel.py#L1337-L1344 # noqa elif data['event'] == EVENT_TRANSFER_UPDATED: pass else: log.error('Unknown event type', event_name=data['event'], raiden_event=event) def on_blockchain_event2(raiden, event, current_block_number): log.debug('EVENT', node=pex(raiden.address), chain_event=event) event = decode_event_to_internal(event) data = event.event_data if data['args'].get('channel_identifier'): data['channel_identifier'] = data['args'].get('channel_identifier') if data['event'] == EVENT_TOKEN_ADDED2: handle_tokennetwork_new2(raiden, event, current_block_number) elif data['event'] == EVENT_CHANNEL_NEW2: data['settle_timeout'] = data['args']['settle_timeout'] handle_channel_new(raiden, event, current_block_number) elif data['event'] == EVENT_CHANNEL_NEW_BALANCE2: data['deposit'] = data['args']['deposit'] handle_channel_new_balance(raiden, event, current_block_number) elif data['event'] == EVENT_CHANNEL_WITHDRAW: data['withdrawn_amount'] = data['args']['withdrawn_amount'] # handle_channel_withdraw(raiden, event) raise NotImplementedError('handle_channel_withdraw not implemented yet') elif data['event'] == EVENT_CHANNEL_UNLOCK: data['unlocked_amount'] = data['args']['unlocked_amount'] data['returned_tokens'] = data['args']['returned_tokens'] # handle_channel_unlock(raiden, event) raise NotImplementedError('handle_channel_unlock not implemented yet') elif data['event'] == EVENT_BALANCE_PROOF_UPDATED: # balance proof updates are handled in the linked code, so no action is needed here # https://github.com/raiden-network/raiden/blob/da54ef4b20fb006c126fcb091b18269314c2003b/raiden/transfer/channel.py#L1337-L1344 # noqa pass elif data['event'] == EVENT_CHANNEL_CLOSED: handle_channel_closed(raiden, event, current_block_number) elif data['event'] == EVENT_CHANNEL_SETTLED: data['participant1_amount'] = data['args']['participant1_amount'] data['participant2_amount'] = data['args']['participant2_amount'] handle_channel_settled(raiden, event, current_block_number) elif data['event'] == EVENT_CHANNEL_SECRET_REVEALED2: data['secrethash'] = data['args']['secrethash'] data['secret'] = data['args']['secret'] handle_secret_revealed(raiden, event, current_block_number) else: log.error('Unknown event type', event_name=data['event'], raiden_event=event)
37.027569
143
0.715784
70b31fefbd2906d37a52237764a8ef1103f55500
1,255
py
Python
creepycraig_v2/pipelines.py
frankolson/creepycraig_v2
c6a14a6a28928b70ddd93cb5e0a3885b763082aa
[ "MIT" ]
null
null
null
creepycraig_v2/pipelines.py
frankolson/creepycraig_v2
c6a14a6a28928b70ddd93cb5e0a3885b763082aa
[ "MIT" ]
null
null
null
creepycraig_v2/pipelines.py
frankolson/creepycraig_v2
c6a14a6a28928b70ddd93cb5e0a3885b763082aa
[ "MIT" ]
null
null
null
import pymongo from scrapy.conf import settings from creepycraig_v2.items import ApartmentItem, CarItem class ApartmentPipeline(object): def __init__(self): connection = pymongo.MongoClient( settings['MONGODB_SERVER'], settings['MONGODB_PORT'] ) db = connection[settings['MONGODB_DB']] self.collection = db[settings['MONGODB_APA_COLLECTION']] # use the person collection def process_item(self, item, spider): if not isinstance(item, ApartmentItem): return item # return the item to let another pipeline to handle it self.collection.insert(dict(item)) class CarPipeline(object): def __init__(self): connection = pymongo.MongoClient( settings['MONGODB_SERVER'], settings['MONGODB_PORT'] ) db = connection[settings['MONGODB_DB']] self.collection = db[settings['MONGODB_CTO_COLLECTION']] # use the book collection def process_item(self, item, spider): if not isinstance(item, CarItem): return item # return the item to let another pipeline to handle it self.collection.update({'cl_id': item['cl_id']}, dict(item), upsert=True) self.collection.insert(dict(item))
36.911765
92
0.664542
122e31db4b89452d1edd4b98a488c680ce34e129
3,187
py
Python
src/repro/plots/data.py
bouthilx/repro
611734e4eddd6a76dd4c1e7114a28a634a2a75c1
[ "BSD-3-Clause" ]
null
null
null
src/repro/plots/data.py
bouthilx/repro
611734e4eddd6a76dd4c1e7114a28a634a2a75c1
[ "BSD-3-Clause" ]
null
null
null
src/repro/plots/data.py
bouthilx/repro
611734e4eddd6a76dd4c1e7114a28a634a2a75c1
[ "BSD-3-Clause" ]
null
null
null
import random import json from mahler.client import Client mahler_client = Client() db_client = mahler_client.registrar._db._db VERSION_TAGS = ['v4.2.3', 'v4.2.4', 'v4.2.5', 'v4.2.6', 'v5.0.0'] N_POINTS = 10 colors = """\ #8dd3c7 #d3d394 #bebada #fb8072 #80b1d3 #fdb462 #b3de69 #fccde5 #d9d9d9 #bc80bd #ccebc5 #ffed6f""".split("\n") MODELS = ['lenet', 'mobilenetv2', 'vgg11', 'vgg19', 'densenet121', 'densenet201', 'resnet18', 'resnet101'] DATASETS = ['mnist', 'cifar10', 'cifar100'] # points: 10 # models # datasets # colors (for models) # data: # mnist: # lenet: [0.1, 0.3, ...] # mobilenetv2: [0.1, 0.3, ...] # base = dict( models=MODELS, datasets=DATASETS, colors=dict(zip(MODELS, colors)), data=dict()) def dump(fetch_fct): data = dict() for dataset_name in DATASETS: data[dataset_name] = dict() for model_name in MODELS: data[dataset_name][model_name] = fetch_fct(dataset_name, model_name) return data def dump_seed(): base['data'] = dump(fetch_seed) with open('seed.json', 'w') as f: f.write(json.dumps(base)) def dump_hpo(): base['data'] = dump(fetch_hpo) with open('hpo.json', 'w') as f: f.write(json.dumps(base)) def fetch_seed(dataset_name, model_name): data = [] for version in VERSION_TAGS: query = {} query['registry.tags'] = {'$all': [version, model_name, dataset_name, 'seed']} query['registry.status'] = 'Completed' projection = {'output.last.test.error_rate': 1} trials = db_client.tasks.report.find(query, projection=projection) for trial in trials: try: data.append(trial['output']['last']['test']['error_rate']) print('Adding true {:>20} {:>20}'.format(dataset_name, model_name)) except KeyError: pass if len(data) >= N_POINTS: break while len(data) < N_POINTS: print('Adding fake {:>20} {:>20}'.format(dataset_name, model_name)) data.append(random.random()) return data def fetch_hpo(dataset_name, model_name): data = [] for version in VERSION_TAGS: query = {} query['registry.tags'] = {'$all': [version, model_name, dataset_name, 'distrib', 'min']} query['registry.status'] = 'Completed' projection = {'output.last.test.error_rate': 1} trials = db_client.tasks.report.find(query, projection=projection) for trial in trials: try: data.append(trial['output']['last']['test']['error_rate']) print('Adding true {:>20} {:>20}'.format(dataset_name, model_name)) except KeyError: pass if len(data) >= N_POINTS: break while len(data) < N_POINTS: print('Adding fake {:>20} {:>20}'.format(dataset_name, model_name)) data.append(random.random()) return data if __name__ == "__main__": print(" ---") print(" SEEDS") print(" ---") dump_seed() print("\n\n") print(" ---") print(" HPO") print(" ---") dump_hpo()
23.433824
106
0.571384
9773174732d9289b9b379fce6d8f8fd06584e872
2,055
py
Python
fn_stats.py
newsreader/vua-srl-postprocess
0b46bf0235c27444aff1bffb647e2143a7c2d332
[ "Apache-2.0" ]
null
null
null
fn_stats.py
newsreader/vua-srl-postprocess
0b46bf0235c27444aff1bffb647e2143a7c2d332
[ "Apache-2.0" ]
null
null
null
fn_stats.py
newsreader/vua-srl-postprocess
0b46bf0235c27444aff1bffb647e2143a7c2d332
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python from KafNafParserPy import * from rdflib import URIRef, Namespace from rdflib.namespace import RDF,Namespace, NamespaceManager from rdflib.graph import Graph import sys import os path='example' predicates_pos_fn = 0 predicates_neg_fn = 0 predicates_fn_total=0 roles_pos_fn = 0 roles_neg_fn = 0 roles_fn_total=0 for root, dirs, files in os.walk(path): for inputfile in files: try: # Parse using the KafNafParser my_parser = KafNafParser(root + "/" + inputfile) except: continue # Iterate over the predicates and check for ESO predicates in the external references for predicate in my_parser.get_predicates(): for ext_ref in predicate.get_external_references(): if ext_ref.get_resource()=='FrameNet+': predicates_pos_fn+=1 elif ext_ref.get_resource()=='FrameNet-': predicates_neg_fn+=1 elif ext_ref.get_resource()=='FrameNet': predicates_fn_total+=1 # When there is an ESO choice, iterate through the roles and identify the right FrameNet meanings there as well for role in predicate.get_roles(): for role_ext_ref in role.get_external_references(): if role_ext_ref.get_resource()=='FrameNet+': roles_pos_fn+=1 elif role_ext_ref.get_resource()=='FrameNet-': roles_neg_fn+=1 elif role_ext_ref.get_resource()=='FrameNet': roles_fn_total+=1 print "Positive FrameNet predicates: " + str(predicates_pos_fn) print "Negative FrameNet predicates:" + str(predicates_neg_fn) print "Unjudged FrameNet predicates: " + str(predicates_fn_total) print "Positive FrameNet roles: " + str(roles_pos_fn) print "Negative FrameNet roles:" + str(roles_neg_fn) print "Unjudged FrameNet roles: " + str(roles_fn_total)
34.25
127
0.624818
8189a1ca7926edd8b95c8a4bc8cffd0b233e4cce
8,958
py
Python
hubspot/crm/companies/models/error.py
cclauss/hubspot-api-python
7c60c0f572b98c73e1f1816bf5981396a42735f6
[ "Apache-2.0" ]
null
null
null
hubspot/crm/companies/models/error.py
cclauss/hubspot-api-python
7c60c0f572b98c73e1f1816bf5981396a42735f6
[ "Apache-2.0" ]
null
null
null
hubspot/crm/companies/models/error.py
cclauss/hubspot-api-python
7c60c0f572b98c73e1f1816bf5981396a42735f6
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Companies No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v3 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from hubspot.crm.companies.configuration import Configuration class Error(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'message': 'str', 'correlation_id': 'str', 'category': 'str', 'sub_category': 'str', 'errors': 'list[ErrorDetail]', 'context': 'dict(str, list[str])', 'links': 'dict(str, str)' } attribute_map = { 'message': 'message', 'correlation_id': 'correlationId', 'category': 'category', 'sub_category': 'subCategory', 'errors': 'errors', 'context': 'context', 'links': 'links' } def __init__(self, message=None, correlation_id=None, category=None, sub_category=None, errors=None, context=None, links=None, local_vars_configuration=None): # noqa: E501 """Error - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._message = None self._correlation_id = None self._category = None self._sub_category = None self._errors = None self._context = None self._links = None self.discriminator = None self.message = message self.correlation_id = correlation_id self.category = category if sub_category is not None: self.sub_category = sub_category if errors is not None: self.errors = errors if context is not None: self.context = context if links is not None: self.links = links @property def message(self): """Gets the message of this Error. # noqa: E501 A human readable message describing the error along with remediation steps where appropriate # noqa: E501 :return: The message of this Error. # noqa: E501 :rtype: str """ return self._message @message.setter def message(self, message): """Sets the message of this Error. A human readable message describing the error along with remediation steps where appropriate # noqa: E501 :param message: The message of this Error. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and message is None: # noqa: E501 raise ValueError("Invalid value for `message`, must not be `None`") # noqa: E501 self._message = message @property def correlation_id(self): """Gets the correlation_id of this Error. # noqa: E501 A unique identifier for the request. Include this value with any error reports or support tickets # noqa: E501 :return: The correlation_id of this Error. # noqa: E501 :rtype: str """ return self._correlation_id @correlation_id.setter def correlation_id(self, correlation_id): """Sets the correlation_id of this Error. A unique identifier for the request. Include this value with any error reports or support tickets # noqa: E501 :param correlation_id: The correlation_id of this Error. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and correlation_id is None: # noqa: E501 raise ValueError("Invalid value for `correlation_id`, must not be `None`") # noqa: E501 self._correlation_id = correlation_id @property def category(self): """Gets the category of this Error. # noqa: E501 The error category # noqa: E501 :return: The category of this Error. # noqa: E501 :rtype: str """ return self._category @category.setter def category(self, category): """Sets the category of this Error. The error category # noqa: E501 :param category: The category of this Error. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and category is None: # noqa: E501 raise ValueError("Invalid value for `category`, must not be `None`") # noqa: E501 self._category = category @property def sub_category(self): """Gets the sub_category of this Error. # noqa: E501 A specific category that contains more specific detail about the error # noqa: E501 :return: The sub_category of this Error. # noqa: E501 :rtype: str """ return self._sub_category @sub_category.setter def sub_category(self, sub_category): """Sets the sub_category of this Error. A specific category that contains more specific detail about the error # noqa: E501 :param sub_category: The sub_category of this Error. # noqa: E501 :type: str """ self._sub_category = sub_category @property def errors(self): """Gets the errors of this Error. # noqa: E501 further information about the error # noqa: E501 :return: The errors of this Error. # noqa: E501 :rtype: list[ErrorDetail] """ return self._errors @errors.setter def errors(self, errors): """Sets the errors of this Error. further information about the error # noqa: E501 :param errors: The errors of this Error. # noqa: E501 :type: list[ErrorDetail] """ self._errors = errors @property def context(self): """Gets the context of this Error. # noqa: E501 Context about the error condition # noqa: E501 :return: The context of this Error. # noqa: E501 :rtype: dict(str, list[str]) """ return self._context @context.setter def context(self, context): """Sets the context of this Error. Context about the error condition # noqa: E501 :param context: The context of this Error. # noqa: E501 :type: dict(str, list[str]) """ self._context = context @property def links(self): """Gets the links of this Error. # noqa: E501 A map of link names to associated URIs containing documentation about the error or recommended remediation steps # noqa: E501 :return: The links of this Error. # noqa: E501 :rtype: dict(str, str) """ return self._links @links.setter def links(self, links): """Sets the links of this Error. A map of link names to associated URIs containing documentation about the error or recommended remediation steps # noqa: E501 :param links: The links of this Error. # noqa: E501 :type: dict(str, str) """ self._links = links def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Error): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, Error): return True return self.to_dict() != other.to_dict()
30.469388
176
0.599576
fcdbf80092bca71a094e68e797eaf72ec772df2d
1,590
py
Python
internal/notes/builtin-SAVE/packages/py-netifaces/package.py
HPCToolkit/hpctest
5ff4455582bf39e75530a31badcf6142081b386b
[ "BSD-3-Clause" ]
1
2019-01-17T20:07:19.000Z
2019-01-17T20:07:19.000Z
internal/notes/builtin-SAVE/packages/py-netifaces/package.py
HPCToolkit/hpctest
5ff4455582bf39e75530a31badcf6142081b386b
[ "BSD-3-Clause" ]
null
null
null
internal/notes/builtin-SAVE/packages/py-netifaces/package.py
HPCToolkit/hpctest
5ff4455582bf39e75530a31badcf6142081b386b
[ "BSD-3-Clause" ]
2
2019-08-06T18:13:57.000Z
2021-11-05T18:19:49.000Z
############################################################################## # Copyright (c) 2013-2017, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class PyNetifaces(PythonPackage): """Portable network interface information""" homepage = "https://bitbucket.org/al45tair/netifaces" url = "https://pypi.io/packages/source/n/netifaces/netifaces-0.10.5.tar.gz" version('0.10.5', '5b4d1f1310ed279e6df27ef3a9b71519') depends_on('py-setuptools', type='build')
42.972973
84
0.679874
b66759bba3a5b2f1256a998264ca2c4c886c4fae
2,505
py
Python
chainer_chemistry/utils/permutation.py
jo7ueb/chainer-chemistry
74286aef6b53f272d1677b8e226bb7200a3922a8
[ "MIT" ]
null
null
null
chainer_chemistry/utils/permutation.py
jo7ueb/chainer-chemistry
74286aef6b53f272d1677b8e226bb7200a3922a8
[ "MIT" ]
null
null
null
chainer_chemistry/utils/permutation.py
jo7ueb/chainer-chemistry
74286aef6b53f272d1677b8e226bb7200a3922a8
[ "MIT" ]
null
null
null
import numpy def permute_node(node, permutation_index, axis=-1): """Permute index of `node` array Args: node (numpy.ndarray): the array whose `axis` to be permuted. permutation_index (numpy.ndarray): 1d numpy array whose size should be same as permutation axis of `node`. axis (int): permutation axis. Returns (numpy.ndarray): permutated `node` array. """ if node.shape[axis] != len(permutation_index): raise ValueError( 'node.shape[{}] = {} and len(permutation_index) = {} do not match!' .format(axis, node.shape[axis], len(permutation_index))) out_node = numpy.take(node, permutation_index, axis=axis).copy() return out_node def permute_adj(adj, permutation_index, axis=None): """Permute index of adjacency matrix array Args: adj (numpy.ndarray): the array whose `axis` to be permuted. It is considered as adjacency matrix. permutation_index (numpy.ndarray): 1d numpy array whose size should be same as permutation axis of `node`. axis (list or tuple or None): list of 2d int, indicates the permutation axis. When None is passed (default), it uses -1 and -2 as `axis`, it means that last 2 axis are considered to be permuted. Returns (numpy.ndarray): permutated `adj` array. """ if axis is not None: if not isinstance(axis, (list, tuple)): raise TypeError('axis must be list or tuple, got {}' .format(type(axis))) if len(axis) != 2: raise ValueError('axis length must 2, got {}'.format(len(axis))) else: axis = [-1, -2] # default value is to use last 2 axis num_node = len(permutation_index) for ax in axis: if adj.shape[ax] != len(permutation_index): raise ValueError( 'adj.shape[{}] = {} and len(permutation_index) = {} do not ' 'match!'.format(axis, adj.shape[axis], len(permutation_index))) out_adj = numpy.zeros_like(adj) ndim = adj.ndim for i in range(num_node): for j in range(num_node): in_indices = [slice(None)] * ndim out_indices = [slice(None)] * ndim in_indices[axis[0]] = i in_indices[axis[1]] = j out_indices[axis[0]] = permutation_index[i] out_indices[axis[1]] = permutation_index[j] out_adj[in_indices] = adj[out_indices] return out_adj
37.38806
79
0.603593
c05c6c62691cf1a1fee00855c8cc2995d5212233
3,209
py
Python
setup.py
frmdstryr/atom
37563874ecc732db1554d5a90824a4428413ae7e
[ "BSD-3-Clause-Clear" ]
1
2021-04-10T13:32:49.000Z
2021-04-10T13:32:49.000Z
setup.py
frmdstryr/atom
37563874ecc732db1554d5a90824a4428413ae7e
[ "BSD-3-Clause-Clear" ]
null
null
null
setup.py
frmdstryr/atom
37563874ecc732db1554d5a90824a4428413ae7e
[ "BSD-3-Clause-Clear" ]
null
null
null
#------------------------------------------------------------------------------ # Copyright (c) 2013-2019, Nucleic Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #------------------------------------------------------------------------------ import os import sys from setuptools import setup, find_packages, Extension from setuptools.command.build_ext import build_ext sys.path.insert(0, os.path.abspath('.')) from atom.version import __version__ ext_modules = [ Extension( 'atom.catom', [ 'atom/src/atomlist.cpp', 'atom/src/atomref.cpp', 'atom/src/catom.cpp', 'atom/src/catommodule.cpp', 'atom/src/defaultvaluebehavior.cpp', 'atom/src/delattrbehavior.cpp', 'atom/src/enumtypes.cpp', 'atom/src/eventbinder.cpp', 'atom/src/getattrbehavior.cpp', 'atom/src/member.cpp', 'atom/src/memberchange.cpp', 'atom/src/methodwrapper.cpp', 'atom/src/observerpool.cpp', 'atom/src/postgetattrbehavior.cpp', 'atom/src/postsetattrbehavior.cpp', 'atom/src/postvalidatebehavior.cpp', 'atom/src/propertyhelper.cpp', 'atom/src/setattrbehavior.cpp', 'atom/src/signalconnector.cpp', 'atom/src/validatebehavior.cpp', ], language='c++', ), Extension( 'atom.datastructures.sortedmap', ['atom/src/sortedmap.cpp'], language='c++', ), ] class BuildExt(build_ext): """ A custom build extension for adding compiler-specific options. """ c_opts = { 'msvc': ['/EHsc'] } def initialize_options(self): build_ext.initialize_options(self) self.debug = False def build_extensions(self): ct = self.compiler.compiler_type opts = self.c_opts.get(ct, []) for ext in self.extensions: ext.extra_compile_args = opts build_ext.build_extensions(self) setup( name='atom', version=__version__, author='The Nucleic Development Team', author_email='[email protected]', url='https://github.com/nucleic/atom', description='Memory efficient Python objects', long_description=open('README.rst').read(), license='BSD', classifiers=[ # https://pypi.org/pypi?%3Aaction=list_classifiers 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: Implementation :: CPython', ], python_requires='>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*', install_requires=['setuptools'], packages=find_packages(exclude=['tests', 'tests.*']), ext_modules=ext_modules, cmdclass={'build_ext': BuildExt}, )
32.744898
79
0.570583
316d7a245fe9c899356815c10029a5d41fb46883
1,128
py
Python
camera.py
williamliusea/CarND-Advanced-Lane-Lines
cccbfdffbafe4d457242bac8a5e74fc0ea38d3b1
[ "MIT" ]
null
null
null
camera.py
williamliusea/CarND-Advanced-Lane-Lines
cccbfdffbafe4d457242bac8a5e74fc0ea38d3b1
[ "MIT" ]
null
null
null
camera.py
williamliusea/CarND-Advanced-Lane-Lines
cccbfdffbafe4d457242bac8a5e74fc0ea38d3b1
[ "MIT" ]
null
null
null
import matplotlib.image as mpimg import glob import numpy as np import cv2 import pickle import sys class Camera(): def load(self, filename): self.mtx, self.dist = pickle.load( open( filename, "rb" ) ) def calibration(self, filename = None, nx = 9, ny = 6): images = glob.glob('camera_cal/*.jpg') objp = np.zeros((nx*ny,3), np.float32) objp[:,:2] = np.mgrid[0:nx,0:ny].T.reshape(-1,2) objpoints = [] imgpoints = [] for name in images: img = mpimg.imread(name) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, (nx,ny), None) if ret == True: imgpoints.append(corners) objpoints.append(objp) ret, self.mtx, self.dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None) if (filename != None): pickle.dump((self.mtx, self.dist), open( filename, "wb")) def undistort(self, img): undist = cv2.undistort(img, self.mtx, self.dist, None, self.mtx) return undist
33.176471
120
0.587766
5703f22b1714a6700ba7f6c927c9101fec90ccad
1,837
py
Python
xiaobu/robot/constants.py
hanyanze/FS_AILPB
7756551cf926aa6296ec851dd696c97d56e06bca
[ "Apache-2.0" ]
null
null
null
xiaobu/robot/constants.py
hanyanze/FS_AILPB
7756551cf926aa6296ec851dd696c97d56e06bca
[ "Apache-2.0" ]
null
null
null
xiaobu/robot/constants.py
hanyanze/FS_AILPB
7756551cf926aa6296ec851dd696c97d56e06bca
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8-*- import os import shutil # Wukong main directory APP_PATH = os.path.normpath(os.path.join( os.path.dirname(os.path.abspath(__file__)), os.pardir)) LIB_PATH = os.path.join(APP_PATH, "robot") DATA_PATH = os.path.join(APP_PATH, "static") TEMP_PATH = os.path.join(APP_PATH, "temp") TEMPLATE_PATH = os.path.join(APP_PATH, "server", "templates") PLUGIN_PATH = os.path.join(APP_PATH, "plugins") DEFAULT_CONFIG_NAME = 'default.yml' CUSTOM_CONFIG_NAME = 'config.yml' CONFIG_PATH = os.path.expanduser( os.getenv('WUKONG_CONFIG', '~/xiaobu-smartHome/.xiaobu') ) CONTRIB_PATH = os.path.expanduser( os.getenv('WUKONG_CONFIG', '~/xiaobu-smartHome/.xiaobu/contrib') ) CUSTOM_PATH = os.path.expanduser( os.getenv('WUKONG_CONFIG', '~/xiaobu-smartHome/.xiaobu/custom') ) def getConfigPath(): """ 获取配置文件的路径 returns: 配置文件的存储路径 """ return os.path.join(CONFIG_PATH, CUSTOM_CONFIG_NAME) def getQAPath(): """ 获取QA数据集文件的路径 returns: QA数据集文件的存储路径 """ qa_source = os.path.join(DATA_PATH, 'qa.csv') qa_dst = os.path.join(CONFIG_PATH, 'qa.csv') if not os.path.exists(qa_dst): shutil.copyfile(qa_source, qa_dst) return qa_dst def getConfigData(*fname): """ 获取配置目录下的指定文件的路径 :param *fname: 指定文件名。如果传多个,则自动拼接 :returns: 配置目录下的某个文件的存储路径 """ return os.path.join(CONFIG_PATH, *fname) def getData(*fname): """ 获取资源目录下指定文件的路径 :param *fname: 指定文件名。如果传多个,则自动拼接 :returns: 配置文件的存储路径 """ return os.path.join(DATA_PATH, *fname) def getDefaultConfigPath(): return getData(DEFAULT_CONFIG_NAME) def newConfig(): shutil.copyfile(getDefaultConfigPath(), getConfigPath()) def getHotwordModel(fname): if os.path.exists(getData(fname)): return getData(fname) else: return getConfigData(fname)
23.857143
68
0.685357
e7d4781c8975496cf4f97dd3003d2a1395f3a4cc
7,650
py
Python
devel/lib/python2.7/dist-packages/ferns_detector/msg/_ModelStatus.py
gentaiscool/ros-vrep-slam
afae1b35eb2538fcc9ff68952b85c5e4791c46d2
[ "MIT" ]
39
2018-08-28T21:28:07.000Z
2022-03-12T10:30:40.000Z
devel/lib/python2.7/dist-packages/ferns_detector/msg/_ModelStatus.py
zliucr/ros-vrep-slam
afae1b35eb2538fcc9ff68952b85c5e4791c46d2
[ "MIT" ]
1
2019-03-14T09:23:56.000Z
2019-04-27T15:54:53.000Z
devel/lib/python2.7/dist-packages/ferns_detector/msg/_ModelStatus.py
zliucr/ros-vrep-slam
afae1b35eb2538fcc9ff68952b85c5e4791c46d2
[ "MIT" ]
14
2018-07-12T06:59:48.000Z
2021-03-31T08:27:39.000Z
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from ferns_detector/ModelStatus.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import std_msgs.msg class ModelStatus(genpy.Message): _md5sum = "6f51fe3ba1a4dacfef45b8036b90a8d3" _type = "ferns_detector/ModelStatus" _has_header = True #flag to mark the presence of a Header object _full_text = """Header header string model bool loaded bool active ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs') # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs') # time-handling sugar is provided by the client library time stamp #Frame this data is associated with # 0: no frame # 1: global frame string frame_id """ __slots__ = ['header','model','loaded','active'] _slot_types = ['std_msgs/Header','string','bool','bool'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: header,model,loaded,active :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(ModelStatus, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.header is None: self.header = std_msgs.msg.Header() if self.model is None: self.model = '' if self.loaded is None: self.loaded = False if self.active is None: self.active = False else: self.header = std_msgs.msg.Header() self.model = '' self.loaded = False self.active = False def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_3I().pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.model length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_2B().pack(_x.loaded, _x.active)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.header is None: self.header = std_msgs.msg.Header() end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8') else: self.header.frame_id = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.model = str[start:end].decode('utf-8') else: self.model = str[start:end] _x = self start = end end += 2 (_x.loaded, _x.active,) = _get_struct_2B().unpack(str[start:end]) self.loaded = bool(self.loaded) self.active = bool(self.active) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_3I().pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.model length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_2B().pack(_x.loaded, _x.active)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.header is None: self.header = std_msgs.msg.Header() end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8') else: self.header.frame_id = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.model = str[start:end].decode('utf-8') else: self.model = str[start:end] _x = self start = end end += 2 (_x.loaded, _x.active,) = _get_struct_2B().unpack(str[start:end]) self.loaded = bool(self.loaded) self.active = bool(self.active) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_3I = None def _get_struct_3I(): global _struct_3I if _struct_3I is None: _struct_3I = struct.Struct("<3I") return _struct_3I _struct_2B = None def _get_struct_2B(): global _struct_2B if _struct_2B is None: _struct_2B = struct.Struct("<2B") return _struct_2B
33.552632
145
0.621307
5537d64bd8b1a142b9f516e683e538eedb2c9003
9,635
py
Python
configs/example/se.py
mandaltj/gem5_chips
b9c0c602241ffda7851c1afb32fa01f295bb98fd
[ "BSD-3-Clause" ]
17
2019-02-05T03:44:40.000Z
2022-03-31T07:34:08.000Z
configs/example/se.py
mandaltj/gem5_chips
b9c0c602241ffda7851c1afb32fa01f295bb98fd
[ "BSD-3-Clause" ]
null
null
null
configs/example/se.py
mandaltj/gem5_chips
b9c0c602241ffda7851c1afb32fa01f295bb98fd
[ "BSD-3-Clause" ]
12
2019-03-15T06:29:25.000Z
2022-02-01T19:37:31.000Z
# Copyright (c) 2012-2013 ARM Limited # All rights reserved. # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Copyright (c) 2006-2008 The Regents of The University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Steve Reinhardt # Simple test script # # "m5 test.py" from __future__ import print_function import optparse import sys import os import m5 from m5.defines import buildEnv from m5.objects import * from m5.util import addToPath, fatal, warn addToPath('../') from ruby import Ruby from common import Options from common import Simulation from common import CacheConfig from common import CpuConfig from common import BPConfig from common import MemConfig from common.Caches import * from common.cpu2000 import * def get_processes(options): """Interprets provided options and returns a list of processes""" multiprocesses = [] inputs = [] outputs = [] errouts = [] pargs = [] workloads = options.cmd.split(';') if options.input != "": inputs = options.input.split(';') if options.output != "": outputs = options.output.split(';') if options.errout != "": errouts = options.errout.split(';') if options.options != "": pargs = options.options.split(';') idx = 0 for wrkld in workloads: process = Process(pid = 100 + idx) process.executable = wrkld process.cwd = os.getcwd() if options.env: with open(options.env, 'r') as f: process.env = [line.rstrip() for line in f] if len(pargs) > idx: process.cmd = [wrkld] + pargs[idx].split() else: process.cmd = [wrkld] if len(inputs) > idx: process.input = inputs[idx] if len(outputs) > idx: process.output = outputs[idx] if len(errouts) > idx: process.errout = errouts[idx] multiprocesses.append(process) idx += 1 if options.smt: assert(options.cpu_type == "DerivO3CPU") return multiprocesses, idx else: return multiprocesses, 1 parser = optparse.OptionParser() Options.addCommonOptions(parser) Options.addSEOptions(parser) if '--ruby' in sys.argv: Ruby.define_options(parser) (options, args) = parser.parse_args() if args: print("Error: script doesn't take any positional arguments") sys.exit(1) multiprocesses = [] numThreads = 1 if options.bench: apps = options.bench.split("-") if len(apps) != options.num_cpus: print("number of benchmarks not equal to set num_cpus!") sys.exit(1) for app in apps: try: if buildEnv['TARGET_ISA'] == 'alpha': exec("workload = %s('alpha', 'tru64', '%s')" % ( app, options.spec_input)) elif buildEnv['TARGET_ISA'] == 'arm': exec("workload = %s('arm_%s', 'linux', '%s')" % ( app, options.arm_iset, options.spec_input)) else: exec("workload = %s(buildEnv['TARGET_ISA', 'linux', '%s')" % ( app, options.spec_input)) multiprocesses.append(workload.makeProcess()) except: print("Unable to find workload for %s: %s" % (buildEnv['TARGET_ISA'], app), file=sys.stderr) sys.exit(1) elif options.cmd: multiprocesses, numThreads = get_processes(options) else: print("No workload specified. Exiting!\n", file=sys.stderr) sys.exit(1) (CPUClass, test_mem_mode, FutureClass) = Simulation.setCPUClass(options) CPUClass.numThreads = numThreads # Check -- do not allow SMT with multiple CPUs if options.smt and options.num_cpus > 1: fatal("You cannot use SMT with multiple CPUs!") np = options.num_cpus system = System(cpu = [CPUClass(cpu_id=i) for i in xrange(np)], mem_mode = test_mem_mode, mem_ranges = [AddrRange(options.mem_size)], cache_line_size = options.cacheline_size) if numThreads > 1: system.multi_thread = True # Create a top-level voltage domain system.voltage_domain = VoltageDomain(voltage = options.sys_voltage) # Create a source clock for the system and set the clock period system.clk_domain = SrcClockDomain(clock = options.sys_clock, voltage_domain = system.voltage_domain) # Create a CPU voltage domain system.cpu_voltage_domain = VoltageDomain() # Create a separate clock domain for the CPUs system.cpu_clk_domain = SrcClockDomain(clock = options.cpu_clock, voltage_domain = system.cpu_voltage_domain) # If elastic tracing is enabled, then configure the cpu and attach the elastic # trace probe if options.elastic_trace_en: CpuConfig.config_etrace(CPUClass, system.cpu, options) # All cpus belong to a common cpu_clk_domain, therefore running at a common # frequency. for cpu in system.cpu: cpu.clk_domain = system.cpu_clk_domain if CpuConfig.is_kvm_cpu(CPUClass) or CpuConfig.is_kvm_cpu(FutureClass): if buildEnv['TARGET_ISA'] == 'x86': system.kvm_vm = KvmVM() for process in multiprocesses: process.useArchPT = True process.kvmInSE = True else: fatal("KvmCPU can only be used in SE mode with x86") # Sanity check if options.simpoint_profile: if not CpuConfig.is_noncaching_cpu(CPUClass): fatal("SimPoint/BPProbe should be done with an atomic cpu") if np > 1: fatal("SimPoint generation not supported with more than one CPUs") for i in xrange(np): if options.smt: system.cpu[i].workload = multiprocesses elif len(multiprocesses) == 1: system.cpu[i].workload = multiprocesses[0] else: system.cpu[i].workload = multiprocesses[i] if options.simpoint_profile: system.cpu[i].addSimPointProbe(options.simpoint_interval) if options.checker: system.cpu[i].addCheckerCpu() if options.bp_type: bpClass = BPConfig.get(options.bp_type) system.cpu[i].branchPred = bpClass() system.cpu[i].createThreads() if options.ruby: Ruby.create_system(options, False, system) assert(options.num_cpus == len(system.ruby._cpu_ports)) system.ruby.clk_domain = SrcClockDomain(clock = options.ruby_clock, voltage_domain = system.voltage_domain) for i in xrange(np): ruby_port = system.ruby._cpu_ports[i] # Create the interrupt controller and connect its ports to Ruby # Note that the interrupt controller is always present but only # in x86 does it have message ports that need to be connected system.cpu[i].createInterruptController() # Connect the cpu's cache ports to Ruby system.cpu[i].icache_port = ruby_port.slave system.cpu[i].dcache_port = ruby_port.slave if buildEnv['TARGET_ISA'] == 'x86': system.cpu[i].interrupts[0].pio = ruby_port.master system.cpu[i].interrupts[0].int_master = ruby_port.slave system.cpu[i].interrupts[0].int_slave = ruby_port.master system.cpu[i].itb.walker.port = ruby_port.slave system.cpu[i].dtb.walker.port = ruby_port.slave else: MemClass = Simulation.setMemClass(options) system.membus = SystemXBar() system.system_port = system.membus.slave CacheConfig.config_cache(options, system) MemConfig.config_mem(options, system) m5.ticks.setGlobalFrequency('500ps') m5.disableAllListeners() root = Root(full_system = False, system = system) Simulation.run(options, root, system, FutureClass)
34.658273
79
0.6767
7b1219818b3e56cfa4a110d3476bc5d633a4a5f4
213
py
Python
SensorApp/apps.py
rkmakwana/SensorApp
a8ea03b4981ea8607d92a7682201714cb1d6b4ae
[ "MIT" ]
null
null
null
SensorApp/apps.py
rkmakwana/SensorApp
a8ea03b4981ea8607d92a7682201714cb1d6b4ae
[ "MIT" ]
null
null
null
SensorApp/apps.py
rkmakwana/SensorApp
a8ea03b4981ea8607d92a7682201714cb1d6b4ae
[ "MIT" ]
null
null
null
from importlib import import_module from django.apps import AppConfig as BaseAppConfig class AppConfig(BaseAppConfig): name = "SensorApp" def ready(self): import_module("SensorApp.receivers")
17.75
50
0.746479
66664fe09304a80eefc560e1429ec847ffd02502
303
py
Python
tests/test_unsubscribe.py
Squad002/GoOutSafe-Monolith
4ee5a32668730626ee5bd314c98515e7d7253e13
[ "MIT" ]
null
null
null
tests/test_unsubscribe.py
Squad002/GoOutSafe-Monolith
4ee5a32668730626ee5bd314c98515e7d7253e13
[ "MIT" ]
null
null
null
tests/test_unsubscribe.py
Squad002/GoOutSafe-Monolith
4ee5a32668730626ee5bd314c98515e7d7253e13
[ "MIT" ]
null
null
null
from urllib.parse import urlparse from datetime import date from flask import session from .fixtures import app, client, db from . import helpers from monolith.models import User def test_unsubscribe_view_is_available(client): res = client.get("/unsubscribe") assert res.status_code == 302
20.2
47
0.778878
6306c56584d39080f88d446782a6590a48b715d0
482
py
Python
data/scripts/templates/object/tangible/item/quest/hero_of_tatooine/shared_explosives.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/tangible/item/quest/hero_of_tatooine/shared_explosives.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/tangible/item/quest/hero_of_tatooine/shared_explosives.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Tangible() result.template = "object/tangible/item/quest/hero_of_tatooine/shared_explosives.iff" result.attribute_template_id = -1 result.stfName("quest_item_n","hero_of_tatooine_explosives") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
28.352941
86
0.742739
7c8dd78e8d151a58b4d131817361f5a11ed96177
8,456
py
Python
yolo.py
AaronJny/tf2-keras-yolo3
c68daf377f4155d8703d2b05bcc61d8adabf3115
[ "MIT" ]
36
2019-12-22T03:35:00.000Z
2022-01-12T03:57:44.000Z
yolo.py
LiAnGGGGGG/tf2-keras-yolo3
c68daf377f4155d8703d2b05bcc61d8adabf3115
[ "MIT" ]
2
2020-09-22T16:57:13.000Z
2021-08-25T02:31:53.000Z
yolo.py
LiAnGGGGGG/tf2-keras-yolo3
c68daf377f4155d8703d2b05bcc61d8adabf3115
[ "MIT" ]
19
2019-12-24T01:35:52.000Z
2021-12-10T09:24:24.000Z
# -*- coding: utf-8 -*- """ Class definition of YOLO_v3 style detection model on image and video """ import colorsys import os from timeit import default_timer as timer import numpy as np import tensorflow as tf from PIL import Image, ImageFont, ImageDraw from tensorflow.keras.layers import Input from tensorflow.keras.models import load_model from tensorflow.keras.utils import multi_gpu_model import settings from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body from yolo3.utils import letterbox_image class YOLO(object): _defaults = { "model_path": settings.DEFAULT_MODEL_PATH, "anchors_path": settings.DEFAULT_ANCHORS_PATH, "classes_path": settings.DEFAULT_CLASSES_PATH, "score": settings.SCORE, "iou": settings.IOU, "model_image_size": settings.MODEL_IMAGE_SIZE, "gpu_num": settings.GPU_NUM, } @classmethod def get_defaults(cls, n): if n in cls._defaults: return cls._defaults[n] else: return "Unrecognized attribute name '" + n + "'" def __init__(self, **kwargs): self.__dict__.update(self._defaults) # set up default values self.__dict__.update(kwargs) # and update with user overrides self.class_names = self._get_class() self.anchors = self._get_anchors() self.load_yolo_model() def _get_class(self): classes_path = os.path.expanduser(self.classes_path) with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def _get_anchors(self): anchors_path = os.path.expanduser(self.anchors_path) with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def load_yolo_model(self): model_path = os.path.expanduser(self.model_path) assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.' # Load model, or construct model and load weights. num_anchors = len(self.anchors) num_classes = len(self.class_names) is_tiny_version = num_anchors == 6 # default setting try: self.yolo_model = load_model(model_path, compile=False) except: self.yolo_model = tiny_yolo_body(Input(shape=(None, None, 3)), num_anchors // 2, num_classes) \ if is_tiny_version else yolo_body(Input(shape=(None, None, 3)), num_anchors // 3, num_classes) self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match else: assert self.yolo_model.layers[-1].output_shape[-1] == \ num_anchors / len(self.yolo_model.output) * (num_classes + 5), \ 'Mismatch between model and given anchor and class sizes' print('{} model, anchors, and classes loaded.'.format(model_path)) # Generate colors for drawing bounding boxes. hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) np.random.seed(10101) # Fixed seed for consistent colors across runs. np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes. np.random.seed(None) # Reset seed to default. @tf.function def compute_output(self, image_data, image_shape): # Generate output tensor targets for filtered bounding boxes. # self.input_image_shape = K.placeholder(shape=(2,)) self.input_image_shape = tf.constant(image_shape) if self.gpu_num >= 2: self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num) boxes, scores, classes = yolo_eval(self.yolo_model(image_data), self.anchors, len(self.class_names), self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou) return boxes, scores, classes def detect_image(self, image): start = timer() if self.model_image_size != (None, None): assert self.model_image_size[0] % 32 == 0, 'Multiples of 32 required' assert self.model_image_size[1] % 32 == 0, 'Multiples of 32 required' boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size))) else: new_image_size = (image.width - (image.width % 32), image.height - (image.height % 32)) boxed_image = letterbox_image(image, new_image_size) image_data = np.array(boxed_image, dtype='float32') image_data /= 255. image_data = np.expand_dims(image_data, 0) # Add batch dimension. out_boxes, out_scores, out_classes = self.compute_output(image_data, [image.size[1], image.size[0]]) print('Found {} boxes for {}'.format(len(out_boxes), 'img')) font = ImageFont.truetype(font='font/FiraMono-Medium.otf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32')) thickness = (image.size[0] + image.size[1]) // 300 for i, c in reversed(list(enumerate(out_classes))): predicted_class = self.class_names[c] box = out_boxes[i] score = out_scores[i] label = '{} {:.2f}'.format(predicted_class, score) draw = ImageDraw.Draw(image) label_size = draw.textsize(label, font) top, left, bottom, right = box top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0, np.floor(left + 0.5).astype('int32')) bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32')) right = min(image.size[0], np.floor(right + 0.5).astype('int32')) print(label, (left, top), (right, bottom)) if top - label_size[1] >= 0: text_origin = np.array([left, top - label_size[1]]) else: text_origin = np.array([left, top + 1]) # My kingdom for a good redistributable image drawing library. for i in range(thickness): draw.rectangle( [left + i, top + i, right - i, bottom - i], outline=self.colors[c]) draw.rectangle( [tuple(text_origin), tuple(text_origin + label_size)], fill=self.colors[c]) draw.text(text_origin, label, fill=(0, 0, 0), font=font) del draw end = timer() print(end - start) return image def detect_video(yolo, video_path, output_path=""): import cv2 vid = cv2.VideoCapture(video_path) if not vid.isOpened(): raise IOError("Couldn't open webcam or video") video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC)) video_fps = vid.get(cv2.CAP_PROP_FPS) video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)), int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))) isOutput = True if output_path != "" else False if isOutput: print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size)) out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size) accum_time = 0 curr_fps = 0 fps = "FPS: ??" prev_time = timer() while True: return_value, frame = vid.read() image = Image.fromarray(frame) image = yolo.detect_image(image) result = np.asarray(image) curr_time = timer() exec_time = curr_time - prev_time prev_time = curr_time accum_time = accum_time + exec_time curr_fps = curr_fps + 1 if accum_time > 1: accum_time = accum_time - 1 fps = "FPS: " + str(curr_fps) curr_fps = 0 cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.50, color=(255, 0, 0), thickness=2) cv2.namedWindow("result", cv2.WINDOW_NORMAL) cv2.imshow("result", result) if isOutput: out.write(result) if cv2.waitKey(1) & 0xFF == ord('q'): break
41.048544
110
0.607025