hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
e30fe439a620f6aef4d8e2cc25ad9a7d64cdb376
1,805
py
Python
cached_contingency/KeyValueStore.py
MrTomRod/cached-contingency
951431218c47ed246ba1fb655b581a99a5cfde00
[ "MIT" ]
null
null
null
cached_contingency/KeyValueStore.py
MrTomRod/cached-contingency
951431218c47ed246ba1fb655b581a99a5cfde00
[ "MIT" ]
null
null
null
cached_contingency/KeyValueStore.py
MrTomRod/cached-contingency
951431218c47ed246ba1fb655b581a99a5cfde00
[ "MIT" ]
null
null
null
import os import logging import sqlite3 from typing import Optional import pandas as pd class KeyValueStore: table_name: str def __init__(self, table_name, db_path: str = None): self.table_name = table_name if db_path is None: if 'KEY_VALUE_STORE_DB' in os.environ: db_path = os.environ['KEY_VALUE_STORE_DB'] else: db_path = os.path.expanduser('~/.cache/keyvaluestore.db') self._db_path = db_path self.con, self.cur = self.get_cur() self.create_db() def __str__(self): return f'KeyValueStore {self.table_name} ({self._db_path})' def get_cur(self): con = sqlite3.connect(self._db_path) cur = con.cursor() return con, cur def __del__(self): self.cur.close() self.con.close() def create_db(self): raise NotImplementedError(f'Users of the abstract class {self.__class__} must implement this function!') @staticmethod def list_to_string(l) -> str: return ', '.join(f"'{e}'" for e in l) @staticmethod def list_to_string_bracket(l): return ', '.join(f"('{e}')" for e in l) def _create_db(self, columns: {str: str}, pk_col: str): columns = ', '.join(f'{col_name} {col_type}' for col_name, col_type in columns.items()) sql = f''' CREATE TABLE IF NOT EXISTS {self.table_name} ( {columns}, PRIMARY KEY ({pk_col}) ); ''' try: self.cur.execute(sql) except sqlite3.OperationalError as e: logging.warning(f'Failed to run this SQL command on db {self._db_path}:\n{sql}') raise e def drop_db(self): self.cur.execute(f'''DROP TABLE {self.table_name}''')
28.650794
112
0.587812
bff9f2de962a40707f74ad0f9200d217ab4b4d8f
5,690
py
Python
regionmask/tests/test_utils.py
pablosebastiasaez/regionmask
c7d797df8b2c3020bc7d045e7fea1487f75dd28b
[ "Apache-2.0", "CC-BY-4.0", "MIT" ]
null
null
null
regionmask/tests/test_utils.py
pablosebastiasaez/regionmask
c7d797df8b2c3020bc7d045e7fea1487f75dd28b
[ "Apache-2.0", "CC-BY-4.0", "MIT" ]
null
null
null
regionmask/tests/test_utils.py
pablosebastiasaez/regionmask
c7d797df8b2c3020bc7d045e7fea1487f75dd28b
[ "Apache-2.0", "CC-BY-4.0", "MIT" ]
null
null
null
import numpy as np import pytest from regionmask.core.utils import ( _create_dict_of_numbered_string, _equally_spaced_on_split_lon, _find_splitpoint, _is_180, _is_numeric, _maybe_to_dict, _sanitize_names_abbrevs, create_lon_lat_dataarray_from_bounds, equally_spaced, ) @pytest.mark.parametrize( "numbers, string, expected", [ [[0, 1], "str", {0: "str0", 1: "str1"}], [[1, 2], "str", {1: "str1", 2: "str2"}], [[1, 2], "Region", {1: "Region1", 2: "Region2"}], [[0, 1, 2], "r", {0: "r0", 1: "r1", 2: "r2"}], ], ) def test_create_dict_of_numbered_string(numbers, string, expected): result = _create_dict_of_numbered_string(numbers, string) assert isinstance(result, dict) assert result == expected @pytest.mark.parametrize( "keys, values, expected", [ [[0, 1], ["a", "b"], {0: "a", 1: "b"}], [[1, 2], ["a", "b"], {1: "a", 2: "b"}], [[0, 1], {0: "a", 1: "b"}, {0: "a", 1: "b"}], [[1, 2], {0: "a", 1: "b"}, {0: "a", 1: "b"}], ], ) def test_maybe_to_dict(keys, values, expected): result = _maybe_to_dict(keys, values) assert isinstance(result, dict) assert result == expected @pytest.mark.parametrize( "numbers, values, default, expected", [ [[0, 1], ["a", "b"], "r", {0: "a", 1: "b"}], [[0, 1], {1: "a", 2: "b"}, "r", {1: "a", 2: "b"}], [[0, 1], None, "r", {0: "r0", 1: "r1"}], [[0, 1], None, "Region", {0: "Region0", 1: "Region1"}], [[0, 1], "Region", "r", {0: "Region0", 1: "Region1"}], ], ) def test_sanitize_names_abbrevs(numbers, values, default, expected): result = _sanitize_names_abbrevs(numbers, values, default) assert isinstance(result, dict) assert result == expected def test_sanitize_names_abbrevs_unequal_length(): with pytest.raises(ValueError, match="not have the same length"): _sanitize_names_abbrevs([0, 1], ["A"], "default") def test_is_180(): assert _is_180(-180, 180) assert not _is_180(0, 180.1) assert not _is_180(0, 180.01) # allow for small rounding errors assert _is_180(-180.0000002, 180.0000002) with pytest.raises(ValueError, match="lon has both data that is larger than 180"): _is_180(-1, 181) @pytest.mark.parametrize("lon_vals", [(-161, -29, 2), (-180, 181, 2)]) @pytest.mark.parametrize("lat_vals", [(75, 13, -2), (90, -91, -2)]) def test_create_lon_lat_dataarray_from_bounds(lon_vals, lat_vals): # use "+" because x(*a, *b) is not valid in python 2.7 result = create_lon_lat_dataarray_from_bounds(*lon_vals + lat_vals) for coord in ["lon", "lat", "lon_bnds", "lat_bnds", "LON", "LAT"]: assert coord in result.coords def _check_coords(vals, name): bnds_expected = np.arange(*vals) expected = (bnds_expected[:-1] + bnds_expected[1:]) / 2 assert np.allclose(result[name], expected) assert np.allclose(result[name + "_bnds"], bnds_expected) return expected lon = _check_coords(lon_vals, "lon") lat = _check_coords(lat_vals, "lat") LON_EXPECTED, LAT_EXPECTED = np.meshgrid(lon, lat) np.allclose(result["LON"], LON_EXPECTED) np.allclose(result["LAT"], LAT_EXPECTED) def test_is_numeric(): assert _is_numeric([1, 2, 3]) assert not _is_numeric(["a"]) def test_equally_spaced(): np.random.seed(0) equal = np.arange(10) grid_2D = np.arange(10).reshape(2, 5) un_equal = [0, 1, 2, 4, 5, 6] assert equally_spaced(equal) assert not equally_spaced(grid_2D) assert not equally_spaced(un_equal) assert not equally_spaced(1) assert equally_spaced(equal, equal) assert not equally_spaced(grid_2D, equal) assert not equally_spaced(equal, grid_2D) assert not equally_spaced(grid_2D, grid_2D) assert not equally_spaced(un_equal, equal) assert not equally_spaced(equal, un_equal) assert not equally_spaced(un_equal, un_equal) assert not equally_spaced(1, equal) assert not equally_spaced(equal, 1) assert not equally_spaced(1, 1) close_to_equal = equal + np.random.randn(*equal.shape) * 10 ** -6 assert equally_spaced(close_to_equal, close_to_equal) def test__equally_spaced_on_split_lon(): np.random.seed(0) equal = np.arange(10) grid_2D = np.arange(10).reshape(2, 5) un_equal = [0, 1, 2, 4, 5, 6.1] equal_split = np.asarray([5, 6, 7, 8, 9, 10, 1, 2, 3, 4]) assert _equally_spaced_on_split_lon(equal_split) assert not _equally_spaced_on_split_lon([10, 1, 2, 3]) assert not _equally_spaced_on_split_lon([1, 2, 3, 10]) assert not _equally_spaced_on_split_lon(equal) assert not _equally_spaced_on_split_lon(grid_2D) assert not _equally_spaced_on_split_lon(un_equal) assert not _equally_spaced_on_split_lon(1) close_to_equal = equal + np.random.randn(*equal.shape) * 10 ** -6 close_to_equal_split = equal_split + np.random.randn(*equal_split.shape) * 10 ** -6 assert not _equally_spaced_on_split_lon(close_to_equal) assert _equally_spaced_on_split_lon(close_to_equal_split) def test_find_splitpoint(): np.random.seed(0) equal_split = np.asarray([5, 6, 7, 8, 9, 10, 1, 2, 3, 4]) close_to_equal_split = equal_split + np.random.randn(*equal_split.shape) * 10 ** -6 assert _find_splitpoint(equal_split) == 6 assert _find_splitpoint(close_to_equal_split) == 6 with pytest.raises(ValueError, match="more or less than one split point found"): _find_splitpoint([0, 1, 2, 3]) with pytest.raises(ValueError, match="more or less than one split point found"): _find_splitpoint([0, 1, 3, 4, 6, 7])
28.592965
87
0.641828
3d1f6a69380120f6387c09eb2734310469ec6cf5
1,037
py
Python
nitro/resource/base/base_responses.py
HanseMerkur/nitro-python
d03eb11f492a35a2a8b2a140322fbce22d25a8f7
[ "Apache-2.0" ]
2
2020-08-24T18:04:22.000Z
2020-08-24T18:04:47.000Z
nitro/resource/base/base_responses.py
HanseMerkur/nitro-python
d03eb11f492a35a2a8b2a140322fbce22d25a8f7
[ "Apache-2.0" ]
null
null
null
nitro/resource/base/base_responses.py
HanseMerkur/nitro-python
d03eb11f492a35a2a8b2a140322fbce22d25a8f7
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2008-2015 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nitro.resource.base.base_response import base_response class base_responses: """base_response is a abstract base class for all the netscaler config/stat response classes.""" def __init__(self, length=0): self.errorcode = 0 self.message = "" self.sessionid = "" self.severity = "" self.response = [] self.response = [ base_response() for _ in range(length) ]
37.035714
100
0.698168
e376fc8183ea9f1da318c52d637d9ae1e3ac1689
2,651
py
Python
src/common/init_argparse.py
xiaoquqi/gitlab-sync
6b438c2a452ac7903ef331f7770d8d6dcbb0bba3
[ "Apache-2.0" ]
1
2022-03-15T07:16:53.000Z
2022-03-15T07:16:53.000Z
src/common/init_argparse.py
bagechashu/gitlab-sync
f37ff03341dfa21dcc6492979f5b4b784baa552d
[ "Apache-2.0" ]
null
null
null
src/common/init_argparse.py
bagechashu/gitlab-sync
f37ff03341dfa21dcc6492979f5b4b784baa552d
[ "Apache-2.0" ]
1
2022-03-15T07:16:44.000Z
2022-03-15T07:16:44.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """Common modules for parse script arguments""" import argparse import logging import sys def parse_sys_args(argv): """Parses commaond-line arguments""" parser = argparse.ArgumentParser( description="Gitlab backup tool in group level") parser.add_argument( "--local", action="store", dest="local", required=True, help="Local gitlab http url, " "ex: https://local.gitlab.com") parser.add_argument( "--local-token", action="store", dest="local_token", required=True, help="Local gitlab private token.") parser.add_argument( "--local-group", action="store", dest="local_group", required=True, help="Local github group for reading.") parser.add_argument( "--remote", action="store", dest="remote", required=True, help="Remote gitlab http url, " "ex: https://remote.gitlab.com") parser.add_argument( "--remote-token", action="store", dest="remote_token", required=True, help="Remote gitlab private token") parser.add_argument( "--remote-group", action="store", dest="remote_group", required=False, help="Target group of remote github for backup.") parser.add_argument( "--push-url", action="store", dest="push_url", required=True, help="Remote push url for backup target") parser.add_argument( "--force-push", action="store_true", dest="force_push", default=True, required=False, help="Force push to remote by default") parser.add_argument( "--ignore-branches", action="store", dest="ignore_branches", required=False, help="Not sync for ignore branches, " "ex: cherry-pick,dev,temp") parser.add_argument( "--allow-branches", action="store", dest="allow_branches", required=False, help="Only sync for allow branches, " "ex: master,main,qa. " "if not given, sync all branches." "If ignore branches is given, the" "priority is higher than this argument") parser.add_argument( "-d", "--debug", action="store_true", dest="debug", default=False, help="Enable debug message.") parser.add_argument( "-v", "--verbose", action="store_true", dest="verbose", default=True, help="Show message in standard output.") if len(sys.argv) == 1: parser.print_help(sys.stderr) sys.exit(1) else: return parser.parse_args(argv[1:])
40.784615
73
0.596756
f8a65a5633d5a49888e9831960b058a9d6b73163
2,269
py
Python
src/sqlfluff/rules/L027.py
fbb-oc/sqlfluff
f50e72b748dcf700483d0e937aa2abcfb0a56e9e
[ "MIT" ]
1
2022-03-03T02:29:11.000Z
2022-03-03T02:29:11.000Z
src/sqlfluff/rules/L027.py
clairetaylor352/sqlfluff
62900332228db323da323ce20df0c5e17ba9fcbf
[ "MIT" ]
1
2021-12-08T18:40:19.000Z
2021-12-08T18:40:19.000Z
src/sqlfluff/rules/L027.py
derickl/sqlfluff
ea2341ffa5325757acfa02cc9f7a07ac78b7a6c8
[ "MIT" ]
null
null
null
"""Implementation of Rule L027.""" from sqlfluff.core.rules.base import LintResult from sqlfluff.rules.L020 import Rule_L020 class Rule_L027(Rule_L020): """References should be qualified if select has more than one referenced table/view. .. note:: Except if they're present in a ``USING`` clause. **Anti-pattern** In this example, the reference ``vee`` has not been declared, and the variables ``a`` and ``b`` are potentially ambiguous. .. code-block:: sql SELECT a, b FROM foo LEFT JOIN vee ON vee.a = foo.a **Best practice** Add the references. .. code-block:: sql SELECT foo.a, vee.b FROM foo LEFT JOIN vee ON vee.a = foo.a """ def _lint_references_and_aliases( self, table_aliases, standalone_aliases, references, col_aliases, using_cols, parent_select, ): # Do we have more than one? If so, all references should be qualified. if len(table_aliases) <= 1: return None # A buffer to keep any violations. violation_buff = [] # Check all the references that we have. for r in references: this_ref_type = r.qualification() # Discard column aliases that # refer to the current column reference. col_alias_names = [ c.alias_identifier_name for c in col_aliases if r not in c.column_reference_segments ] if ( this_ref_type == "unqualified" # Allow unqualified columns that # are actually aliases defined # in a different select clause element. and r.raw not in col_alias_names # Allow columns defined in a USING expression. and r.raw not in using_cols ): violation_buff.append( LintResult( anchor=r, description=f"Unqualified reference {r.raw!r} found in " "select with more than one referenced table/view.", ) ) return violation_buff or None
29.467532
88
0.552226
4e2bd4da13bca4bdfd1452b68ebf14ab11d5eb84
1,744
py
Python
trainer_mask.py
salmanali88/caffe
fe8da0cbdf2a391c84e841c0623ac55cd8228794
[ "BSD-2-Clause" ]
3
2016-09-20T07:13:45.000Z
2018-11-16T08:01:36.000Z
trainer_mask.py
salmanali88/caffe
fe8da0cbdf2a391c84e841c0623ac55cd8228794
[ "BSD-2-Clause" ]
null
null
null
trainer_mask.py
salmanali88/caffe
fe8da0cbdf2a391c84e841c0623ac55cd8228794
[ "BSD-2-Clause" ]
12
2016-01-29T03:49:55.000Z
2020-04-20T02:53:08.000Z
import numpy as np import matplotlib.pyplot as plt import caffe from pylab import * import vis_utils as vu def data_unit(net, file_name): n, c, h, w = net.blobs['data'].data.shape plt.subplot(131) plt.title('Original Image') plt.axis('off') vu.vis_square(net.blobs['data'].data.transpose(0, 2, 3, 1)) plt.subplot(132) plt.title('Mask_output') plt.axis('off') vu.vis_square(net.blobs['mask_output'].data.transpose(0, 2, 3, 1)) plt.subplot(133) plt.axis('off') plt.title('Correctness') acc = np.zeros((n, h, w, 3)) gt_label = net.blobs['label'].data est_label = np.argmax(net.blobs['loss3/classifier'].data, axis=1) err = (est_label <> gt_label) ind = np.array(range(n))[err] for i in ind: acc[i] = np.ones((h, w, 3)) plt.imshow(vu.vis_grid(acc)) plt.gca().axis('off') plt.savefig(file_name+'.jpg', dpi = 1000) plt.close() caffe_root = './' niter = 100000 display = 10 # losses will also be stored in the log train_loss = np.zeros(niter) caffe.set_device(0) caffe.set_mode_gpu() # We create a solver that fine-tunes from a previously trained network. solver = caffe.SGDSolver(caffe_root + 'models/CUB_googLeNet_Mask/solver.prototxt') solver.net.copy_from(caffe_root + 'models/bvlc_googlenet/bvlc_googlenet.caffemodel') # We run the solver for niter times, and record the training loss. for it in range(niter): solver.step(1) # SGD by Caffe # store the train loss train_loss[it] = solver.net.blobs['loss3/loss3'].data if it % display == 0: print 'iter %d, finetune_loss=%f' % (it, train_loss[it]) if it % 100 == 0: data_unit(solver.net, 'logs/'+str(it)) print solver.net.blobs['loc_mm'].data[0] print 'done'
26.830769
84
0.662844
983f61214ed5fbed634d51133a18c9ddf01e9950
5,275
py
Python
cliffs/command.py
michalwa/py-cliffs
aaf089d1b0e05abb15e58bca7670c2632f680ae3
[ "MIT" ]
1
2020-05-28T19:52:35.000Z
2020-05-28T19:52:35.000Z
cliffs/command.py
michalwa/py-clifford
aaf089d1b0e05abb15e58bca7670c2632f680ae3
[ "MIT" ]
1
2021-02-18T20:29:34.000Z
2021-02-18T20:30:55.000Z
cliffs/command.py
michalwa/py-cliffs
aaf089d1b0e05abb15e58bca7670c2632f680ae3
[ "MIT" ]
1
2020-06-20T21:05:54.000Z
2020-06-20T21:05:54.000Z
from typing import Optional, Callable, Iterable from inspect import signature from .utils import instance_or_kwargs from .syntax_tree import Node from .call_lexer import CallLexer from .call_match import * from .call_matcher import CallMatcher import textwrap class TooManyArguments(CallMatchFail): pass class Command: """Matches command calls against its syntax and controls callback dispatch.""" def __init__(self, syntax: Node, callback: Callable, **kwargs): """Initializes a command. Parameters ---------- * syntax: `Node` - The root of the syntax tree for this command. * callback: `(...) -> *` - The callback. Keyword arguments ----------------- * lexer: `CallLexer` - The lexer to use to tokenize incoming calls. * matcher: `CallMatcher` - The matcher to use to match calls against the syntax of this command. * description: `str` - The description to include in the usage help message. Ignored if hidden is True. * hidden: `bool` - Whether the usage help message should exclude this command entirely. All keyword arguments will be saved in `kwargs`. """ self.syntax = syntax self.callback = callback self.kwargs = kwargs self.lexer = instance_or_kwargs(kwargs.get('lexer', {}), CallLexer) self.matcher = instance_or_kwargs(kwargs.get('matcher', {}), CallMatcher) self.description: Optional[str] = kwargs.get('description', None) self.hidden: Optional[str] = kwargs.get('hidden', False) def begin_match(self, call: str) -> CallMatch: return CallMatch(call, list(self.lexer.tokenize(call))) def match(self, match: CallMatch): """Tries to match the given call to this command's syntax and populates the given match instance. Parameters ---------- * call: `str` - The call to match. * match: `CallMatch` - The match to populate. Raises ------ * `CallMatchFail` when matching fails or the command tokens are not fully exhausted at the end of the match. """ try: self.syntax.match(match, self.matcher) except CallMatchFail as e: e.command = self raise e if match.has_tokens(): # Tokens were left in the match, which means some nodes possibly # didn't match - we look for a hint in the match and raise it if it exists if match.hint is not None: if isinstance(match.hint, CallMatchFail): match.hint.command = self raise match.hint # Or we raise the generic error e = TooManyArguments('Too many arguments') e.command = self raise e def execute(self, match: CallMatch, callback_args={}) -> object: """Executes the command callback with the given match. By default, the match must be the result of calling the `match()` method of this object. Parameters ---------- * match: `CallMatch` - The match to dispatch to the callback. * callback_args: `dict` (optional) - Additional arguments to pass to the callback. Defaults to none. Returns ------- * Whatever is returned by the callback. """ # Pass only those args that are required by the callback signature sig = signature(self.callback) callback_args |= {'match': match, 'command': self} callback_args |= match._params args = dict((p, callback_args[p]) for p in sig.parameters if p in callback_args) return self.callback(**args) def get_usage(self, **kwargs) -> Iterable[str]: """Returns the auto-generated usage help message for this command. Keyword arguments ----------------- * max_width: `int` - The width to wrap the usage help message to (0 for no wrapping). * indent_width: `int` - The width of the indent for the command description. Returns ------- * `Iterable[str]`: The lines of the usage help message. """ if self.hidden: return [] max_width = kwargs.get('max_width', 100) indent_width = kwargs.get('indent_width', 4) if max_width != 0: for line in textwrap.wrap(str(self.syntax), width=max_width): yield line else: yield str(self.syntax) if self.description is not None: if max_width != 0: wrap_options = { 'width': max_width, 'initial_indent': ' ' * indent_width, 'subsequent_indent': ' ' * indent_width, 'expand_tabs': True, } for desc_line in self.description.splitlines(): if desc_line == '': yield desc_line else: for line in textwrap.wrap(desc_line, **wrap_options): yield line else: for desc_line in self.description.splitlines(): yield desc_line
35.402685
113
0.576114
75e0666dbef14852931a8bd0701cf4670c84ac6d
3,383
py
Python
train.py
Mrrrat/asr_project_template
50d264684d90bc45c59f3e9be5766fabaf090d25
[ "MIT" ]
null
null
null
train.py
Mrrrat/asr_project_template
50d264684d90bc45c59f3e9be5766fabaf090d25
[ "MIT" ]
null
null
null
train.py
Mrrrat/asr_project_template
50d264684d90bc45c59f3e9be5766fabaf090d25
[ "MIT" ]
null
null
null
import argparse import collections import warnings import numpy as np import torch import hw_asr.loss as module_loss import hw_asr.metric as module_metric import hw_asr.model as module_arch from hw_asr.datasets.utils import get_dataloaders from hw_asr.text_encoder.ctc_char_text_encoder import CTCCharTextEncoder from hw_asr.trainer import Trainer from hw_asr.utils import prepare_device from hw_asr.utils.parse_config import ConfigParser warnings.filterwarnings("ignore", category=UserWarning) # fix random seeds for reproducibility SEED = 67 torch.manual_seed(SEED) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False np.random.seed(SEED) def main(config): logger = config.get_logger("train") # text_encoder text_encoder = CTCCharTextEncoder.get_simple_alphabet() # setup data_loader instances dataloaders = get_dataloaders(config, text_encoder) # build model architecture, then print to console model = config.init_obj(config["arch"], module_arch, n_class=len(text_encoder)) logger.info(model) # prepare for (multi-device) GPU training device, device_ids = prepare_device(config["n_gpu"]) model = model.to(device) if len(device_ids) > 1: model = torch.nn.DataParallel(model, device_ids=device_ids) # get function handles of loss and metrics loss_module = config.init_obj(config["loss"], module_loss).to(device) metrics = [ config.init_obj(metric_dict, module_metric, text_encoder=text_encoder) for metric_dict in config["metrics"] ] # build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler trainable_params = filter(lambda p: p.requires_grad, model.parameters()) optimizer = config.init_obj(config["optimizer"], torch.optim, trainable_params) lr_scheduler = config.init_obj(config["lr_scheduler"], torch.optim.lr_scheduler, optimizer) trainer = Trainer( model, loss_module, metrics, optimizer, text_encoder=text_encoder, config=config, device=device, data_loader=dataloaders["train"], ###OBO #valid_data_loader=dataloaders["val"], ###OBO lr_scheduler=lr_scheduler, len_epoch=config["trainer"].get("len_epoch", None) ) trainer.train() if __name__ == "__main__": args = argparse.ArgumentParser(description="PyTorch Template") args.add_argument( "-c", "--config", default=None, type=str, help="config file path (default: None)", ) args.add_argument( "-r", "--resume", default=None, type=str, help="path to latest checkpoint (default: None)", ) args.add_argument( "-d", "--device", default=None, type=str, help="indices of GPUs to enable (default: all)", ) # custom cli options to modify configuration from default values given in json file. CustomArgs = collections.namedtuple("CustomArgs", "flags type target") options = [ CustomArgs(["--lr", "--learning_rate"], type=float, target="optimizer;args;lr"), CustomArgs( ["--bs", "--batch_size"], type=int, target="data_loader;args;batch_size" ), ] config = ConfigParser.from_args(args, options) main(config)
30.477477
114
0.683713
df44f367025eae5ae6945328695608f1d17ff1b7
709
py
Python
util/ioutil.py
toastisme/dials
6bc8ababc33bfe334513677f8adb65c0e90003f3
[ "BSD-3-Clause" ]
58
2015-10-15T09:28:20.000Z
2022-03-28T20:09:38.000Z
util/ioutil.py
toastisme/dials
6bc8ababc33bfe334513677f8adb65c0e90003f3
[ "BSD-3-Clause" ]
1,741
2015-11-24T08:17:02.000Z
2022-03-31T15:46:42.000Z
util/ioutil.py
toastisme/dials
6bc8ababc33bfe334513677f8adb65c0e90003f3
[ "BSD-3-Clause" ]
45
2015-10-14T13:44:16.000Z
2022-03-22T14:45:56.000Z
def get_inverse_ub_matrix_from_xparm(handle): """Get the inverse_ub_matrix from an xparm file handle Params: handle The file handle Returns: The inverse_ub_matrix """ from scitbx import matrix return matrix.sqr( handle.unit_cell_a_axis + handle.unit_cell_b_axis + handle.unit_cell_c_axis ) def get_space_group_type_from_xparm(handle): """Get the space group tyoe object from an xparm file handle Params: handle The file handle Returns: The space group type object """ from cctbx import sgtbx return sgtbx.space_group_type( sgtbx.space_group(sgtbx.space_group_symbols(handle.space_group).hall()) )
22.870968
83
0.691114
ea25d42c186c5fcb781a8d4dc9c94dab71e99096
5,714
py
Python
MessagePassing/GCN.py
heming-zhang/PyTorch-Geometric-Study
06d5217210623c8d472467949c1b74e287558e8c
[ "Apache-2.0" ]
null
null
null
MessagePassing/GCN.py
heming-zhang/PyTorch-Geometric-Study
06d5217210623c8d472467949c1b74e287558e8c
[ "Apache-2.0" ]
null
null
null
MessagePassing/GCN.py
heming-zhang/PyTorch-Geometric-Study
06d5217210623c8d472467949c1b74e287558e8c
[ "Apache-2.0" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F from torch_geometric.nn import MessagePassing from torch_geometric.utils import add_self_loops, degree from torch_geometric.nn.inits import zeros class GCNConv(MessagePassing): def __init__(self, in_channels, out_channels): super(GCNConv, self).__init__(aggr='add') self.lin = torch.nn.Linear(in_channels, out_channels) def forward(self, x, edge_index): # X: [N, in_channels] # edge_index: [2, E] # 1.在邻接矩阵中增加自环 edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0)) # 2.对节点特征进行一个非线性转换 # x的维度会由[N, in_channels]转换为[N, out_channels] x = self.lin(x) # 3.计算标准化系数 # edge_index的第一个向量作为行坐标,第二个向量作为列坐标 row, col = edge_index deg = degree(row, x.size(0), dtype=x.dtype) deg_inv_sqrt = deg.pow(-1/2) # norm的第一个元素就是edge_index中的第一列(第一条边)上的标准化系数 # tensor的乘法为对应元素乘法,tensor1[tensor2]后的维度与tensor2一致 norm = deg_inv_sqrt[row] * deg_inv_sqrt[col] # 4-6步的开始标志,内部实现了message-AGGREGATE-update return self.propagate(edge_index, size=(x.size(0), x.size(1)), x=x, norm=norm) def message(self, x_j, norm): # x_j的维度为[E, out_channels] print(x_j) # 4.进行传递消息的构造,将标准化系数乘以邻域节点的特征信息得到传递信息 return norm.view(-1, 1) * x_j def update(self, aggr_out): # aggr_out的维度为[N, out_channels] # 6.更新新的节点嵌入,这里没有做任何多余的映射过程 return aggr_out # # 实例化对象 # conv = GCNConv(3, 3) # # 构建数据 # edge_index = torch.tensor([ # [0, 1, 1, 2], # [1, 0, 2, 1] # ], dtype=torch.long) # x = torch.tensor([ # [0, 0, 0], # [1, 1, 1], # [2, 2, 2] # ], dtype=torch.float) # # 默认为调用对象的forward函数 # x = conv(x, edge_index) # print(x) class GraphSAGELayer(MessagePassing): """GraphSAGE layer with edge attributes Args: input_dim(int): the size of input feature output_dim(int): the size of output feature aggr(str): aggregation function in message passing network num_edge_type(int): number of edge type, 0 indicate no edge attribute """ def __init__(self,input_dim,output_dim,aggr="mean",num_edge_type=0): super(GraphSAGELayer, self).__init__() self.aggr=aggr self.proj=nn.Linear(input_dim*2,output_dim,bias=False) self.bias=nn.Parameter(torch.Tensor(output_dim)) if num_edge_type > 0: self.edge_embedding = torch.nn.Embedding(num_edge_type, input_dim) torch.nn.init.xavier_uniform_(self.edge_embedding.weight.data) self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.proj.weight.data) zeros(self.bias) def forward(self,x,edge_index,edge_attr=None): # don't need to add self loop in GraphSAGE #edge_index,_ = add_self_loops(edge_index, num_nodes=x.size(0)) import pdb; pdb.set_trace() if edge_attr is not None: edge_embeddings = self.edge_embedding(edge_attr) x_n= self.propagate(edge_index, x=x, edge_attr=edge_embeddings) else: x_n=self.propagate(edge_index, x=x, edge_attr=None) return F.normalize(F.relu(self.proj(torch.cat([x,x_n],dim=-1))+self.bias),p=2,dim=-1) def message(self, x_j, edge_attr): import pdb; pdb.set_trace() if edge_attr is not None: return x_j + edge_attr else: return x_j def update(self, aggr_out): import pdb; pdb.set_trace() return aggr_out # # 实例化对象 # conv = GraphSAGELayer(3, 3, num_edge_type=2) # # 构建数据 # edge_index = torch.tensor([ # [0, 1, 1, 2], # [1, 0, 2, 1] # ], dtype=torch.long) # x = torch.tensor([ # [0, 0, 0], # [1, 1, 1], # [2, 2, 2] # ], dtype=torch.float) # # 默认为调用对象的forward函数 # x = conv(x, edge_index, edge_attr=torch.tensor(1)) # print(x) class GCNConv2(MessagePassing): def __init__(self, in_channels, out_channels): super(GCNConv2, self).__init__(aggr='add') self.lin = torch.nn.Linear(in_channels, out_channels) def forward(self, x, edge_index): # X: [N, in_channels] # edge_index: [2, E] weight='1' addition='2' # 1.在邻接矩阵中增加自环 edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0)) # 2.对节点特征进行一个非线性转换 # x的维度会由[N, in_channels]转换为[N, out_channels] x = self.lin(x) # 3.计算标准化系数 # edge_index的第一个向量作为行坐标,第二个向量作为列坐标 row, col = edge_index deg = degree(row, x.size(0), dtype=x.dtype) deg_inv_sqrt = deg.pow(-1/2) # norm的第一个元素就是edge_index中的第一列(第一条边)上的标准化系数 # tensor的乘法为对应元素乘法,tensor1[tensor2]后的维度与tensor2一致 norm = deg_inv_sqrt[row] * deg_inv_sqrt[col] import pdb; pdb.set_trace() print(x) # 4-6步的开始标志,内部实现了message-AGGREGATE-update return self.propagate(edge_index, size=(x.size(0), x.size(1)), x=x, norm=norm, weight=weight, addition=addition) def message(self, x, x_j, x_i, norm, weight, addition): # x_j的维度为[E, out_channels] print(x_j) print(x) # 4.进行传递消息的构造,将标准化系数乘以邻域节点的特征信息得到传递信息 # print(weight) # print(addition) import pdb; pdb.set_trace() return norm.view(-1, 1) * x_j def update(self, aggr_out): # aggr_out的维度为[N, out_channels] # 6.更新新的节点嵌入,这里没有做任何多余的映射过程 return aggr_out # 实例化对象 conv = GCNConv2(3, 3) # 构建数据 edge_index = torch.tensor([ [0, 1, 1, 2], [1, 0, 2, 1] ], dtype=torch.long) x = torch.tensor([ [0, 0, 0], [1, 1, 1], [2, 2, 2] ], dtype=torch.float) # 默认为调用对象的forward函数 x = conv(x, edge_index) print(x)
28.009804
120
0.621106
ed00d4fec62885eec5625766f456ec56d8cc2b28
2,815
py
Python
tests/test_backtranslation_dataset.py
beichao1314/fairseq
b1521f962e4ca670311c0cd0c8b1dadf310cb242
[ "BSD-3-Clause" ]
77
2019-04-29T01:56:04.000Z
2022-03-19T08:05:55.000Z
tests/test_backtranslation_dataset.py
beichao1314/fairseq
b1521f962e4ca670311c0cd0c8b1dadf310cb242
[ "BSD-3-Clause" ]
7
2019-04-24T09:07:06.000Z
2022-03-28T21:58:04.000Z
tests/test_backtranslation_dataset.py
beichao1314/fairseq
b1521f962e4ca670311c0cd0c8b1dadf310cb242
[ "BSD-3-Clause" ]
22
2019-04-28T04:39:41.000Z
2022-03-19T03:13:16.000Z
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import unittest import tests.utils as test_utils import torch from fairseq.data.backtranslation_dataset import BacktranslationDataset from fairseq import sequence_generator class TestBacktranslationDataset(unittest.TestCase): def setUp(self): self.tgt_dict, self.w1, self.w2, self.src_tokens, self.src_lengths, self.model = ( test_utils.sequence_generator_setup() ) dummy_src_samples = self.src_tokens self.tgt_dataset = test_utils.TestDataset(data=dummy_src_samples) def _backtranslation_dataset_helper(self, remove_eos_at_src): """ SequenceGenerator kwargs are same as defaults from fairseq/options.py """ backtranslation_dataset = BacktranslationDataset( tgt_dataset=self.tgt_dataset, tgt_dict=self.tgt_dict, backtranslation_model=self.model, max_len_a=0, max_len_b=200, beam_size=2, unk_penalty=0, sampling=False, remove_eos_at_src=remove_eos_at_src, generator_class=sequence_generator.SequenceGenerator, ) dataloader = torch.utils.data.DataLoader( backtranslation_dataset, batch_size=2, collate_fn=backtranslation_dataset.collater, ) backtranslation_batch_result = next(iter(dataloader)) eos, pad, w1, w2 = self.tgt_dict.eos(), self.tgt_dict.pad(), self.w1, self.w2 # Note that we sort by src_lengths and add left padding, so actually # ids will look like: [1, 0] expected_src = torch.LongTensor([[w1, w2, w1, eos], [pad, pad, w1, eos]]) if remove_eos_at_src: expected_src = expected_src[:, :-1] expected_tgt = torch.LongTensor([[w1, w2, eos], [w1, w2, eos]]) generated_src = backtranslation_batch_result["net_input"]["src_tokens"] tgt_tokens = backtranslation_batch_result["target"] self.assertTensorEqual(expected_src, generated_src) self.assertTensorEqual(expected_tgt, tgt_tokens) def test_backtranslation_dataset_no_eos_at_src(self): self._backtranslation_dataset_helper(remove_eos_at_src=True) def test_backtranslation_dataset_with_eos_at_src(self): self._backtranslation_dataset_helper(remove_eos_at_src=False) def assertTensorEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) if __name__ == "__main__": unittest.main()
37.039474
90
0.687034
6a38b38210b27fb24862406255d78613651af0c7
31,910
py
Python
python/istio_api/mesh/v1alpha1/config_pb2.py
lei-tang/api
aa2c2a84418c5e4c5ac0719be542c1750ce41cc5
[ "Apache-2.0" ]
null
null
null
python/istio_api/mesh/v1alpha1/config_pb2.py
lei-tang/api
aa2c2a84418c5e4c5ac0719be542c1750ce41cc5
[ "Apache-2.0" ]
null
null
null
python/istio_api/mesh/v1alpha1/config_pb2.py
lei-tang/api
aa2c2a84418c5e4c5ac0719be542c1750ce41cc5
[ "Apache-2.0" ]
null
null
null
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: mesh/v1alpha1/config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import duration_pb2 as google_dot_protobuf_dot_duration__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='mesh/v1alpha1/config.proto', package='istio.mesh.v1alpha1', syntax='proto3', serialized_pb=_b('\n\x1amesh/v1alpha1/config.proto\x12\x13istio.mesh.v1alpha1\x1a\x1egoogle/protobuf/duration.proto\"\xfb\x01\n\x07Tracing\x12\x35\n\x06zipkin\x18\x01 \x01(\x0b\x32#.istio.mesh.v1alpha1.Tracing.ZipkinH\x00\x12;\n\tlightstep\x18\x02 \x01(\x0b\x32&.istio.mesh.v1alpha1.Tracing.LightstepH\x00\x1a\x19\n\x06Zipkin\x12\x0f\n\x07\x61\x64\x64ress\x18\x01 \x01(\t\x1aW\n\tLightstep\x12\x0f\n\x07\x61\x64\x64ress\x18\x01 \x01(\t\x12\x14\n\x0c\x61\x63\x63\x65ss_token\x18\x02 \x01(\t\x12\x0e\n\x06secure\x18\x03 \x01(\x08\x12\x13\n\x0b\x63\x61\x63\x65rt_path\x18\x04 \x01(\tB\x08\n\x06tracer\"\xe6\x05\n\x0bProxyConfig\x12\x13\n\x0b\x63onfig_path\x18\x01 \x01(\t\x12\x13\n\x0b\x62inary_path\x18\x02 \x01(\t\x12\x17\n\x0fservice_cluster\x18\x03 \x01(\t\x12\x31\n\x0e\x64rain_duration\x18\x04 \x01(\x0b\x32\x19.google.protobuf.Duration\x12;\n\x18parent_shutdown_duration\x18\x05 \x01(\x0b\x32\x19.google.protobuf.Duration\x12\x19\n\x11\x64iscovery_address\x18\x06 \x01(\t\x12\x1a\n\x0ezipkin_address\x18\x08 \x01(\tB\x02\x18\x01\x12\x32\n\x0f\x63onnect_timeout\x18\t \x01(\x0b\x32\x19.google.protobuf.Duration\x12\x1a\n\x12statsd_udp_address\x18\n \x01(\t\x12\x18\n\x10proxy_admin_port\x18\x0b \x01(\x05\x12L\n\x19\x63ontrol_plane_auth_policy\x18\r \x01(\x0e\x32).istio.mesh.v1alpha1.AuthenticationPolicy\x12\x1a\n\x12\x63ustom_config_file\x18\x0e \x01(\t\x12\x18\n\x10stat_name_length\x18\x0f \x01(\x05\x12\x13\n\x0b\x63oncurrency\x18\x10 \x01(\x05\x12%\n\x1dproxy_bootstrap_template_path\x18\x11 \x01(\t\x12S\n\x11interception_mode\x18\x12 \x01(\x0e\x32\x38.istio.mesh.v1alpha1.ProxyConfig.InboundInterceptionMode\x12-\n\x07tracing\x18\x13 \x01(\x0b\x32\x1c.istio.mesh.v1alpha1.Tracing\"3\n\x17InboundInterceptionMode\x12\x0c\n\x08REDIRECT\x10\x00\x12\n\n\x06TPROXY\x10\x01J\x04\x08\x07\x10\x08J\x04\x08\x0c\x10\r\"\xdc\x07\n\nMeshConfig\x12\x1a\n\x12mixer_check_server\x18\x01 \x01(\t\x12\x1b\n\x13mixer_report_server\x18\x02 \x01(\t\x12\x1d\n\x15\x64isable_policy_checks\x18\x03 \x01(\x08\x12\x19\n\x11proxy_listen_port\x18\x04 \x01(\x05\x12\x17\n\x0fproxy_http_port\x18\x05 \x01(\x05\x12\x32\n\x0f\x63onnect_timeout\x18\x06 \x01(\x0b\x32\x19.google.protobuf.Duration\x12\x15\n\ringress_class\x18\x07 \x01(\t\x12\x17\n\x0fingress_service\x18\x08 \x01(\t\x12V\n\x17ingress_controller_mode\x18\t \x01(\x0e\x32\x35.istio.mesh.v1alpha1.MeshConfig.IngressControllerMode\x12\x43\n\x0b\x61uth_policy\x18\n \x01(\x0e\x32*.istio.mesh.v1alpha1.MeshConfig.AuthPolicyB\x02\x18\x01\x12\x16\n\x0e\x65nable_tracing\x18\x0c \x01(\x08\x12\x17\n\x0f\x61\x63\x63\x65ss_log_file\x18\r \x01(\t\x12\x38\n\x0e\x64\x65\x66\x61ult_config\x18\x0e \x01(\x0b\x32 .istio.mesh.v1alpha1.ProxyConfig\x12V\n\x17outbound_traffic_policy\x18\x11 \x01(\x0b\x32\x35.istio.mesh.v1alpha1.MeshConfig.OutboundTrafficPolicy\x12\'\n\x1f\x65nable_client_side_policy_check\x18\x13 \x01(\x08\x12\x14\n\x0csds_uds_path\x18\x14 \x01(\t\x12\x16\n\x0egalley_address\x18\x16 \x01(\t\x1a\xa5\x01\n\x15OutboundTrafficPolicy\x12H\n\x04mode\x18\x01 \x01(\x0e\x32:.istio.mesh.v1alpha1.MeshConfig.OutboundTrafficPolicy.Mode\"B\n\x04Mode\x12\x11\n\rREGISTRY_ONLY\x10\x00\x12\r\n\tALLOW_ANY\x10\x01\x12\x18\n\x14VIRTUAL_SERVICE_ONLY\x10\x02\"9\n\x15IngressControllerMode\x12\x07\n\x03OFF\x10\x00\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x01\x12\n\n\x06STRICT\x10\x02\"&\n\nAuthPolicy\x12\x08\n\x04NONE\x10\x00\x12\x0e\n\nMUTUAL_TLS\x10\x01J\x04\x08\x0b\x10\x0cJ\x04\x08\x0f\x10\x10J\x04\x08\x10\x10\x11J\x04\x08\x12\x10\x13J\x04\x08\x15\x10\x16*>\n\x14\x41uthenticationPolicy\x12\x08\n\x04NONE\x10\x00\x12\x0e\n\nMUTUAL_TLS\x10\x01\x12\x0c\n\x07INHERIT\x10\xe8\x07\x42\x1cZ\x1aistio.io/api/mesh/v1alpha1b\x06proto3') , dependencies=[google_dot_protobuf_dot_duration__pb2.DESCRIPTOR,]) _AUTHENTICATIONPOLICY = _descriptor.EnumDescriptor( name='AuthenticationPolicy', full_name='istio.mesh.v1alpha1.AuthenticationPolicy', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='NONE', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='MUTUAL_TLS', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='INHERIT', index=2, number=1000, options=None, type=None), ], containing_type=None, options=None, serialized_start=2073, serialized_end=2135, ) _sym_db.RegisterEnumDescriptor(_AUTHENTICATIONPOLICY) AuthenticationPolicy = enum_type_wrapper.EnumTypeWrapper(_AUTHENTICATIONPOLICY) NONE = 0 MUTUAL_TLS = 1 INHERIT = 1000 _PROXYCONFIG_INBOUNDINTERCEPTIONMODE = _descriptor.EnumDescriptor( name='InboundInterceptionMode', full_name='istio.mesh.v1alpha1.ProxyConfig.InboundInterceptionMode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='REDIRECT', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='TPROXY', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=1017, serialized_end=1068, ) _sym_db.RegisterEnumDescriptor(_PROXYCONFIG_INBOUNDINTERCEPTIONMODE) _MESHCONFIG_OUTBOUNDTRAFFICPOLICY_MODE = _descriptor.EnumDescriptor( name='Mode', full_name='istio.mesh.v1alpha1.MeshConfig.OutboundTrafficPolicy.Mode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='REGISTRY_ONLY', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='ALLOW_ANY', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='VIRTUAL_SERVICE_ONLY', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=1876, serialized_end=1942, ) _sym_db.RegisterEnumDescriptor(_MESHCONFIG_OUTBOUNDTRAFFICPOLICY_MODE) _MESHCONFIG_INGRESSCONTROLLERMODE = _descriptor.EnumDescriptor( name='IngressControllerMode', full_name='istio.mesh.v1alpha1.MeshConfig.IngressControllerMode', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='OFF', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='DEFAULT', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='STRICT', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=1944, serialized_end=2001, ) _sym_db.RegisterEnumDescriptor(_MESHCONFIG_INGRESSCONTROLLERMODE) _MESHCONFIG_AUTHPOLICY = _descriptor.EnumDescriptor( name='AuthPolicy', full_name='istio.mesh.v1alpha1.MeshConfig.AuthPolicy', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='NONE', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='MUTUAL_TLS', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=2003, serialized_end=2041, ) _sym_db.RegisterEnumDescriptor(_MESHCONFIG_AUTHPOLICY) _TRACING_ZIPKIN = _descriptor.Descriptor( name='Zipkin', full_name='istio.mesh.v1alpha1.Tracing.Zipkin', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='address', full_name='istio.mesh.v1alpha1.Tracing.Zipkin.address', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=211, serialized_end=236, ) _TRACING_LIGHTSTEP = _descriptor.Descriptor( name='Lightstep', full_name='istio.mesh.v1alpha1.Tracing.Lightstep', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='address', full_name='istio.mesh.v1alpha1.Tracing.Lightstep.address', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='access_token', full_name='istio.mesh.v1alpha1.Tracing.Lightstep.access_token', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='secure', full_name='istio.mesh.v1alpha1.Tracing.Lightstep.secure', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cacert_path', full_name='istio.mesh.v1alpha1.Tracing.Lightstep.cacert_path', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=238, serialized_end=325, ) _TRACING = _descriptor.Descriptor( name='Tracing', full_name='istio.mesh.v1alpha1.Tracing', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='zipkin', full_name='istio.mesh.v1alpha1.Tracing.zipkin', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='lightstep', full_name='istio.mesh.v1alpha1.Tracing.lightstep', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_TRACING_ZIPKIN, _TRACING_LIGHTSTEP, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='tracer', full_name='istio.mesh.v1alpha1.Tracing.tracer', index=0, containing_type=None, fields=[]), ], serialized_start=84, serialized_end=335, ) _PROXYCONFIG = _descriptor.Descriptor( name='ProxyConfig', full_name='istio.mesh.v1alpha1.ProxyConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='config_path', full_name='istio.mesh.v1alpha1.ProxyConfig.config_path', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='binary_path', full_name='istio.mesh.v1alpha1.ProxyConfig.binary_path', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='service_cluster', full_name='istio.mesh.v1alpha1.ProxyConfig.service_cluster', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='drain_duration', full_name='istio.mesh.v1alpha1.ProxyConfig.drain_duration', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='parent_shutdown_duration', full_name='istio.mesh.v1alpha1.ProxyConfig.parent_shutdown_duration', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='discovery_address', full_name='istio.mesh.v1alpha1.ProxyConfig.discovery_address', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='zipkin_address', full_name='istio.mesh.v1alpha1.ProxyConfig.zipkin_address', index=6, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='connect_timeout', full_name='istio.mesh.v1alpha1.ProxyConfig.connect_timeout', index=7, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='statsd_udp_address', full_name='istio.mesh.v1alpha1.ProxyConfig.statsd_udp_address', index=8, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='proxy_admin_port', full_name='istio.mesh.v1alpha1.ProxyConfig.proxy_admin_port', index=9, number=11, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='control_plane_auth_policy', full_name='istio.mesh.v1alpha1.ProxyConfig.control_plane_auth_policy', index=10, number=13, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='custom_config_file', full_name='istio.mesh.v1alpha1.ProxyConfig.custom_config_file', index=11, number=14, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stat_name_length', full_name='istio.mesh.v1alpha1.ProxyConfig.stat_name_length', index=12, number=15, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='concurrency', full_name='istio.mesh.v1alpha1.ProxyConfig.concurrency', index=13, number=16, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='proxy_bootstrap_template_path', full_name='istio.mesh.v1alpha1.ProxyConfig.proxy_bootstrap_template_path', index=14, number=17, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='interception_mode', full_name='istio.mesh.v1alpha1.ProxyConfig.interception_mode', index=15, number=18, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tracing', full_name='istio.mesh.v1alpha1.ProxyConfig.tracing', index=16, number=19, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _PROXYCONFIG_INBOUNDINTERCEPTIONMODE, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=338, serialized_end=1080, ) _MESHCONFIG_OUTBOUNDTRAFFICPOLICY = _descriptor.Descriptor( name='OutboundTrafficPolicy', full_name='istio.mesh.v1alpha1.MeshConfig.OutboundTrafficPolicy', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='mode', full_name='istio.mesh.v1alpha1.MeshConfig.OutboundTrafficPolicy.mode', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _MESHCONFIG_OUTBOUNDTRAFFICPOLICY_MODE, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1777, serialized_end=1942, ) _MESHCONFIG = _descriptor.Descriptor( name='MeshConfig', full_name='istio.mesh.v1alpha1.MeshConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='mixer_check_server', full_name='istio.mesh.v1alpha1.MeshConfig.mixer_check_server', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mixer_report_server', full_name='istio.mesh.v1alpha1.MeshConfig.mixer_report_server', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='disable_policy_checks', full_name='istio.mesh.v1alpha1.MeshConfig.disable_policy_checks', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='proxy_listen_port', full_name='istio.mesh.v1alpha1.MeshConfig.proxy_listen_port', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='proxy_http_port', full_name='istio.mesh.v1alpha1.MeshConfig.proxy_http_port', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='connect_timeout', full_name='istio.mesh.v1alpha1.MeshConfig.connect_timeout', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='ingress_class', full_name='istio.mesh.v1alpha1.MeshConfig.ingress_class', index=6, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='ingress_service', full_name='istio.mesh.v1alpha1.MeshConfig.ingress_service', index=7, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='ingress_controller_mode', full_name='istio.mesh.v1alpha1.MeshConfig.ingress_controller_mode', index=8, number=9, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='auth_policy', full_name='istio.mesh.v1alpha1.MeshConfig.auth_policy', index=9, number=10, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')), file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_tracing', full_name='istio.mesh.v1alpha1.MeshConfig.enable_tracing', index=10, number=12, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='access_log_file', full_name='istio.mesh.v1alpha1.MeshConfig.access_log_file', index=11, number=13, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='default_config', full_name='istio.mesh.v1alpha1.MeshConfig.default_config', index=12, number=14, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='outbound_traffic_policy', full_name='istio.mesh.v1alpha1.MeshConfig.outbound_traffic_policy', index=13, number=17, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_client_side_policy_check', full_name='istio.mesh.v1alpha1.MeshConfig.enable_client_side_policy_check', index=14, number=19, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='sds_uds_path', full_name='istio.mesh.v1alpha1.MeshConfig.sds_uds_path', index=15, number=20, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='galley_address', full_name='istio.mesh.v1alpha1.MeshConfig.galley_address', index=16, number=22, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_MESHCONFIG_OUTBOUNDTRAFFICPOLICY, ], enum_types=[ _MESHCONFIG_INGRESSCONTROLLERMODE, _MESHCONFIG_AUTHPOLICY, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1083, serialized_end=2071, ) _TRACING_ZIPKIN.containing_type = _TRACING _TRACING_LIGHTSTEP.containing_type = _TRACING _TRACING.fields_by_name['zipkin'].message_type = _TRACING_ZIPKIN _TRACING.fields_by_name['lightstep'].message_type = _TRACING_LIGHTSTEP _TRACING.oneofs_by_name['tracer'].fields.append( _TRACING.fields_by_name['zipkin']) _TRACING.fields_by_name['zipkin'].containing_oneof = _TRACING.oneofs_by_name['tracer'] _TRACING.oneofs_by_name['tracer'].fields.append( _TRACING.fields_by_name['lightstep']) _TRACING.fields_by_name['lightstep'].containing_oneof = _TRACING.oneofs_by_name['tracer'] _PROXYCONFIG.fields_by_name['drain_duration'].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _PROXYCONFIG.fields_by_name['parent_shutdown_duration'].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _PROXYCONFIG.fields_by_name['connect_timeout'].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _PROXYCONFIG.fields_by_name['control_plane_auth_policy'].enum_type = _AUTHENTICATIONPOLICY _PROXYCONFIG.fields_by_name['interception_mode'].enum_type = _PROXYCONFIG_INBOUNDINTERCEPTIONMODE _PROXYCONFIG.fields_by_name['tracing'].message_type = _TRACING _PROXYCONFIG_INBOUNDINTERCEPTIONMODE.containing_type = _PROXYCONFIG _MESHCONFIG_OUTBOUNDTRAFFICPOLICY.fields_by_name['mode'].enum_type = _MESHCONFIG_OUTBOUNDTRAFFICPOLICY_MODE _MESHCONFIG_OUTBOUNDTRAFFICPOLICY.containing_type = _MESHCONFIG _MESHCONFIG_OUTBOUNDTRAFFICPOLICY_MODE.containing_type = _MESHCONFIG_OUTBOUNDTRAFFICPOLICY _MESHCONFIG.fields_by_name['connect_timeout'].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _MESHCONFIG.fields_by_name['ingress_controller_mode'].enum_type = _MESHCONFIG_INGRESSCONTROLLERMODE _MESHCONFIG.fields_by_name['auth_policy'].enum_type = _MESHCONFIG_AUTHPOLICY _MESHCONFIG.fields_by_name['default_config'].message_type = _PROXYCONFIG _MESHCONFIG.fields_by_name['outbound_traffic_policy'].message_type = _MESHCONFIG_OUTBOUNDTRAFFICPOLICY _MESHCONFIG_INGRESSCONTROLLERMODE.containing_type = _MESHCONFIG _MESHCONFIG_AUTHPOLICY.containing_type = _MESHCONFIG DESCRIPTOR.message_types_by_name['Tracing'] = _TRACING DESCRIPTOR.message_types_by_name['ProxyConfig'] = _PROXYCONFIG DESCRIPTOR.message_types_by_name['MeshConfig'] = _MESHCONFIG DESCRIPTOR.enum_types_by_name['AuthenticationPolicy'] = _AUTHENTICATIONPOLICY _sym_db.RegisterFileDescriptor(DESCRIPTOR) Tracing = _reflection.GeneratedProtocolMessageType('Tracing', (_message.Message,), dict( Zipkin = _reflection.GeneratedProtocolMessageType('Zipkin', (_message.Message,), dict( DESCRIPTOR = _TRACING_ZIPKIN, __module__ = 'mesh.v1alpha1.config_pb2' # @@protoc_insertion_point(class_scope:istio.mesh.v1alpha1.Tracing.Zipkin) )) , Lightstep = _reflection.GeneratedProtocolMessageType('Lightstep', (_message.Message,), dict( DESCRIPTOR = _TRACING_LIGHTSTEP, __module__ = 'mesh.v1alpha1.config_pb2' # @@protoc_insertion_point(class_scope:istio.mesh.v1alpha1.Tracing.Lightstep) )) , DESCRIPTOR = _TRACING, __module__ = 'mesh.v1alpha1.config_pb2' # @@protoc_insertion_point(class_scope:istio.mesh.v1alpha1.Tracing) )) _sym_db.RegisterMessage(Tracing) _sym_db.RegisterMessage(Tracing.Zipkin) _sym_db.RegisterMessage(Tracing.Lightstep) ProxyConfig = _reflection.GeneratedProtocolMessageType('ProxyConfig', (_message.Message,), dict( DESCRIPTOR = _PROXYCONFIG, __module__ = 'mesh.v1alpha1.config_pb2' # @@protoc_insertion_point(class_scope:istio.mesh.v1alpha1.ProxyConfig) )) _sym_db.RegisterMessage(ProxyConfig) MeshConfig = _reflection.GeneratedProtocolMessageType('MeshConfig', (_message.Message,), dict( OutboundTrafficPolicy = _reflection.GeneratedProtocolMessageType('OutboundTrafficPolicy', (_message.Message,), dict( DESCRIPTOR = _MESHCONFIG_OUTBOUNDTRAFFICPOLICY, __module__ = 'mesh.v1alpha1.config_pb2' # @@protoc_insertion_point(class_scope:istio.mesh.v1alpha1.MeshConfig.OutboundTrafficPolicy) )) , DESCRIPTOR = _MESHCONFIG, __module__ = 'mesh.v1alpha1.config_pb2' # @@protoc_insertion_point(class_scope:istio.mesh.v1alpha1.MeshConfig) )) _sym_db.RegisterMessage(MeshConfig) _sym_db.RegisterMessage(MeshConfig.OutboundTrafficPolicy) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('Z\032istio.io/api/mesh/v1alpha1')) _PROXYCONFIG.fields_by_name['zipkin_address'].has_options = True _PROXYCONFIG.fields_by_name['zipkin_address']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')) _MESHCONFIG.fields_by_name['auth_policy'].has_options = True _MESHCONFIG.fields_by_name['auth_policy']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\030\001')) # @@protoc_insertion_point(module_scope)
46.652047
3,662
0.753682
329e284086b62a6e1a77413ad523328211ccc0a1
602
py
Python
spaces/migrations/0003_model_permissions.py
jgillick/Spaces
96247701d530a017f10a0bd0ac6cf241d621be11
[ "MIT" ]
1
2018-08-12T23:43:45.000Z
2018-08-12T23:43:45.000Z
spaces/migrations/0003_model_permissions.py
jgillick/Spaces
96247701d530a017f10a0bd0ac6cf241d621be11
[ "MIT" ]
3
2016-01-13T10:12:51.000Z
2016-01-13T10:13:15.000Z
spaces/migrations/0003_model_permissions.py
jgillick/Spaces
96247701d530a017f10a0bd0ac6cf241d621be11
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2015-12-10 08:15 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('spaces', '0002_populate_default_spaces'), ] operations = [ migrations.AlterModelOptions( name='document', options={'permissions': (('view_document', 'Can view a document'),)}, ), migrations.AlterModelOptions( name='space', options={'permissions': (('view_space', 'Can view a space'),)}, ), ]
25.083333
81
0.596346
894a455bf05a7148ad722cda4e86f040255cdfbe
3,892
py
Python
2_Clasification/exo2-naive.py
Focom/NLPWork2
b83cd114b71f5be9d18a322197e4ac4fd9b094ba
[ "MIT" ]
null
null
null
2_Clasification/exo2-naive.py
Focom/NLPWork2
b83cd114b71f5be9d18a322197e4ac4fd9b094ba
[ "MIT" ]
null
null
null
2_Clasification/exo2-naive.py
Focom/NLPWork2
b83cd114b71f5be9d18a322197e4ac4fd9b094ba
[ "MIT" ]
null
null
null
import exo2, pandas, glob from sklearn.naive_bayes import MultinomialNB as mod from sklearn.ensemble import RandomForestClassifier as mod2 from sklearn.feature_extraction.text import CountVectorizer #Choix du classifieurn i=1 NaivesBayes sinon RandomForest def choiceClassifier(i): if(i==1): classifier=mod else: classifier=mod2 return classifier #Construction du fichier csv s'il n'est pas encore présent dans le répértoire def construccsv(): a = glob.glob("*.csv") if (len(a)==0): exo2.constructcsv() construccsv() #Construction du modèle prédictive en fonction du choiceClassifier() et prédiction sur un certain nombre de ligne résévées au test def constructModel(i,cc,j): classifieur=choiceClassifier(j) # Transformation de mon document csv en dataframe grâce à panda df_train= pandas.read_csv('mycsv.csv') final=pandas.DataFrame(data=df_train) #Y sera mon vecteur de classe et x le vecteur de question associé vecteurClasseTrain=final["Classe"][:cc] vecteurQuestion=final["Question"] classifier=classifieur() targetsClasse=vecteurClasseTrain[:cc].values vecteurClasseTest=final["Classe"][cc:389].values count_vectorizer = CountVectorizer() counts = count_vectorizer.fit_transform(vecteurQuestion[:cc].values) # print(count_vectorizer.get_feature_names()) classifier.fit(counts, targetsClasse) examples = vecteurQuestion[cc:389] example_counts = count_vectorizer.transform(examples) predictions = classifier.predict(example_counts) if (i==1): return predictions elif(i==2): return vecteurClasseTest elif(i==3): return examples #Ici on construit un dictionnaire qui nous stock les différence entre les vraies prédictions et les fausses pour chaque classe def construcTableRP(predictions,trueclass): result = {} for i in range(0,len(predictions)): if(predictions[i]==trueclass[i]): result[str(i)]=({ "class":predictions[i], "bool": True }) else: result[str(i)]=({ "class": predictions[i], "bool": False }) return result def truePositive(classe,tailletraining,j): data = construcTableRP(constructModel(1,tailletraining,j),constructModel(2,tailletraining,j)) result=0 for i in range(0,len(data)): if ((classe == data[str(i)]["class"]) & (data[str(i)]["bool"])) : # print(data[str(i)]["class"]) result+=1 return result # print(truePositive("DEFINITION",300)) def falsePositive(classe,tailletraining,j): data = construcTableRP(constructModel(1,tailletraining,j),constructModel(2,tailletraining,j)) # print(data) result=0 for i in range(0,len(data)): if ((classe == data[str(i)]["class"]) & (data[str(i)]["bool"]==False)) : result+=1 return result def trueNegative(classeOption,tailletraining,j): data = constructModel(2,tailletraining,j) data.sort() result=0 print(data) for classe in data: if(classe!=classeOption): result+=1 return result # print(trueNegative("DEFINITION",300,1)) def falseNegative(classeOption,tailletraining,j): data = constructModel(2,tailletraining,j) data.sort() result=0 print(data) for classe in data: if(classe==classeOption): result+=1 return result # print(falseNegative("DEFINITION",300,1)) def precision(classe,trainingSize,j): return truePositive(classe,trainingSize,j)/(truePositive(classe,trainingSize,j)+falsePositive(classe,trainingSize,j)) print(precision("DEFINITION",300,2)) def recall(classe,trainingSize,j): return truePositive(classe,trainingSize,j)/(falseNegative(classe,trainingSize,j)) # print(recall("DEFINITION",300))
24.632911
130
0.676259
151877c6fea1c61308f6fbfbe50797d8f163e587
460
py
Python
fluent_python/object/func_para_reference.py
helloTC/LearnPython
bd5fc977c800f3dc2d239b8cb7ad7e6e1b42fce8
[ "MIT" ]
null
null
null
fluent_python/object/func_para_reference.py
helloTC/LearnPython
bd5fc977c800f3dc2d239b8cb7ad7e6e1b42fce8
[ "MIT" ]
null
null
null
fluent_python/object/func_para_reference.py
helloTC/LearnPython
bd5fc977c800f3dc2d239b8cb7ad7e6e1b42fce8
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 def f(a, b): a += b return a if __name__ == "__main__": x1 = 1 x2 = 2 print("integer number: {}".format(f(x1, x2))) print("x1 = {0}, x2 = {1}".format(x1, x2)) x3 = [1,2] x4 = [3,4] print("list: {}".format(f(x3, x4))) print("x3 = {0}, x4 = {1}".format(x3, x4)) x5 = (1,2) x6 = (3,4) print("tuple: {}".format(f(x5, x6))) print("x5 = {1}, x6 = {0}".format(x5, x6))
19.166667
49
0.463043
0a4a9fd3b088da30213e335da832666fbc1950a3
601
py
Python
boucanpy/cli/alembic/alembic_current.py
bbhunter/boucanpy
7d2fb105e7b1e90653a511534fb878bb62d02f17
[ "MIT" ]
34
2019-11-16T17:22:15.000Z
2022-02-11T23:12:46.000Z
boucanpy/cli/alembic/alembic_current.py
bbhunter/boucanpy
7d2fb105e7b1e90653a511534fb878bb62d02f17
[ "MIT" ]
1
2021-02-09T09:34:55.000Z
2021-02-10T21:46:20.000Z
boucanpy/cli/alembic/alembic_current.py
bbhunter/boucanpy
7d2fb105e7b1e90653a511534fb878bb62d02f17
[ "MIT" ]
9
2019-11-18T22:18:07.000Z
2021-02-08T13:23:51.000Z
from os.path import join from boucanpy.core.utils import db_dir from boucanpy.db.session import session, db_register from boucanpy.db.utils import make_db_url from boucanpy.db.migrate.current import current from boucanpy.cli.base import BaseCommand class AlembicCurrent(BaseCommand): name = "alembic-current" aliases = ["al-current"] description = "run alembic current" migration_dir = join(db_dir("alembic"), "api") @classmethod def parser(cls, parser): return parser async def run(self): db_register(make_db_url()) current(self.migration_dir)
27.318182
52
0.728785
210217c0aef4046ae47dcd7821eb79b6266489ee
4,546
py
Python
vfoot/runner.py
filipecn/vfoot
3059f5bb471b6bdf92a18a7cdb6b33a2c8852046
[ "MIT" ]
null
null
null
vfoot/runner.py
filipecn/vfoot
3059f5bb471b6bdf92a18a7cdb6b33a2c8852046
[ "MIT" ]
null
null
null
vfoot/runner.py
filipecn/vfoot
3059f5bb471b6bdf92a18a7cdb6b33a2c8852046
[ "MIT" ]
null
null
null
import graphics import imgui from game.game import Game, GameState from graphics.division_round_screen import DivisionRoundScreen from graphics.manager_screen import ManagerScreen game = None division_round_screen = None manager_screens = [] current_manager_screen = 0 class ChooseCountriesScreen: def __init__(self): # screen elements self.country_name = ["Pais " + str(i) for i in range(4)] self.country_checked = 4 * [False] # flow states self.active = False def country_list(self): l = [] for i in range(4): if self.country_checked[i]: l.append(i) return l def draw(self): completed = False if self.active: imgui.begin("##window", False, imgui.WINDOW_NO_TITLE_BAR) if imgui.button("Select All"): for i in range(len(self.country_checked)): self.country_checked[i] = True imgui.same_line() if imgui.button("Select None"): for i in range(len(self.country_checked)): self.country_checked[i] = False for i in range(4): _, state = imgui.checkbox(self.country_name[i], self.country_checked[i]) self.country_checked[i] = state if imgui.button("next"): if True in self.country_checked: self.active = False completed = True imgui.end() return completed class ChooseManagersScreen: def __init__(self): # screen elements self.manager_label = ["Tecnico " + str(i) for i in range(6)] self.manager_name = 6 * [""] # flow states self.active = False def manager_list(self): l = [] for name in self.manager_name: if len(name) > 0: l.append(name) return l def draw(self): completed = False if self.active: imgui.begin("##window", False, imgui.WINDOW_NO_TITLE_BAR) for i in range(6): _, value = imgui.input_text(self.manager_label[i], self.manager_name[i], 30) self.manager_name[i] = value if imgui.button("play!"): for name in self.manager_name: if len(name): self.active = False completed = True break imgui.end() return completed choose_countries_screen = ChooseCountriesScreen() choose_managers_screen = ChooseManagersScreen() def draw_new_game_window(): pass def draw_main_menu(): global choose_countries_screen if imgui.begin_main_menu_bar(): if imgui.begin_menu("Jogo", True): clicked, _ = imgui.menu_item( "Novo Jogo", 'Cmd+S', False, True ) if clicked: choose_countries_screen.active = True clicked, _ = imgui.menu_item( "Quit", 'Cmd+Q', False, True ) if clicked: exit(1) imgui.end_menu() imgui.end_main_menu_bar() def render(): global game global division_round_screen global manager_screens global current_manager_screen draw_main_menu() if choose_countries_screen.draw(): choose_managers_screen.active = True if choose_managers_screen.draw(): game = Game( choose_managers_screen.manager_list(), choose_countries_screen.country_list()) # create manager screens print(choose_managers_screen.manager_list()) for manager in choose_managers_screen.manager_list(): manager_screens.append(ManagerScreen(game, manager)) if game is not None: game.run() if game.current_state == GameState.DIVISION_ROUND_STATE: if division_round_screen is None: division_round_screen = DivisionRoundScreen(game) division_round_screen.draw() elif game.current_state == GameState.MANAGER_STATE: if current_manager_screen >= len(manager_screens): current_manager_screen = 0 game.current_state = GameState.DIVISION_ROUND_STATE elif manager_screens[current_manager_screen].draw(): current_manager_screen += 1 if __name__ == "__main__": graphics.app(render)
30.306667
69
0.573471
f75470306c4f47a4c9f93d16757d465a2fa4d4bb
24,470
py
Python
depend/zcash/qa/rpc-tests/fundrawtransaction.py
ZcashFoundation/zcashconsensus
c9fbc441efd78593ba6a9828be45baf2d6469757
[ "Apache-2.0" ]
null
null
null
depend/zcash/qa/rpc-tests/fundrawtransaction.py
ZcashFoundation/zcashconsensus
c9fbc441efd78593ba6a9828be45baf2d6469757
[ "Apache-2.0" ]
1
2020-07-17T14:09:32.000Z
2020-07-17T14:09:32.000Z
depend/zcash/qa/rpc-tests/fundrawtransaction.py
ZcashFoundation/zcashconsensus
c9fbc441efd78593ba6a9828be45baf2d6469757
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or https://www.opensource.org/licenses/mit-license.php . from test_framework.test_framework import BitcoinTestFramework from test_framework.authproxy import JSONRPCException from test_framework.util import assert_equal, assert_greater_than, \ start_nodes, connect_nodes_bi, stop_nodes, \ wait_bitcoinds from decimal import Decimal # Create one-input, one-output, no-fee transaction: class RawTransactionsTest(BitcoinTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 4 def setup_network(self, split=False): self.nodes = start_nodes(self.num_nodes, self.options.tmpdir, extra_args=[['-experimentalfeatures', '-developerencryptwallet']] * 4) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) connect_nodes_bi(self.nodes,0,3) self.is_network_split=False self.sync_all() def run_test(self): print("Mining blocks...") min_relay_tx_fee = self.nodes[0].getnetworkinfo()['relayfee'] # if the fee's positive delta is higher than this value tests will fail, # neg. delta always fail the tests. # The size of the signature of every input may be at most 2 bytes larger # than a minimum sized signature. # = 2 bytes * minRelayTxFeePerByte feeTolerance = max(2 * min_relay_tx_fee/1000, Decimal("0.00000001")) self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(201) self.sync_all() watchonly_address = self.nodes[0].getnewaddress() watchonly_pubkey = self.nodes[0].validateaddress(watchonly_address)["pubkey"] watchonly_amount = Decimal(200) self.nodes[3].importpubkey(watchonly_pubkey, "", True) watchonly_txid = self.nodes[0].sendtoaddress(watchonly_address, watchonly_amount) self.nodes[0].sendtoaddress(self.nodes[3].getnewaddress(), watchonly_amount / 10) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.5) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.0) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),5.0) self.sync_all() self.nodes[0].generate(1) self.sync_all() ############### # simple test # ############### inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert_equal(len(dec_tx['vin']) > 0, True) #test if we have enough inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.2 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert_equal(len(dec_tx['vin']) > 0, True) #test if we have enough inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.6 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert_equal(len(dec_tx['vin']) > 0, True) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ################################ # simple test with two outputs # ################################ inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.6, self.nodes[1].getnewaddress() : 2.5 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(len(dec_tx['vin']) > 0, True) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ######################################################################### # test a fundrawtransaction with a VIN greater than the required amount # ######################################################################### utx = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 5.0: utx = aUtx break assert_equal(utx!=False, True) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : Decimal('1.0') } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee ##################################################################### # test a fundrawtransaction with which will not get a change output # ##################################################################### utx = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 5.0: utx = aUtx break assert_equal(utx!=False, True) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : Decimal('5.0') - fee - feeTolerance } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(rawtxfund['changepos'], -1) assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee ######################################################################### # test a fundrawtransaction with a VIN smaller than the required amount # ######################################################################### utx = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 1.0: utx = aUtx break assert_equal(utx!=False, True) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : Decimal('1.0') } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) # 4-byte version + 4-byte versionGroupId + 1-byte vin count + 36-byte prevout then script_len rawtx = rawtx[:90] + "0100" + rawtx[92:] dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for i, out in enumerate(dec_tx['vout']): totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 else: assert_equal(i, rawtxfund['changepos']) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) ########################################### # test a fundrawtransaction with two VINs # ########################################### utx = False utx2 = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 1.0: utx = aUtx if aUtx['amount'] == 5.0: utx2 = aUtx assert_equal(utx!=False, True) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 6.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) matchingIns = 0 for vinOut in dec_tx['vin']: for vinIn in inputs: if vinIn['txid'] == vinOut['txid']: matchingIns+=1 assert_equal(matchingIns, 2) #we now must see two vins identical to vins given as params ######################################################### # test a fundrawtransaction with two VINs and two vOUTs # ######################################################### utx = False utx2 = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 1.0: utx = aUtx if aUtx['amount'] == 5.0: utx2 = aUtx assert_equal(utx!=False, True) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 6.0, self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 assert_equal(matchingOuts, 2) assert_equal(len(dec_tx['vout']), 3) ############################################## # test a fundrawtransaction with invalid vin # ############################################## listunspent = self.nodes[2].listunspent() inputs = [ {'txid' : "1c7f966dab21119bac53213a2bc7532bff1fa844c124fd750a7d0b1332440bd1", 'vout' : 0} ] #invalid vin! outputs = { self.nodes[0].getnewaddress() : 1.0} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) errorString = "" try: rawtxfund = self.nodes[2].fundrawtransaction(rawtx) except JSONRPCException as e: errorString = e.error['message'] assert_equal("Insufficient" in errorString, True) ############################################################ #compare fee of a standard pubkeyhash transaction inputs = [] outputs = {self.nodes[1].getnewaddress():1.1} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction with multiple outputs inputs = [] outputs = {self.nodes[1].getnewaddress():1.1,self.nodes[1].getnewaddress():1.2,self.nodes[1].getnewaddress():0.1,self.nodes[1].getnewaddress():1.3,self.nodes[1].getnewaddress():0.2,self.nodes[1].getnewaddress():0.3} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendmany("", outputs) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a 2of2 multisig p2sh transaction # create 2of2 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[1].validateaddress(addr2) mSigObj = self.nodes[1].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) inputs = [] outputs = {mSigObj:1.1} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction # create 4of5 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr3 = self.nodes[1].getnewaddress() addr4 = self.nodes[1].getnewaddress() addr5 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[1].validateaddress(addr2) addr3Obj = self.nodes[1].validateaddress(addr3) addr4Obj = self.nodes[1].validateaddress(addr4) addr5Obj = self.nodes[1].validateaddress(addr5) mSigObj = self.nodes[1].addmultisigaddress(4, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey'], addr4Obj['pubkey'], addr5Obj['pubkey']]) inputs = [] outputs = {mSigObj:1.1} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ # spend a 2of2 multisig transaction over fundraw # create 2of2 addr addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].validateaddress(addr1) addr2Obj = self.nodes[2].validateaddress(addr2) mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # send 1.2 BTC to msig addr txId = self.nodes[0].sendtoaddress(mSigObj, 1.2) self.sync_all() self.nodes[1].generate(1) self.sync_all() oldBalance = self.nodes[1].getbalance() inputs = [] outputs = {self.nodes[1].getnewaddress():1.1} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) fundedTx = self.nodes[2].fundrawtransaction(rawTx) signedTx = self.nodes[2].signrawtransaction(fundedTx['hex']) txId = self.nodes[2].sendrawtransaction(signedTx['hex']) self.sync_all() self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('1.10000000'), self.nodes[1].getbalance()) ############################################################ # locked wallet test self.nodes[1].encryptwallet("test") self.nodes.pop(1) stop_nodes(self.nodes) wait_bitcoinds() self.nodes = start_nodes(self.num_nodes, self.options.tmpdir) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) connect_nodes_bi(self.nodes,0,3) self.is_network_split=False self.sync_all() error = False try: self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 1.2) except: error = True assert(error) oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():1.1} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) #now we need to unlock self.nodes[1].walletpassphrase("test", 100) signedTx = self.nodes[1].signrawtransaction(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(signedTx['hex']) self.sync_all() self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('11.10000000'), self.nodes[0].getbalance()) ############################################### # multiple (~19) inputs tx test | Compare fee # ############################################### #empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.sync_all() self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[1].sendmany("", outputs) signedFee = self.nodes[1].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance*19) #~19 inputs ############################################# # multiple (~19) inputs tx test | sign/send # ############################################# #again, empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.sync_all() self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) fundedAndSignedTx = self.nodes[1].signrawtransaction(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(fundedAndSignedTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(oldBalance+Decimal('10.19000000'), self.nodes[0].getbalance()) #0.19+block reward ##################################################### # test fundrawtransaction with OP_RETURN and no vin # ##################################################### rawtx = "0100000000010000000000000000066a047465737400000000" dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(len(dec_tx['vin']), 0) assert_equal(len(dec_tx['vout']), 1) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert_greater_than(len(dec_tx['vin']), 0) # at least one vin assert_equal(len(dec_tx['vout']), 2) # one change output added ################################################## # test a fundrawtransaction using only watchonly # ################################################## inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount / 2} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction(rawtx, True) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 1) assert_equal(res_dec["vin"][0]["txid"], watchonly_txid) assert_equal("fee" in result.keys(), True) assert_greater_than(result["changepos"], -1) ############################################################### # test fundrawtransaction using the entirety of watched funds # ############################################################### inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction(rawtx, True) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 2) assert(res_dec["vin"][0]["txid"] == watchonly_txid or res_dec["vin"][1]["txid"] == watchonly_txid) assert_greater_than(result["fee"], 0) assert_greater_than(result["changepos"], -1) assert_equal(result["fee"] + res_dec["vout"][result["changepos"]]["value"], watchonly_amount / 10) signedtx = self.nodes[3].signrawtransaction(result["hex"]) assert(not signedtx["complete"]) signedtx = self.nodes[0].signrawtransaction(signedtx["hex"]) assert(signedtx["complete"]) self.nodes[0].sendrawtransaction(signedtx["hex"]) if __name__ == '__main__': RawTransactionsTest().main()
40.313015
223
0.555497
c56b66c960cb59012ea4751d6bf0e410cf392a91
8,777
py
Python
ansible/venv/lib/python2.7/site-packages/ansible/modules/storage/netapp/netapp_e_snapshot_images.py
gvashchenkolineate/gvashchenkolineate_infra_trytravis
0fb18850afe0d8609693ba4b23f29c7cda17d97f
[ "MIT" ]
17
2017-06-07T23:15:01.000Z
2021-08-30T14:32:36.000Z
ansible/venv/lib/python2.7/site-packages/ansible/modules/storage/netapp/netapp_e_snapshot_images.py
gvashchenkolineate/gvashchenkolineate_infra_trytravis
0fb18850afe0d8609693ba4b23f29c7cda17d97f
[ "MIT" ]
9
2017-06-25T03:31:52.000Z
2021-05-17T23:43:12.000Z
ansible/venv/lib/python2.7/site-packages/ansible/modules/storage/netapp/netapp_e_snapshot_images.py
gvashchenkolineate/gvashchenkolineate_infra_trytravis
0fb18850afe0d8609693ba4b23f29c7cda17d97f
[ "MIT" ]
3
2018-05-26T21:31:22.000Z
2019-09-28T17:00:45.000Z
#!/usr/bin/python # (c) 2016, NetApp, Inc # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = """ --- module: netapp_e_snapshot_images short_description: NetApp E-Series create and delete snapshot images description: - Create and delete snapshots images on snapshot groups for NetApp E-series storage arrays. - Only the oldest snapshot image can be deleted so consistency is preserved. - "Related: Snapshot volumes are created from snapshot images." version_added: '2.2' author: Kevin Hulquest (@hulquest) options: api_username: required: true description: - The username to authenticate with the SANtricity WebServices Proxy or embedded REST API. api_password: required: true description: - The password to authenticate with the SANtricity WebServices Proxy or embedded REST API. api_url: required: true description: - The url to the SANtricity WebServices Proxy or embedded REST API. validate_certs: required: false default: true description: - Should https certificates be validated? snapshot_group: description: - The name of the snapshot group in which you want to create a snapshot image. required: True state: description: - Whether a new snapshot image should be created or oldest be deleted. required: True choices: ['create', 'remove'] """ EXAMPLES = """ - name: Create Snapshot netapp_e_snapshot_images: ssid: "{{ ssid }}" api_url: "{{ netapp_api_url }}" api_username: "{{ netapp_api_username }}" api_password: "{{ netapp_api_password }}" validate_certs: "{{ validate_certs }}" snapshot_group: "3300000060080E5000299C24000005B656D9F394" state: 'create' """ RETURN = """ --- msg: description: State of operation type: str returned: always sample: "Created snapshot image" image_id: description: ID of snapshot image type: str returned: state == created sample: "3400000060080E5000299B640063074057BC5C5E " """ HEADERS = { "Content-Type": "application/json", "Accept": "application/json", } import json from ansible.module_utils.api import basic_auth_argument_spec from ansible.module_utils.basic import AnsibleModule from ansible.module_utils._text import to_native from ansible.module_utils.urls import open_url from ansible.module_utils.six.moves.urllib.error import HTTPError def request(url, data=None, headers=None, method='GET', use_proxy=True, force=False, last_mod_time=None, timeout=10, validate_certs=True, url_username=None, url_password=None, http_agent=None, force_basic_auth=True, ignore_errors=False): try: r = open_url(url=url, data=data, headers=headers, method=method, use_proxy=use_proxy, force=force, last_mod_time=last_mod_time, timeout=timeout, validate_certs=validate_certs, url_username=url_username, url_password=url_password, http_agent=http_agent, force_basic_auth=force_basic_auth) except HTTPError as err: r = err.fp try: raw_data = r.read() if raw_data: data = json.loads(raw_data) else: raw_data = None except Exception: if ignore_errors: pass else: raise Exception(raw_data) resp_code = r.getcode() if resp_code >= 400 and not ignore_errors: raise Exception(resp_code, data) else: return resp_code, data def snapshot_group_from_name(module, ssid, api_url, api_pwd, api_usr, name): snap_groups = 'storage-systems/%s/snapshot-groups' % ssid snap_groups_url = api_url + snap_groups (ret, snapshot_groups) = request(snap_groups_url, url_username=api_usr, url_password=api_pwd, headers=HEADERS, validate_certs=module.params['validate_certs']) snapshot_group_id = None for snapshot_group in snapshot_groups: if name == snapshot_group['label']: snapshot_group_id = snapshot_group['pitGroupRef'] break if snapshot_group_id is None: module.fail_json(msg="Failed to lookup snapshot group. Group [%s]. Id [%s]." % (name, ssid)) return snapshot_group def oldest_image(module, ssid, api_url, api_pwd, api_usr, name): get_status = 'storage-systems/%s/snapshot-images' % ssid url = api_url + get_status try: (ret, images) = request(url, url_username=api_usr, url_password=api_pwd, headers=HEADERS, validate_certs=module.params['validate_certs']) except Exception as err: module.fail_json(msg="Failed to get snapshot images for group. Group [%s]. Id [%s]. Error [%s]" % (name, ssid, to_native(err))) if not images: module.exit_json(msg="There are no snapshot images to remove. Group [%s]. Id [%s]." % (name, ssid)) oldest = min(images, key=lambda x: x['pitSequenceNumber']) if oldest is None or "pitRef" not in oldest: module.fail_json(msg="Failed to lookup oldest snapshot group. Group [%s]. Id [%s]." % (name, ssid)) return oldest def create_image(module, ssid, api_url, pwd, user, p, snapshot_group): snapshot_group_obj = snapshot_group_from_name(module, ssid, api_url, pwd, user, snapshot_group) snapshot_group_id = snapshot_group_obj['pitGroupRef'] endpoint = 'storage-systems/%s/snapshot-images' % ssid url = api_url + endpoint post_data = json.dumps({'groupId': snapshot_group_id}) image_data = request(url, data=post_data, method='POST', url_username=user, url_password=pwd, headers=HEADERS, validate_certs=module.params['validate_certs']) if image_data[1]['status'] == 'optimal': status = True id = image_data[1]['id'] else: status = False id = '' return status, id def delete_image(module, ssid, api_url, pwd, user, snapshot_group): image = oldest_image(module, ssid, api_url, pwd, user, snapshot_group) image_id = image['pitRef'] endpoint = 'storage-systems/%s/snapshot-images/%s' % (ssid, image_id) url = api_url + endpoint try: (ret, image_data) = request(url, method='DELETE', url_username=user, url_password=pwd, headers=HEADERS, validate_certs=module.params['validate_certs']) except Exception as e: image_data = (e[0], e[1]) if ret == 204: deleted_status = True error_message = '' else: deleted_status = False error_message = image_data[1]['errorMessage'] return deleted_status, error_message def main(): argument_spec = basic_auth_argument_spec() argument_spec.update(dict( snapshot_group=dict(required=True, type='str'), ssid=dict(required=True, type='str'), api_url=dict(required=True), api_username=dict(required=False), api_password=dict(required=False, no_log=True), validate_certs=dict(required=False, default=True), state=dict(required=True, choices=['create', 'remove'], type='str'), )) module = AnsibleModule(argument_spec) p = module.params ssid = p.pop('ssid') api_url = p.pop('api_url') user = p.pop('api_username') pwd = p.pop('api_password') snapshot_group = p.pop('snapshot_group') desired_state = p.pop('state') if not api_url.endswith('/'): api_url += '/' if desired_state == 'create': created_status, snapshot_id = create_image(module, ssid, api_url, pwd, user, p, snapshot_group) if created_status: module.exit_json(changed=True, msg='Created snapshot image', image_id=snapshot_id) else: module.fail_json( msg="Could not create snapshot image on system %s, in snapshot group %s" % (ssid, snapshot_group)) else: deleted, error_msg = delete_image(module, ssid, api_url, pwd, user, snapshot_group) if deleted: module.exit_json(changed=True, msg='Deleted snapshot image for snapshot group [%s]' % (snapshot_group)) else: module.fail_json( msg="Could not create snapshot image on system %s, in snapshot group %s --- %s" % ( ssid, snapshot_group, error_msg)) if __name__ == '__main__': main()
35.391129
115
0.649653
af20eb27938d8aea2c9c8159b9a8598d08f22bb7
3,380
py
Python
tests/test_scaffold.py
abhishak3/ploomber
6041bcd381b7fd9a7525f94edd0ae1b03b14bb8d
[ "Apache-2.0" ]
2,141
2020-02-14T02:34:34.000Z
2022-03-31T22:43:20.000Z
tests/test_scaffold.py
abhishak3/ploomber
6041bcd381b7fd9a7525f94edd0ae1b03b14bb8d
[ "Apache-2.0" ]
660
2020-02-06T16:15:57.000Z
2022-03-31T22:55:01.000Z
tests/test_scaffold.py
abhishak3/ploomber
6041bcd381b7fd9a7525f94edd0ae1b03b14bb8d
[ "Apache-2.0" ]
122
2020-02-14T18:53:05.000Z
2022-03-27T22:33:24.000Z
from pathlib import Path import ast import pytest from ploomber import tasks from ploomber import scaffold @pytest.mark.parametrize('name', ['task.py', 'task.ipynb']) @pytest.mark.parametrize('extract_upstream', [False, True]) @pytest.mark.parametrize('extract_product', [False, True]) def test_renders_valid_script(name, extract_product, extract_upstream): loader = scaffold.ScaffoldLoader('ploomber_add') out = loader.render(name, params=dict(extract_product=extract_product, extract_upstream=extract_upstream)) # make sure it generates valid python code, except for the sql template if not name.endswith('.sql'): ast.parse(out) @pytest.mark.parametrize('extract_upstream', [False, True]) @pytest.mark.parametrize('extract_product', [False, True]) def test_renders_valid_function(extract_product, extract_upstream): loader = scaffold.ScaffoldLoader('ploomber_add') out = loader.render('function.py', params=dict(function_name='some_function', extract_product=extract_product, extract_upstream=extract_upstream)) module = ast.parse(out) assert module.body[0].name == 'some_function' def test_create_function(backup_test_pkg, tmp_directory): loader = scaffold.ScaffoldLoader('ploomber_add') loader.create('test_pkg.functions.new_function', dict(extract_product=False, extract_upstream=True), tasks.PythonCallable) code = Path(backup_test_pkg, 'functions.py').read_text() module = ast.parse(code) function_names = { element.name for element in module.body if hasattr(element, 'name') } assert 'new_function' in function_names def test_add_task_from_scaffold(backup_test_pkg, tmp_directory): yaml = """ meta: source_loader: module: test_pkg extract_product: True tasks: - source: notebook.ipynb - source: notebook.py - source: test_pkg.functions.my_new_function """ Path('pipeline.yaml').write_text(yaml) # FIXME: this will fail because TaskSpec validates that the # dotted path actually exists. I think the cleanest solution # is to add a special class method for DAGSpec that allows the lazy # load to skip validating the last attribute... spec, path_to_spec = scaffold.load_dag() scaffold.add(spec, path_to_spec) code = Path(backup_test_pkg, 'functions.py').read_text() module = ast.parse(code) function_names = { element.name for element in module.body if hasattr(element, 'name') } assert 'my_new_function' in function_names assert Path(backup_test_pkg, 'notebook.ipynb').exists() assert Path(backup_test_pkg, 'notebook.py').exists() def test_add_task_when_using_import_tasks_from(tmp_directory): spec = """ meta: import_tasks_from: subdir/tasks.yaml extract_product: True tasks: [] """ tasks = """ - source: notebook.py """ Path('pipeline.yaml').write_text(spec) subdir = Path('subdir') subdir.mkdir() (subdir / 'tasks.yaml').write_text(tasks) spec, path_to_spec = scaffold.load_dag() scaffold.add(spec, path_to_spec) assert (subdir / 'notebook.py').exists()
30.178571
75
0.668343
cf1e09d73f67a4c125a5ad0c8d9129f2639bda89
9,640
py
Python
aea/cli/scaffold.py
marcofavorito/agents-aea
e520f2f5d076a193514e194d94aa76c6423ac5bc
[ "Apache-2.0" ]
null
null
null
aea/cli/scaffold.py
marcofavorito/agents-aea
e520f2f5d076a193514e194d94aa76c6423ac5bc
[ "Apache-2.0" ]
null
null
null
aea/cli/scaffold.py
marcofavorito/agents-aea
e520f2f5d076a193514e194d94aa76c6423ac5bc
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """Implementation of the 'aea scaffold' subcommand.""" import os import re import shutil from pathlib import Path from typing import cast import click from jsonschema import ValidationError from aea import AEA_DIR from aea.cli.fingerprint import fingerprint_item from aea.cli.utils.context import Context from aea.cli.utils.decorators import check_aea_project, clean_after, pass_ctx from aea.cli.utils.loggers import logger from aea.cli.utils.package_utils import ( create_symlink_packages_to_vendor, create_symlink_vendor_to_local, validate_package_name, ) from aea.configurations.base import PublicId from aea.configurations.constants import ( # noqa: F401 # pylint: disable=unused-import CONNECTION, CONTRACT, DEFAULT_AEA_CONFIG_FILE, DEFAULT_CONNECTION_CONFIG_FILE, DEFAULT_CONTRACT_CONFIG_FILE, DEFAULT_PROTOCOL_CONFIG_FILE, DEFAULT_SKILL_CONFIG_FILE, DEFAULT_VERSION, DOTTED_PATH_MODULE_ELEMENT_SEPARATOR, PROTOCOL, SCAFFOLD_PUBLIC_ID, SKILL, ) @click.group() @click.option( "--with-symlinks", is_flag=True, help="Add symlinks from vendor to non-vendor and packages to vendor folders.", ) @click.pass_context @check_aea_project def scaffold( click_context: click.core.Context, with_symlinks: bool ): # pylint: disable=unused-argument """Scaffold a package for the agent.""" ctx = cast(Context, click_context.obj) ctx.set_config("with_symlinks", with_symlinks) @scaffold.command() @click.argument("connection_name", type=str, required=True) @pass_ctx def connection(ctx: Context, connection_name: str) -> None: """Add a connection scaffolding to the configuration file and agent.""" scaffold_item(ctx, CONNECTION, connection_name) @scaffold.command() @click.argument("contract_name", type=str, required=True) @pass_ctx def contract(ctx: Context, contract_name: str) -> None: """Add a contract scaffolding to the configuration file and agent.""" scaffold_item(ctx, CONTRACT, contract_name) @scaffold.command() @click.argument("protocol_name", type=str, required=True) @click.option("-y", "--yes", is_flag=True, default=False) @pass_ctx def protocol(ctx: Context, protocol_name: str, yes: bool): """Add a protocol scaffolding to the configuration file and agent.""" if yes or click.confirm( "We highly recommend auto-generating protocols with the aea generate command. Do you really want to continue scaffolding?" ): scaffold_item(ctx, PROTOCOL, protocol_name) else: click.echo("Aborted. Exit") # pragma: nocover @scaffold.command() @click.argument("skill_name", type=str, required=True) @pass_ctx def skill(ctx: Context, skill_name: str): """Add a skill scaffolding to the configuration file and agent.""" scaffold_item(ctx, SKILL, skill_name) @scaffold.command() @pass_ctx def decision_maker_handler(ctx: Context): """Add a decision maker scaffolding to the configuration file and agent.""" _scaffold_dm_handler(ctx) @scaffold.command() @pass_ctx def error_handler(ctx: Context): """Add an error scaffolding to the configuration file and agent.""" _scaffold_error_handler(ctx) @clean_after def scaffold_item(ctx: Context, item_type: str, item_name: str) -> None: """ Add an item scaffolding to the configuration file and agent. :param ctx: Context object. :param item_type: type of item. :param item_name: item name. :return: None :raises ClickException: if some error occures. """ validate_package_name(item_name) author_name = ctx.agent_config.author loader = getattr(ctx, f"{item_type}_loader") default_config_filename = globals()[f"DEFAULT_{item_type.upper()}_CONFIG_FILE"] item_type_plural = item_type + "s" existing_ids = getattr(ctx.agent_config, f"{item_type}s") existing_ids_only_author_and_name = map(lambda x: (x.author, x.name), existing_ids) # check if we already have an item with the same public id if (author_name, item_name) in existing_ids_only_author_and_name: raise click.ClickException( f"A {item_type} with name '{item_name}' already exists. Aborting..." ) agent_name = ctx.agent_config.agent_name click.echo( f"Adding {item_type} scaffold '{item_name}' to the agent '{agent_name}'..." ) # create the item folder Path(item_type_plural).mkdir(exist_ok=True) dest = os.path.join(item_type_plural, item_name) if os.path.exists(dest): raise click.ClickException( f"A {item_type} with this name already exists. Please choose a different name and try again." ) ctx.clean_paths.append(str(dest)) try: # copy the item package into the agent project. src = Path(os.path.join(AEA_DIR, item_type_plural, "scaffold")) logger.debug(f"Copying {item_type} modules. src={src} dst={dest}") shutil.copytree(src, dest) # add the item to the configurations. logger.debug(f"Registering the {item_type} into {DEFAULT_AEA_CONFIG_FILE}") new_public_id = PublicId(author_name, item_name, DEFAULT_VERSION) existing_ids.add(new_public_id) with open(os.path.join(ctx.cwd, DEFAULT_AEA_CONFIG_FILE), "w") as fp: ctx.agent_loader.dump(ctx.agent_config, fp) # ensure the name in the yaml and the name of the folder are the same config_filepath = Path( ctx.cwd, item_type_plural, item_name, default_config_filename ) with config_filepath.open() as fp: config = loader.load(fp) config.name = item_name config.author = author_name with config_filepath.open("w") as fp: loader.dump(config, fp) # update 'PUBLIC_ID' variable with the right public id init_module = Path(dest, "__init__.py") init_module.write_text( re.sub(SCAFFOLD_PUBLIC_ID, str(new_public_id), init_module.read_text()) ) # fingerprint item. fingerprint_item(ctx, item_type, new_public_id) if ctx.config.get("with_symlinks", False): click.echo( "Adding symlinks from vendor to non-vendor and packages to vendor folders." ) create_symlink_vendor_to_local(ctx, item_type, new_public_id) create_symlink_packages_to_vendor(ctx) except ValidationError: raise click.ClickException( f"Error when validating the {item_type} configuration file." ) except Exception as e: raise click.ClickException(str(e)) def _scaffold_dm_handler(ctx: Context): """Scaffold the decision maker handler.""" _scaffold_non_package_item( ctx, "decision_maker_handler", "decision maker handler", "DecisionMakerHandler", "decision_maker", ) def _scaffold_error_handler(ctx): """Scaffold the error handler.""" _scaffold_non_package_item( ctx, "error_handler", "error handler", "ErrorHandler", "error_handler" ) def _scaffold_non_package_item( ctx: Context, item_type: str, type_name: str, class_name: str, aea_dir: str ): """ Scaffold a non-package item (e.g. decision maker handler, or error handler). :param ctx: the CLI context. :param item_type: the item type (e.g. 'decision_maker_handler') :param type_name: the type name (e.g. "decision maker") :param class_name: the class name (e.g. "DecisionMakerHandler") :param aea_dir: the AEA directory that contains the scaffold module :return: None """ existing_item = getattr(ctx.agent_config, item_type) if existing_item != {}: raise click.ClickException( f"A {type_name} specification already exists. Aborting..." ) dest = Path(f"{item_type}.py") agent_name = ctx.agent_config.agent_name click.echo(f"Adding {type_name} scaffold to the agent '{agent_name}'...") # create the file name dotted_path = f".{item_type}{DOTTED_PATH_MODULE_ELEMENT_SEPARATOR}{class_name}" try: # copy the item package into the agent project. src = Path(os.path.join(AEA_DIR, aea_dir, "scaffold.py")) logger.debug(f"Copying {type_name}. src={src} dst={dest}") shutil.copyfile(src, dest) # add the item to the configurations. logger.debug(f"Registering the {type_name} into {DEFAULT_AEA_CONFIG_FILE}") setattr( ctx.agent_config, item_type, { "dotted_path": str(dotted_path), "file_path": str(os.path.join(".", dest)), }, ) ctx.agent_loader.dump( ctx.agent_config, open(os.path.join(ctx.cwd, DEFAULT_AEA_CONFIG_FILE), "w") ) except Exception as e: os.remove(dest) raise click.ClickException(str(e))
34.551971
130
0.67832
da17db7c0809ec0610e6a0ca4a4af84bc300bfa6
1,990
py
Python
rooms-unified/main.py
tranhoangkhuongvn/my_unified_mahrl
d9cba06427a17a7f5feb4420412c6d8195bb0e1c
[ "MIT" ]
null
null
null
rooms-unified/main.py
tranhoangkhuongvn/my_unified_mahrl
d9cba06427a17a7f5feb4420412c6d8195bb0e1c
[ "MIT" ]
null
null
null
rooms-unified/main.py
tranhoangkhuongvn/my_unified_mahrl
d9cba06427a17a7f5feb4420412c6d8195bb0e1c
[ "MIT" ]
null
null
null
import time start_time = time.time() from ExperienceReplayMemory import ExperienceReplayMemory experience_memory = ExperienceReplayMemory(memory_size=10000) from SubgoalDiscovery import SubgoalDiscovery subgoal_discovery = SubgoalDiscovery(n_clusters=8,experience_memory=experience_memory) import gym from gym_rooms.envs import * environment = 'Rooms-v0' env = gym.make(environment) from trainer import RandomWalk random_walk = RandomWalk(env=env,subgoal_discovery=subgoal_discovery,experience_memory=experience_memory) # lets random walk and find the subgoals such as centroids and outliers random_walk.walk() outliers = subgoal_discovery.outliers centroids = subgoal_discovery.centroid_subgoals subgoals = subgoal_discovery.G randomwalk_USD_time = time.time() print('Elapse time for subgoal discovery: ', randomwalk_USD_time-start_time) from hrl import Controller controller = Controller(subgoal_discovery=subgoal_discovery) env.cross_hallway = True from trainer import PretrainController pretainer = PretrainController( env=env, controller=controller, subgoal_discovery=subgoal_discovery) pretainer.train() # pretainer.controller.Q.save_model() # pretainer.controller.Q.load_model() from hrl import MetaController meta_controller = MetaController(subgoal_discovery=subgoal_discovery) from trainer import MetaControllerController meta_controller_trainer = MetaControllerController( env=env, controller=pretainer.controller, meta_controller=meta_controller, subgoal_discovery=subgoal_discovery) meta_controller_trainer.train() # from trainer import MetaControllerControllerUnified # meta_controller_controller_trainer = MetaControllerControllerUnified( env=env, # controller=pretainer.controller, # meta_controller=meta_controller, # subgoal_discovery=subgoal_discovery) # meta_controller_controller_trainer.train() # from trainer import VanillaRL # vanilla_rl = VanillaRL(env=env) # vanilla_rl.train()
31.09375
105
0.819095
c2cc434374970c86de0f8b3a55036da2ec975230
13,656
py
Python
python/ray/tests/test_runtime_env_packaging.py
takeshi-yoshimura/ray
cc577c10edbfc8b4248e2776947e1e0d5dbf4585
[ "Apache-2.0" ]
1
2022-03-14T04:24:17.000Z
2022-03-14T04:24:17.000Z
python/ray/tests/test_runtime_env_packaging.py
takeshi-yoshimura/ray
cc577c10edbfc8b4248e2776947e1e0d5dbf4585
[ "Apache-2.0" ]
21
2022-01-30T15:49:41.000Z
2022-03-19T07:14:33.000Z
python/ray/tests/test_runtime_env_packaging.py
takeshi-yoshimura/ray
cc577c10edbfc8b4248e2776947e1e0d5dbf4585
[ "Apache-2.0" ]
null
null
null
import os from pathlib import Path import random from shutil import copytree, rmtree, make_archive import string import sys import tempfile from filecmp import dircmp import uuid import pytest from ray.ray_constants import KV_NAMESPACE_PACKAGE from ray.experimental.internal_kv import _internal_kv_del, _internal_kv_exists from ray._private.runtime_env.packaging import ( _dir_travel, get_local_dir_from_uri, get_uri_for_directory, _get_excludes, upload_package_if_needed, parse_uri, Protocol, get_top_level_dir_from_compressed_package, remove_dir_from_filepaths, unzip_package, ) TOP_LEVEL_DIR_NAME = "top_level" ARCHIVE_NAME = "archive.zip" def random_string(size: int = 10): return "".join(random.choice(string.ascii_uppercase) for _ in range(size)) @pytest.fixture def empty_dir(): with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir @pytest.fixture def random_dir(): with tempfile.TemporaryDirectory() as tmp_dir: path = Path(tmp_dir) subdir = path / "subdir" subdir.mkdir(parents=True) for _ in range(10): p1 = path / random_string(10) with p1.open("w") as f1: f1.write(random_string(100)) p2 = path / random_string(10) with p2.open("w") as f2: f2.write(random_string(200)) yield tmp_dir @pytest.fixture def random_zip_file_without_top_level_dir(random_dir): path = Path(random_dir) make_archive(path / ARCHIVE_NAME[: ARCHIVE_NAME.rfind(".")], "zip", path) yield str(path / ARCHIVE_NAME) @pytest.fixture def random_zip_file_with_top_level_dir(): with tempfile.TemporaryDirectory() as tmp_dir: path = Path(tmp_dir) top_level_dir = path / TOP_LEVEL_DIR_NAME top_level_dir.mkdir(parents=True) next_level_dir = top_level_dir for _ in range(10): p1 = next_level_dir / random_string(10) with p1.open("w") as f1: f1.write(random_string(100)) p2 = next_level_dir / random_string(10) with p2.open("w") as f2: f2.write(random_string(200)) dir1 = next_level_dir / random_string(15) dir1.mkdir(parents=True) dir2 = next_level_dir / random_string(15) dir2.mkdir(parents=True) next_level_dir = dir2 make_archive( path / ARCHIVE_NAME[: ARCHIVE_NAME.rfind(".")], "zip", path, TOP_LEVEL_DIR_NAME, ) yield str(path / ARCHIVE_NAME) @pytest.mark.skipif(sys.platform == "win32", reason="Fail to create temp dir.") class TestGetURIForDirectory: def test_invalid_directory(self): with pytest.raises(ValueError): get_uri_for_directory("/does/not/exist") with pytest.raises(ValueError): get_uri_for_directory("does/not/exist") def test_determinism(self, random_dir): # Check that it's deterministic for same data. uris = {get_uri_for_directory(random_dir) for _ in range(10)} assert len(uris) == 1 # Add one file, should be different now. with open(Path(random_dir) / f"test_{random_string}", "w") as f: f.write(random_string()) assert {get_uri_for_directory(random_dir)} != uris def test_relative_paths(self, random_dir): # Check that relative or absolute paths result in the same URI. p = Path(random_dir) relative_uri = get_uri_for_directory(os.path.relpath(p)) absolute_uri = get_uri_for_directory(p.resolve()) assert relative_uri == absolute_uri def test_excludes(self, random_dir): # Excluding a directory should modify the URI. included_uri = get_uri_for_directory(random_dir) excluded_uri = get_uri_for_directory(random_dir, excludes=["subdir"]) assert included_uri != excluded_uri # Excluding a directory should be the same as deleting it. rmtree((Path(random_dir) / "subdir").resolve()) deleted_uri = get_uri_for_directory(random_dir) assert deleted_uri == excluded_uri def test_empty_directory(self): try: os.mkdir("d1") os.mkdir("d2") assert get_uri_for_directory("d1") == get_uri_for_directory("d2") finally: os.rmdir("d1") os.rmdir("d2") def test_uri_hash_length(self, random_dir): uri = get_uri_for_directory(random_dir) hex_hash = uri.split("_")[-1][: -len(".zip")] assert len(hex_hash) == 16 @pytest.mark.skipif(sys.platform == "win32", reason="Fail to create temp dir.") class TestUploadPackageIfNeeded: def test_create_upload_once(self, empty_dir, random_dir, ray_start_regular): uri = get_uri_for_directory(random_dir) uploaded = upload_package_if_needed(uri, empty_dir, random_dir) assert uploaded assert _internal_kv_exists(uri, namespace=KV_NAMESPACE_PACKAGE) uploaded = upload_package_if_needed(uri, empty_dir, random_dir) assert not uploaded assert _internal_kv_exists(uri, namespace=KV_NAMESPACE_PACKAGE) # Delete the URI from the internal_kv. This should trigger re-upload. _internal_kv_del(uri, namespace=KV_NAMESPACE_PACKAGE) assert not _internal_kv_exists(uri, namespace=KV_NAMESPACE_PACKAGE) uploaded = upload_package_if_needed(uri, empty_dir, random_dir) assert uploaded @pytest.mark.skipif(sys.platform == "win32", reason="Fail to create temp dir.") class TestGetTopLevelDirFromCompressedPackage: def test_get_top_level_valid(self, random_zip_file_with_top_level_dir): top_level_dir_name = get_top_level_dir_from_compressed_package( str(random_zip_file_with_top_level_dir) ) assert top_level_dir_name == TOP_LEVEL_DIR_NAME def test_get_top_level_invalid(self, random_zip_file_without_top_level_dir): top_level_dir_name = get_top_level_dir_from_compressed_package( str(random_zip_file_without_top_level_dir) ) assert top_level_dir_name is None @pytest.mark.skipif(sys.platform == "win32", reason="Fail to create temp dir.") class TestRemoveDirFromFilepaths: def test_valid_removal(self, random_zip_file_with_top_level_dir): # This test copies the TOP_LEVEL_DIR_NAME directory, and then it # shifts the contents of the copied directory into the base tmp_path # directory. Then it compares the contents of tmp_path with the # TOP_LEVEL_DIR_NAME directory to ensure that they match. archive_path = random_zip_file_with_top_level_dir tmp_path = archive_path[: archive_path.rfind("/")] original_dir_path = os.path.join(tmp_path, TOP_LEVEL_DIR_NAME) copy_dir_path = os.path.join(tmp_path, TOP_LEVEL_DIR_NAME + "_copy") copytree(original_dir_path, copy_dir_path) remove_dir_from_filepaths(tmp_path, TOP_LEVEL_DIR_NAME + "_copy") dcmp = dircmp(tmp_path, f"{tmp_path}/{TOP_LEVEL_DIR_NAME}") # Since this test uses the tmp_path as the target directory, and since # the tmp_path also contains the zip file and the top level directory, # make sure that the only difference between the tmp_path's contents # and the top level directory's contents are the zip file from the # Pytest fixture and the top level directory itself. This implies that # all files have been extracted from the top level directory and moved # into the tmp_path. assert set(dcmp.left_only) == {ARCHIVE_NAME, TOP_LEVEL_DIR_NAME} # Make sure that all the subdirectories and files have been moved to # the target directory assert len(dcmp.right_only) == 0 @pytest.mark.skipif(sys.platform == "win32", reason="Fail to create temp dir.") @pytest.mark.parametrize("remove_top_level_directory", [False, True]) @pytest.mark.parametrize("unlink_zip", [False, True]) class TestUnzipPackage: def dcmp_helper( self, remove_top_level_directory, unlink_zip, tmp_subdir, tmp_path, archive_path ): dcmp = None if remove_top_level_directory: dcmp = dircmp(f"{tmp_subdir}", f"{tmp_path}/{TOP_LEVEL_DIR_NAME}") else: dcmp = dircmp( f"{tmp_subdir}/{TOP_LEVEL_DIR_NAME}", f"{tmp_path}/{TOP_LEVEL_DIR_NAME}" ) assert len(dcmp.left_only) == 0 assert len(dcmp.right_only) == 0 if unlink_zip: assert not Path(archive_path).is_file() else: assert Path(archive_path).is_file() def test_unzip_package( self, random_zip_file_with_top_level_dir, remove_top_level_directory, unlink_zip ): archive_path = random_zip_file_with_top_level_dir tmp_path = archive_path[: archive_path.rfind("/")] tmp_subdir = f"{tmp_path}/{TOP_LEVEL_DIR_NAME}_tmp" unzip_package( package_path=archive_path, target_dir=tmp_subdir, remove_top_level_directory=remove_top_level_directory, unlink_zip=unlink_zip, ) self.dcmp_helper( remove_top_level_directory, unlink_zip, tmp_subdir, tmp_path, archive_path ) def test_unzip_with_matching_subdirectory_names( self, remove_top_level_directory, unlink_zip ): with tempfile.TemporaryDirectory() as tmp_dir: path = Path(tmp_dir) top_level_dir = path / TOP_LEVEL_DIR_NAME top_level_dir.mkdir(parents=True) next_level_dir = top_level_dir for _ in range(10): dir1 = next_level_dir / TOP_LEVEL_DIR_NAME dir1.mkdir(parents=True) next_level_dir = dir1 make_archive( path / ARCHIVE_NAME[: ARCHIVE_NAME.rfind(".")], "zip", path, TOP_LEVEL_DIR_NAME, ) archive_path = str(path / ARCHIVE_NAME) tmp_path = archive_path[: archive_path.rfind("/")] tmp_subdir = f"{tmp_path}/{TOP_LEVEL_DIR_NAME}_tmp" unzip_package( package_path=archive_path, target_dir=tmp_subdir, remove_top_level_directory=remove_top_level_directory, unlink_zip=unlink_zip, ) self.dcmp_helper( remove_top_level_directory, unlink_zip, tmp_subdir, tmp_path, archive_path, ) @pytest.mark.skipif(sys.platform == "win32", reason="Fail to create temp dir.") def test_travel(): with tempfile.TemporaryDirectory() as tmp_dir: dir_paths = set() file_paths = set() item_num = 0 excludes = [] root = Path(tmp_dir) / "test" def construct(path, excluded=False, depth=0): nonlocal item_num path.mkdir(parents=True) if not excluded: dir_paths.add(str(path)) if depth > 8: return if item_num > 500: return dir_num = random.randint(0, 10) file_num = random.randint(0, 10) for _ in range(dir_num): uid = str(uuid.uuid4()).split("-")[0] dir_path = path / uid exclud_sub = random.randint(0, 5) == 0 if not excluded and exclud_sub: excludes.append(str(dir_path.relative_to(root))) if not excluded: construct(dir_path, exclud_sub or excluded, depth + 1) item_num += 1 if item_num > 1000: return for _ in range(file_num): uid = str(uuid.uuid4()).split("-")[0] with (path / uid).open("w") as f: v = random.randint(0, 1000) f.write(str(v)) if not excluded: if random.randint(0, 5) == 0: excludes.append(str((path / uid).relative_to(root))) else: file_paths.add((str(path / uid), str(v))) item_num += 1 construct(root) exclude_spec = _get_excludes(root, excludes) visited_dir_paths = set() visited_file_paths = set() def handler(path): if path.is_dir(): visited_dir_paths.add(str(path)) else: with open(path) as f: visited_file_paths.add((str(path), f.read())) _dir_travel(root, [exclude_spec], handler) assert file_paths == visited_file_paths assert dir_paths == visited_dir_paths @pytest.mark.parametrize( "parsing_tuple", [ ("gcs://file.zip", Protocol.GCS, "file.zip"), ("s3://bucket/file.zip", Protocol.S3, "s3_bucket_file.zip"), ("https://test.com/file.zip", Protocol.HTTPS, "https_test_com_file.zip"), ("gs://bucket/file.zip", Protocol.GS, "gs_bucket_file.zip"), ], ) def test_parsing(parsing_tuple): uri, protocol, package_name = parsing_tuple parsed_protocol, parsed_package_name = parse_uri(uri) assert protocol == parsed_protocol assert package_name == parsed_package_name def test_get_local_dir_from_uri(): uri = "gcs://<working_dir_content_hash>.zip" assert get_local_dir_from_uri(uri, "base_dir") == Path( "base_dir/<working_dir_content_hash>" ) if __name__ == "__main__": sys.exit(pytest.main(["-sv", __file__]))
36.416
88
0.634593
662cd7c6d6c9e30a30f7bfed2197e882005ab070
62,492
py
Python
tests/mail/tests.py
qedsoftware/django
b5fc192b99ce92a7ccad08cca7b59b1a4e7ca230
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
tests/mail/tests.py
qedsoftware/django
b5fc192b99ce92a7ccad08cca7b59b1a4e7ca230
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
tests/mail/tests.py
qedsoftware/django
b5fc192b99ce92a7ccad08cca7b59b1a4e7ca230
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals import asyncore import base64 import mimetypes import os import shutil import smtpd import socket import sys import tempfile import threading from email.header import Header from email.mime.text import MIMEText from smtplib import SMTP, SMTPAuthenticationError, SMTPException from ssl import SSLError from django.core import mail from django.core.mail import ( EmailMessage, EmailMultiAlternatives, mail_admins, mail_managers, send_mail, send_mass_mail, ) from django.core.mail.backends import console, dummy, filebased, locmem, smtp from django.core.mail.message import BadHeaderError, sanitize_address from django.test import SimpleTestCase, override_settings from django.test.utils import requires_tz_support from django.utils._os import upath from django.utils.encoding import force_bytes, force_text from django.utils.six import PY3, StringIO, binary_type from django.utils.translation import ugettext_lazy if PY3: from email.utils import parseaddr from email import message_from_bytes, message_from_binary_file else: from email.Utils import parseaddr from email import ( message_from_string as message_from_bytes, message_from_file as message_from_binary_file, ) class HeadersCheckMixin(object): def assertMessageHasHeaders(self, message, headers): """ Check that :param message: has all :param headers: headers. :param message: can be an instance of an email.Message subclass or a string with the contents of an email message. :param headers: should be a set of (header-name, header-value) tuples. """ if isinstance(message, binary_type): message = message_from_bytes(message) msg_headers = set(message.items()) self.assertTrue(headers.issubset(msg_headers), msg='Message is missing ' 'the following headers: %s' % (headers - msg_headers),) class MailTests(HeadersCheckMixin, SimpleTestCase): """ Non-backend specific tests. """ def get_decoded_attachments(self, django_message): """ Encode the specified django.core.mail.message.EmailMessage, then decode it using Python's email.parser module and, for each attachment of the message, return a list of tuples with (filename, content, mimetype). """ msg_bytes = django_message.message().as_bytes() email_message = message_from_bytes(msg_bytes) def iter_attachments(): for i in email_message.walk(): # Once support for Python<3.5 has been dropped, we can use # i.get_content_disposition() here instead. content_disposition = i.get('content-disposition', '').split(';')[0].lower() if content_disposition == 'attachment': filename = i.get_filename() content = i.get_payload(decode=True) mimetype = i.get_content_type() yield filename, content, mimetype return list(iter_attachments()) def test_ascii(self): email = EmailMessage('Subject', 'Content', '[email protected]', ['[email protected]']) message = email.message() self.assertEqual(message['Subject'], 'Subject') self.assertEqual(message.get_payload(), 'Content') self.assertEqual(message['From'], '[email protected]') self.assertEqual(message['To'], '[email protected]') def test_multiple_recipients(self): email = EmailMessage('Subject', 'Content', '[email protected]', ['[email protected]', '[email protected]']) message = email.message() self.assertEqual(message['Subject'], 'Subject') self.assertEqual(message.get_payload(), 'Content') self.assertEqual(message['From'], '[email protected]') self.assertEqual(message['To'], '[email protected], [email protected]') def test_cc(self): """Regression test for #7722""" email = EmailMessage('Subject', 'Content', '[email protected]', ['[email protected]'], cc=['[email protected]']) message = email.message() self.assertEqual(message['Cc'], '[email protected]') self.assertEqual(email.recipients(), ['[email protected]', '[email protected]']) # Test multiple CC with multiple To email = EmailMessage( 'Subject', 'Content', '[email protected]', ['[email protected]', '[email protected]'], cc=['[email protected]', '[email protected]'] ) message = email.message() self.assertEqual(message['Cc'], '[email protected], [email protected]') self.assertEqual( email.recipients(), ['[email protected]', '[email protected]', '[email protected]', '[email protected]'] ) # Testing with Bcc email = EmailMessage( 'Subject', 'Content', '[email protected]', ['[email protected]', '[email protected]'], cc=['[email protected]', '[email protected]'], bcc=['[email protected]'] ) message = email.message() self.assertEqual(message['Cc'], '[email protected], [email protected]') self.assertEqual( email.recipients(), ['[email protected]', '[email protected]', '[email protected]', '[email protected]', '[email protected]'] ) def test_reply_to(self): email = EmailMessage( 'Subject', 'Content', '[email protected]', ['[email protected]'], reply_to=['[email protected]'], ) message = email.message() self.assertEqual(message['Reply-To'], '[email protected]') email = EmailMessage( 'Subject', 'Content', '[email protected]', ['[email protected]'], reply_to=['[email protected]', '[email protected]'] ) message = email.message() self.assertEqual(message['Reply-To'], '[email protected], [email protected]') def test_recipients_as_tuple(self): email = EmailMessage( 'Subject', 'Content', '[email protected]', ('[email protected]', '[email protected]'), cc=('[email protected]', '[email protected]'), bcc=('[email protected]',) ) message = email.message() self.assertEqual(message['Cc'], '[email protected], [email protected]') self.assertEqual( email.recipients(), ['[email protected]', '[email protected]', '[email protected]', '[email protected]', '[email protected]'] ) def test_recipients_as_string(self): with self.assertRaisesMessage(TypeError, '"to" argument must be a list or tuple'): EmailMessage(to='[email protected]') with self.assertRaisesMessage(TypeError, '"cc" argument must be a list or tuple'): EmailMessage(cc='[email protected]') with self.assertRaisesMessage(TypeError, '"bcc" argument must be a list or tuple'): EmailMessage(bcc='[email protected]') with self.assertRaisesMessage(TypeError, '"reply_to" argument must be a list or tuple'): EmailMessage(reply_to='[email protected]') def test_header_injection(self): email = EmailMessage('Subject\nInjection Test', 'Content', '[email protected]', ['[email protected]']) with self.assertRaises(BadHeaderError): email.message() email = EmailMessage( ugettext_lazy('Subject\nInjection Test'), 'Content', '[email protected]', ['[email protected]'] ) with self.assertRaises(BadHeaderError): email.message() def test_space_continuation(self): """ Test for space continuation character in long (ASCII) subject headers (#7747) """ email = EmailMessage( 'Long subject lines that get wrapped should contain a space ' 'continuation character to get expected behavior in Outlook and Thunderbird', 'Content', '[email protected]', ['[email protected]'] ) message = email.message() # Note that in Python 3, maximum line length has increased from 76 to 78 self.assertEqual( message['Subject'].encode(), b'Long subject lines that get wrapped should contain a space continuation\n' b' character to get expected behavior in Outlook and Thunderbird' ) def test_message_header_overrides(self): """ Specifying dates or message-ids in the extra headers overrides the default values (#9233) """ headers = {"date": "Fri, 09 Nov 2001 01:08:47 -0000", "Message-ID": "foo"} email = EmailMessage('subject', 'content', '[email protected]', ['[email protected]'], headers=headers) self.assertMessageHasHeaders(email.message(), { ('Content-Transfer-Encoding', '7bit'), ('Content-Type', 'text/plain; charset="utf-8"'), ('From', '[email protected]'), ('MIME-Version', '1.0'), ('Message-ID', 'foo'), ('Subject', 'subject'), ('To', '[email protected]'), ('date', 'Fri, 09 Nov 2001 01:08:47 -0000'), }) def test_from_header(self): """ Make sure we can manually set the From header (#9214) """ email = EmailMessage( 'Subject', 'Content', '[email protected]', ['[email protected]'], headers={'From': '[email protected]'}, ) message = email.message() self.assertEqual(message['From'], '[email protected]') def test_to_header(self): """ Make sure we can manually set the To header (#17444) """ email = EmailMessage('Subject', 'Content', '[email protected]', ['[email protected]', '[email protected]'], headers={'To': '[email protected]'}) message = email.message() self.assertEqual(message['To'], '[email protected]') self.assertEqual(email.to, ['[email protected]', '[email protected]']) # If we don't set the To header manually, it should default to the `to` argument to the constructor email = EmailMessage('Subject', 'Content', '[email protected]', ['[email protected]', '[email protected]']) message = email.message() self.assertEqual(message['To'], '[email protected], [email protected]') self.assertEqual(email.to, ['[email protected]', '[email protected]']) def test_reply_to_header(self): """ Specifying 'Reply-To' in headers should override reply_to. """ email = EmailMessage( 'Subject', 'Content', '[email protected]', ['[email protected]'], reply_to=['[email protected]'], headers={'Reply-To': '[email protected]'}, ) message = email.message() self.assertEqual(message['Reply-To'], '[email protected]') def test_multiple_message_call(self): """ Regression for #13259 - Make sure that headers are not changed when calling EmailMessage.message() """ email = EmailMessage( 'Subject', 'Content', '[email protected]', ['[email protected]'], headers={'From': '[email protected]'}, ) message = email.message() self.assertEqual(message['From'], '[email protected]') message = email.message() self.assertEqual(message['From'], '[email protected]') def test_unicode_address_header(self): """ Regression for #11144 - When a to/from/cc header contains unicode, make sure the email addresses are parsed correctly (especially with regards to commas) """ email = EmailMessage( 'Subject', 'Content', '[email protected]', ['"Firstname Sürname" <[email protected]>', '[email protected]'], ) self.assertEqual( email.message()['To'], '=?utf-8?q?Firstname_S=C3=BCrname?= <[email protected]>, [email protected]' ) email = EmailMessage( 'Subject', 'Content', '[email protected]', ['"Sürname, Firstname" <[email protected]>', '[email protected]'], ) self.assertEqual( email.message()['To'], '=?utf-8?q?S=C3=BCrname=2C_Firstname?= <[email protected]>, [email protected]' ) def test_unicode_headers(self): email = EmailMessage("Gżegżółka", "Content", "[email protected]", ["[email protected]"], headers={"Sender": '"Firstname Sürname" <[email protected]>', "Comments": 'My Sürname is non-ASCII'}) message = email.message() self.assertEqual(message['Subject'], '=?utf-8?b?R8W8ZWfFvMOzxYJrYQ==?=') self.assertEqual(message['Sender'], '=?utf-8?q?Firstname_S=C3=BCrname?= <[email protected]>') self.assertEqual(message['Comments'], '=?utf-8?q?My_S=C3=BCrname_is_non-ASCII?=') def test_safe_mime_multipart(self): """ Make sure headers can be set with a different encoding than utf-8 in SafeMIMEMultipart as well """ headers = {"Date": "Fri, 09 Nov 2001 01:08:47 -0000", "Message-ID": "foo"} from_email, to = '[email protected]', '"Sürname, Firstname" <[email protected]>' text_content = 'This is an important message.' html_content = '<p>This is an <strong>important</strong> message.</p>' msg = EmailMultiAlternatives('Message from Firstname Sürname', text_content, from_email, [to], headers=headers) msg.attach_alternative(html_content, "text/html") msg.encoding = 'iso-8859-1' self.assertEqual(msg.message()['To'], '=?iso-8859-1?q?S=FCrname=2C_Firstname?= <[email protected]>') self.assertEqual(msg.message()['Subject'], '=?iso-8859-1?q?Message_from_Firstname_S=FCrname?=') def test_encoding(self): """ Regression for #12791 - Encode body correctly with other encodings than utf-8 """ email = EmailMessage('Subject', 'Firstname Sürname is a great guy.', '[email protected]', ['[email protected]']) email.encoding = 'iso-8859-1' message = email.message() self.assertMessageHasHeaders(message, { ('MIME-Version', '1.0'), ('Content-Type', 'text/plain; charset="iso-8859-1"'), ('Content-Transfer-Encoding', 'quoted-printable'), ('Subject', 'Subject'), ('From', '[email protected]'), ('To', '[email protected]')}) self.assertEqual(message.get_payload(), 'Firstname S=FCrname is a great guy.') # Make sure MIME attachments also works correctly with other encodings than utf-8 text_content = 'Firstname Sürname is a great guy.' html_content = '<p>Firstname Sürname is a <strong>great</strong> guy.</p>' msg = EmailMultiAlternatives('Subject', text_content, '[email protected]', ['[email protected]']) msg.encoding = 'iso-8859-1' msg.attach_alternative(html_content, "text/html") payload0 = msg.message().get_payload(0) self.assertMessageHasHeaders(payload0, { ('MIME-Version', '1.0'), ('Content-Type', 'text/plain; charset="iso-8859-1"'), ('Content-Transfer-Encoding', 'quoted-printable')}) self.assertTrue(payload0.as_bytes().endswith(b'\n\nFirstname S=FCrname is a great guy.')) payload1 = msg.message().get_payload(1) self.assertMessageHasHeaders(payload1, { ('MIME-Version', '1.0'), ('Content-Type', 'text/html; charset="iso-8859-1"'), ('Content-Transfer-Encoding', 'quoted-printable')}) self.assertTrue( payload1.as_bytes().endswith(b'\n\n<p>Firstname S=FCrname is a <strong>great</strong> guy.</p>') ) def test_attachments(self): """Regression test for #9367""" headers = {"Date": "Fri, 09 Nov 2001 01:08:47 -0000", "Message-ID": "foo"} subject, from_email, to = 'hello', '[email protected]', '[email protected]' text_content = 'This is an important message.' html_content = '<p>This is an <strong>important</strong> message.</p>' msg = EmailMultiAlternatives(subject, text_content, from_email, [to], headers=headers) msg.attach_alternative(html_content, "text/html") msg.attach("an attachment.pdf", b"%PDF-1.4.%...", mimetype="application/pdf") msg_bytes = msg.message().as_bytes() message = message_from_bytes(msg_bytes) self.assertTrue(message.is_multipart()) self.assertEqual(message.get_content_type(), 'multipart/mixed') self.assertEqual(message.get_default_type(), 'text/plain') payload = message.get_payload() self.assertEqual(payload[0].get_content_type(), 'multipart/alternative') self.assertEqual(payload[1].get_content_type(), 'application/pdf') def test_non_ascii_attachment_filename(self): """Regression test for #14964""" headers = {"Date": "Fri, 09 Nov 2001 01:08:47 -0000", "Message-ID": "foo"} subject, from_email, to = 'hello', '[email protected]', '[email protected]' content = 'This is the message.' msg = EmailMessage(subject, content, from_email, [to], headers=headers) # Unicode in file name msg.attach("une pièce jointe.pdf", b"%PDF-1.4.%...", mimetype="application/pdf") msg_bytes = msg.message().as_bytes() message = message_from_bytes(msg_bytes) payload = message.get_payload() self.assertEqual(payload[1].get_filename(), 'une pièce jointe.pdf') def test_attach_file(self): """ Test attaching a file against different mimetypes and make sure that a file will be attached and sent properly even if an invalid mimetype is specified. """ files = ( # filename, actual mimetype ('file.txt', 'text/plain'), ('file.png', 'image/png'), ('file_txt', None), ('file_png', None), ('file_txt.png', 'image/png'), ('file_png.txt', 'text/plain'), ) test_mimetypes = ['text/plain', 'image/png', None] for basename, real_mimetype in files: for mimetype in test_mimetypes: email = EmailMessage('subject', 'body', '[email protected]', ['[email protected]']) self.assertEqual(mimetypes.guess_type(basename)[0], real_mimetype) self.assertEqual(email.attachments, []) file_path = os.path.join(os.path.dirname(upath(__file__)), 'attachments', basename) email.attach_file(file_path, mimetype=mimetype) self.assertEqual(len(email.attachments), 1) self.assertIn(basename, email.attachments[0]) msgs_sent_num = email.send() self.assertEqual(msgs_sent_num, 1) def test_attach_text_as_bytes(self): msg = EmailMessage('subject', 'body', '[email protected]', ['[email protected]']) msg.attach('file.txt', b'file content') # Check that the message would be sent at all. sent_num = msg.send() self.assertEqual(sent_num, 1) filename, content, mimetype = self.get_decoded_attachments(msg)[0] self.assertEqual(filename, 'file.txt') self.assertEqual(content, b'file content') self.assertEqual(mimetype, 'text/plain') def test_attach_utf8_text_as_bytes(self): """ Non-ASCII characters encoded as valid UTF-8 are correctly transported and decoded. """ msg = EmailMessage('subject', 'body', '[email protected]', ['[email protected]']) msg.attach('file.txt', b'\xc3\xa4') # UTF-8 encoded a umlaut. filename, content, mimetype = self.get_decoded_attachments(msg)[0] self.assertEqual(filename, 'file.txt') self.assertEqual(content, b'\xc3\xa4') self.assertEqual(mimetype, 'text/plain') def test_attach_non_utf8_text_as_bytes(self): """ Binary data that can't be decoded as UTF-8 overrides the MIME type instead of decoding the data. """ msg = EmailMessage('subject', 'body', '[email protected]', ['[email protected]']) msg.attach('file.txt', b'\xff') # Invalid UTF-8. filename, content, mimetype = self.get_decoded_attachments(msg)[0] self.assertEqual(filename, 'file.txt') # Content should be passed through unmodified. self.assertEqual(content, b'\xff') self.assertEqual(mimetype, 'application/octet-stream') def test_dummy_backend(self): """ Make sure that dummy backends returns correct number of sent messages """ connection = dummy.EmailBackend() email = EmailMessage( 'Subject', 'Content', '[email protected]', ['[email protected]'], headers={'From': '[email protected]'}, ) self.assertEqual(connection.send_messages([email, email, email]), 3) def test_arbitrary_keyword(self): """ Make sure that get_connection() accepts arbitrary keyword that might be used with custom backends. """ c = mail.get_connection(fail_silently=True, foo='bar') self.assertTrue(c.fail_silently) def test_custom_backend(self): """Test custom backend defined in this suite.""" conn = mail.get_connection('mail.custombackend.EmailBackend') self.assertTrue(hasattr(conn, 'test_outbox')) email = EmailMessage( 'Subject', 'Content', '[email protected]', ['[email protected]'], headers={'From': '[email protected]'}, ) conn.send_messages([email]) self.assertEqual(len(conn.test_outbox), 1) def test_backend_arg(self): """Test backend argument of mail.get_connection()""" self.assertIsInstance(mail.get_connection('django.core.mail.backends.smtp.EmailBackend'), smtp.EmailBackend) self.assertIsInstance( mail.get_connection('django.core.mail.backends.locmem.EmailBackend'), locmem.EmailBackend ) self.assertIsInstance(mail.get_connection('django.core.mail.backends.dummy.EmailBackend'), dummy.EmailBackend) self.assertIsInstance( mail.get_connection('django.core.mail.backends.console.EmailBackend'), console.EmailBackend ) tmp_dir = tempfile.mkdtemp() try: self.assertIsInstance( mail.get_connection('django.core.mail.backends.filebased.EmailBackend', file_path=tmp_dir), filebased.EmailBackend ) finally: shutil.rmtree(tmp_dir) self.assertIsInstance(mail.get_connection(), locmem.EmailBackend) @override_settings( EMAIL_BACKEND='django.core.mail.backends.locmem.EmailBackend', ADMINS=[('nobody', '[email protected]')], MANAGERS=[('nobody', '[email protected]')]) def test_connection_arg(self): """Test connection argument to send_mail(), et. al.""" mail.outbox = [] # Send using non-default connection connection = mail.get_connection('mail.custombackend.EmailBackend') send_mail('Subject', 'Content', '[email protected]', ['[email protected]'], connection=connection) self.assertEqual(mail.outbox, []) self.assertEqual(len(connection.test_outbox), 1) self.assertEqual(connection.test_outbox[0].subject, 'Subject') connection = mail.get_connection('mail.custombackend.EmailBackend') send_mass_mail([ ('Subject1', 'Content1', '[email protected]', ['[email protected]']), ('Subject2', 'Content2', '[email protected]', ['[email protected]']), ], connection=connection) self.assertEqual(mail.outbox, []) self.assertEqual(len(connection.test_outbox), 2) self.assertEqual(connection.test_outbox[0].subject, 'Subject1') self.assertEqual(connection.test_outbox[1].subject, 'Subject2') connection = mail.get_connection('mail.custombackend.EmailBackend') mail_admins('Admin message', 'Content', connection=connection) self.assertEqual(mail.outbox, []) self.assertEqual(len(connection.test_outbox), 1) self.assertEqual(connection.test_outbox[0].subject, '[Django] Admin message') connection = mail.get_connection('mail.custombackend.EmailBackend') mail_managers('Manager message', 'Content', connection=connection) self.assertEqual(mail.outbox, []) self.assertEqual(len(connection.test_outbox), 1) self.assertEqual(connection.test_outbox[0].subject, '[Django] Manager message') def test_dont_mangle_from_in_body(self): # Regression for #13433 - Make sure that EmailMessage doesn't mangle # 'From ' in message body. email = EmailMessage( 'Subject', 'From the future', '[email protected]', ['[email protected]'], headers={'From': '[email protected]'}, ) self.assertNotIn(b'>From the future', email.message().as_bytes()) def test_dont_base64_encode(self): # Ticket #3472 # Shouldn't use Base64 encoding at all msg = EmailMessage( 'Subject', 'UTF-8 encoded body', '[email protected]', ['[email protected]'], headers={'From': '[email protected]'}, ) self.assertIn(b'Content-Transfer-Encoding: 7bit', msg.message().as_bytes()) # Ticket #11212 # Shouldn't use quoted printable, should detect it can represent content with 7 bit data msg = EmailMessage( 'Subject', 'Body with only ASCII characters.', '[email protected]', ['[email protected]'], headers={'From': '[email protected]'}, ) s = msg.message().as_bytes() self.assertIn(b'Content-Transfer-Encoding: 7bit', s) # Shouldn't use quoted printable, should detect it can represent content with 8 bit data msg = EmailMessage( 'Subject', 'Body with latin characters: àáä.', '[email protected]', ['[email protected]'], headers={'From': '[email protected]'}, ) s = msg.message().as_bytes() self.assertIn(b'Content-Transfer-Encoding: 8bit', s) s = msg.message().as_string() self.assertIn(str('Content-Transfer-Encoding: 8bit'), s) msg = EmailMessage( 'Subject', 'Body with non latin characters: А Б В Г Д Е Ж Ѕ З И І К Л М Н О П.', '[email protected]', ['[email protected]'], headers={'From': '[email protected]'}, ) s = msg.message().as_bytes() self.assertIn(b'Content-Transfer-Encoding: 8bit', s) s = msg.message().as_string() self.assertIn(str('Content-Transfer-Encoding: 8bit'), s) def test_dont_base64_encode_message_rfc822(self): # Ticket #18967 # Shouldn't use base64 encoding for a child EmailMessage attachment. # Create a child message first child_msg = EmailMessage( 'Child Subject', 'Some body of child message', '[email protected]', ['[email protected]'], headers={'From': '[email protected]'}, ) child_s = child_msg.message().as_string() # Now create a parent parent_msg = EmailMessage( 'Parent Subject', 'Some parent body', '[email protected]', ['[email protected]'], headers={'From': '[email protected]'}, ) # Attach to parent as a string parent_msg.attach(content=child_s, mimetype='message/rfc822') parent_s = parent_msg.message().as_string() # Verify that the child message header is not base64 encoded self.assertIn(str('Child Subject'), parent_s) # Feature test: try attaching email.Message object directly to the mail. parent_msg = EmailMessage( 'Parent Subject', 'Some parent body', '[email protected]', ['[email protected]'], headers={'From': '[email protected]'}, ) parent_msg.attach(content=child_msg.message(), mimetype='message/rfc822') parent_s = parent_msg.message().as_string() # Verify that the child message header is not base64 encoded self.assertIn(str('Child Subject'), parent_s) # Feature test: try attaching Django's EmailMessage object directly to the mail. parent_msg = EmailMessage( 'Parent Subject', 'Some parent body', '[email protected]', ['[email protected]'], headers={'From': '[email protected]'}, ) parent_msg.attach(content=child_msg, mimetype='message/rfc822') parent_s = parent_msg.message().as_string() # Verify that the child message header is not base64 encoded self.assertIn(str('Child Subject'), parent_s) def test_sanitize_address(self): """ Email addresses are properly sanitized. """ # Simple ASCII address - string form self.assertEqual(sanitize_address('[email protected]', 'ascii'), '[email protected]') self.assertEqual(sanitize_address('[email protected]', 'utf-8'), '[email protected]') # Bytestrings are transformed to normal strings. self.assertEqual(sanitize_address(b'[email protected]', 'utf-8'), '[email protected]') # Simple ASCII address - tuple form self.assertEqual( sanitize_address(('A name', '[email protected]'), 'ascii'), 'A name <[email protected]>' ) if PY3: self.assertEqual( sanitize_address(('A name', '[email protected]'), 'utf-8'), '=?utf-8?q?A_name?= <[email protected]>' ) else: self.assertEqual( sanitize_address(('A name', '[email protected]'), 'utf-8'), 'A name <[email protected]>' ) # Unicode characters are are supported in RFC-6532. self.assertEqual( sanitize_address('tó@example.com', 'utf-8'), '[email protected]' ) self.assertEqual( sanitize_address(('Tó Example', 'tó@example.com'), 'utf-8'), '=?utf-8?q?T=C3=B3_Example?= <[email protected]>' ) @requires_tz_support class MailTimeZoneTests(SimpleTestCase): @override_settings(EMAIL_USE_LOCALTIME=False, USE_TZ=True, TIME_ZONE='Africa/Algiers') def test_date_header_utc(self): """ EMAIL_USE_LOCALTIME=False creates a datetime in UTC. """ email = EmailMessage('Subject', 'Body', '[email protected]', ['[email protected]']) self.assertTrue(email.message()['Date'].endswith('-0000')) @override_settings(EMAIL_USE_LOCALTIME=True, USE_TZ=True, TIME_ZONE='Africa/Algiers') def test_date_header_localtime(self): """ EMAIL_USE_LOCALTIME=True creates a datetime in the local time zone. """ email = EmailMessage('Subject', 'Body', '[email protected]', ['[email protected]']) self.assertTrue(email.message()['Date'].endswith('+0100')) # Africa/Algiers is UTC+1 class PythonGlobalState(SimpleTestCase): """ Tests for #12422 -- Django smarts (#2472/#11212) with charset of utf-8 text parts shouldn't pollute global email Python package charset registry when django.mail.message is imported. """ def test_utf8(self): txt = MIMEText('UTF-8 encoded body', 'plain', 'utf-8') self.assertIn('Content-Transfer-Encoding: base64', txt.as_string()) def test_7bit(self): txt = MIMEText('Body with only ASCII characters.', 'plain', 'utf-8') self.assertIn('Content-Transfer-Encoding: base64', txt.as_string()) def test_8bit_latin(self): txt = MIMEText('Body with latin characters: àáä.', 'plain', 'utf-8') self.assertIn(str('Content-Transfer-Encoding: base64'), txt.as_string()) def test_8bit_non_latin(self): txt = MIMEText('Body with non latin characters: А Б В Г Д Е Ж Ѕ З И І К Л М Н О П.', 'plain', 'utf-8') self.assertIn(str('Content-Transfer-Encoding: base64'), txt.as_string()) class BaseEmailBackendTests(HeadersCheckMixin, object): email_backend = None def setUp(self): self.settings_override = override_settings(EMAIL_BACKEND=self.email_backend) self.settings_override.enable() def tearDown(self): self.settings_override.disable() def assertStartsWith(self, first, second): if not first.startswith(second): self.longMessage = True self.assertEqual(first[:len(second)], second, "First string doesn't start with the second.") def get_mailbox_content(self): raise NotImplementedError('subclasses of BaseEmailBackendTests must provide a get_mailbox_content() method') def flush_mailbox(self): raise NotImplementedError('subclasses of BaseEmailBackendTests may require a flush_mailbox() method') def get_the_message(self): mailbox = self.get_mailbox_content() self.assertEqual( len(mailbox), 1, "Expected exactly one message, got %d.\n%r" % (len(mailbox), [m.as_string() for m in mailbox]) ) return mailbox[0] def test_send(self): email = EmailMessage('Subject', 'Content', '[email protected]', ['[email protected]']) num_sent = mail.get_connection().send_messages([email]) self.assertEqual(num_sent, 1) message = self.get_the_message() self.assertEqual(message["subject"], "Subject") self.assertEqual(message.get_payload(), "Content") self.assertEqual(message["from"], "[email protected]") self.assertEqual(message.get_all("to"), ["[email protected]"]) def test_send_unicode(self): email = EmailMessage('Chère maman', 'Je t\'aime très fort', '[email protected]', ['[email protected]']) num_sent = mail.get_connection().send_messages([email]) self.assertEqual(num_sent, 1) message = self.get_the_message() self.assertEqual(message["subject"], '=?utf-8?q?Ch=C3=A8re_maman?=') self.assertEqual(force_text(message.get_payload(decode=True)), 'Je t\'aime très fort') def test_send_long_lines(self): """ Email line length is limited to 998 chars by the RFC: https://tools.ietf.org/html/rfc5322#section-2.1.1 Message body containing longer lines are converted to Quoted-Printable to avoid having to insert newlines, which could be hairy to do properly. """ email = EmailMessage('Subject', "Comment ça va? " * 100, '[email protected]', ['[email protected]']) email.send() message = self.get_the_message() self.assertMessageHasHeaders(message, { ('MIME-Version', '1.0'), ('Content-Type', 'text/plain; charset="utf-8"'), ('Content-Transfer-Encoding', 'quoted-printable'), }) def test_send_many(self): email1 = EmailMessage('Subject', 'Content1', '[email protected]', ['[email protected]']) email2 = EmailMessage('Subject', 'Content2', '[email protected]', ['[email protected]']) # send_messages() may take a list or a generator. emails_lists = ([email1, email2], (email for email in [email1, email2])) for emails_list in emails_lists: num_sent = mail.get_connection().send_messages(emails_list) self.assertEqual(num_sent, 2) messages = self.get_mailbox_content() self.assertEqual(len(messages), 2) self.assertEqual(messages[0].get_payload(), 'Content1') self.assertEqual(messages[1].get_payload(), 'Content2') self.flush_mailbox() def test_send_verbose_name(self): email = EmailMessage("Subject", "Content", '"Firstname Sürname" <[email protected]>', ["[email protected]"]) email.send() message = self.get_the_message() self.assertEqual(message["subject"], "Subject") self.assertEqual(message.get_payload(), "Content") self.assertEqual(message["from"], "=?utf-8?q?Firstname_S=C3=BCrname?= <[email protected]>") def test_plaintext_send_mail(self): """ Test send_mail without the html_message regression test for adding html_message parameter to send_mail() """ send_mail('Subject', 'Content', '[email protected]', ['[email protected]']) message = self.get_the_message() self.assertEqual(message.get('subject'), 'Subject') self.assertEqual(message.get_all('to'), ['[email protected]']) self.assertFalse(message.is_multipart()) self.assertEqual(message.get_payload(), 'Content') self.assertEqual(message.get_content_type(), 'text/plain') def test_html_send_mail(self): """Test html_message argument to send_mail""" send_mail('Subject', 'Content', '[email protected]', ['[email protected]'], html_message='HTML Content') message = self.get_the_message() self.assertEqual(message.get('subject'), 'Subject') self.assertEqual(message.get_all('to'), ['[email protected]']) self.assertTrue(message.is_multipart()) self.assertEqual(len(message.get_payload()), 2) self.assertEqual(message.get_payload(0).get_payload(), 'Content') self.assertEqual(message.get_payload(0).get_content_type(), 'text/plain') self.assertEqual(message.get_payload(1).get_payload(), 'HTML Content') self.assertEqual(message.get_payload(1).get_content_type(), 'text/html') @override_settings(MANAGERS=[('nobody', '[email protected]')]) def test_html_mail_managers(self): """Test html_message argument to mail_managers""" mail_managers('Subject', 'Content', html_message='HTML Content') message = self.get_the_message() self.assertEqual(message.get('subject'), '[Django] Subject') self.assertEqual(message.get_all('to'), ['[email protected]']) self.assertTrue(message.is_multipart()) self.assertEqual(len(message.get_payload()), 2) self.assertEqual(message.get_payload(0).get_payload(), 'Content') self.assertEqual(message.get_payload(0).get_content_type(), 'text/plain') self.assertEqual(message.get_payload(1).get_payload(), 'HTML Content') self.assertEqual(message.get_payload(1).get_content_type(), 'text/html') @override_settings(ADMINS=[('nobody', '[email protected]')]) def test_html_mail_admins(self): """Test html_message argument to mail_admins """ mail_admins('Subject', 'Content', html_message='HTML Content') message = self.get_the_message() self.assertEqual(message.get('subject'), '[Django] Subject') self.assertEqual(message.get_all('to'), ['[email protected]']) self.assertTrue(message.is_multipart()) self.assertEqual(len(message.get_payload()), 2) self.assertEqual(message.get_payload(0).get_payload(), 'Content') self.assertEqual(message.get_payload(0).get_content_type(), 'text/plain') self.assertEqual(message.get_payload(1).get_payload(), 'HTML Content') self.assertEqual(message.get_payload(1).get_content_type(), 'text/html') @override_settings( ADMINS=[('nobody', '[email protected]')], MANAGERS=[('nobody', '[email protected]')]) def test_manager_and_admin_mail_prefix(self): """ String prefix + lazy translated subject = bad output Regression for #13494 """ mail_managers(ugettext_lazy('Subject'), 'Content') message = self.get_the_message() self.assertEqual(message.get('subject'), '[Django] Subject') self.flush_mailbox() mail_admins(ugettext_lazy('Subject'), 'Content') message = self.get_the_message() self.assertEqual(message.get('subject'), '[Django] Subject') @override_settings(ADMINS=[], MANAGERS=[]) def test_empty_admins(self): """ Test that mail_admins/mail_managers doesn't connect to the mail server if there are no recipients (#9383) """ mail_admins('hi', 'there') self.assertEqual(self.get_mailbox_content(), []) mail_managers('hi', 'there') self.assertEqual(self.get_mailbox_content(), []) def test_message_cc_header(self): """ Regression test for #7722 """ email = EmailMessage('Subject', 'Content', '[email protected]', ['[email protected]'], cc=['[email protected]']) mail.get_connection().send_messages([email]) message = self.get_the_message() self.assertMessageHasHeaders(message, { ('MIME-Version', '1.0'), ('Content-Type', 'text/plain; charset="utf-8"'), ('Content-Transfer-Encoding', '7bit'), ('Subject', 'Subject'), ('From', '[email protected]'), ('To', '[email protected]'), ('Cc', '[email protected]')}) self.assertIn('\nDate: ', message.as_string()) def test_idn_send(self): """ Regression test for #14301 """ self.assertTrue(send_mail('Subject', 'Content', 'from@öäü.com', ['to@öäü.com'])) message = self.get_the_message() self.assertEqual(message.get('subject'), 'Subject') self.assertEqual(message.get('from'), '[email protected]') self.assertEqual(message.get('to'), '[email protected]') self.flush_mailbox() m = EmailMessage('Subject', 'Content', 'from@öäü.com', ['to@öäü.com'], cc=['cc@öäü.com']) m.send() message = self.get_the_message() self.assertEqual(message.get('subject'), 'Subject') self.assertEqual(message.get('from'), '[email protected]') self.assertEqual(message.get('to'), '[email protected]') self.assertEqual(message.get('cc'), '[email protected]') def test_recipient_without_domain(self): """ Regression test for #15042 """ self.assertTrue(send_mail("Subject", "Content", "tester", ["django"])) message = self.get_the_message() self.assertEqual(message.get('subject'), 'Subject') self.assertEqual(message.get('from'), "tester") self.assertEqual(message.get('to'), "django") def test_lazy_addresses(self): """ Email sending should support lazy email addresses (#24416). """ _ = ugettext_lazy self.assertTrue(send_mail('Subject', 'Content', _('tester'), [_('django')])) message = self.get_the_message() self.assertEqual(message.get('from'), 'tester') self.assertEqual(message.get('to'), 'django') self.flush_mailbox() m = EmailMessage( 'Subject', 'Content', _('tester'), [_('to1'), _('to2')], cc=[_('cc1'), _('cc2')], bcc=[_('bcc')], reply_to=[_('reply')], ) self.assertEqual(m.recipients(), ['to1', 'to2', 'cc1', 'cc2', 'bcc']) m.send() message = self.get_the_message() self.assertEqual(message.get('from'), 'tester') self.assertEqual(message.get('to'), 'to1, to2') self.assertEqual(message.get('cc'), 'cc1, cc2') self.assertEqual(message.get('Reply-To'), 'reply') def test_close_connection(self): """ Test that connection can be closed (even when not explicitly opened) """ conn = mail.get_connection(username='', password='') conn.close() def test_use_as_contextmanager(self): """ Test that the connection can be used as a contextmanager. """ opened = [False] closed = [False] conn = mail.get_connection(username='', password='') def open(): opened[0] = True conn.open = open def close(): closed[0] = True conn.close = close with conn as same_conn: self.assertTrue(opened[0]) self.assertIs(same_conn, conn) self.assertFalse(closed[0]) self.assertTrue(closed[0]) class LocmemBackendTests(BaseEmailBackendTests, SimpleTestCase): email_backend = 'django.core.mail.backends.locmem.EmailBackend' def get_mailbox_content(self): return [m.message() for m in mail.outbox] def flush_mailbox(self): mail.outbox = [] def tearDown(self): super(LocmemBackendTests, self).tearDown() mail.outbox = [] def test_locmem_shared_messages(self): """ Make sure that the locmen backend populates the outbox. """ connection = locmem.EmailBackend() connection2 = locmem.EmailBackend() email = EmailMessage( 'Subject', 'Content', '[email protected]', ['[email protected]'], headers={'From': '[email protected]'}, ) connection.send_messages([email]) connection2.send_messages([email]) self.assertEqual(len(mail.outbox), 2) def test_validate_multiline_headers(self): # Ticket #18861 - Validate emails when using the locmem backend with self.assertRaises(BadHeaderError): send_mail('Subject\nMultiline', 'Content', '[email protected]', ['[email protected]']) class FileBackendTests(BaseEmailBackendTests, SimpleTestCase): email_backend = 'django.core.mail.backends.filebased.EmailBackend' def setUp(self): super(FileBackendTests, self).setUp() self.tmp_dir = tempfile.mkdtemp() self.addCleanup(shutil.rmtree, self.tmp_dir) self._settings_override = override_settings(EMAIL_FILE_PATH=self.tmp_dir) self._settings_override.enable() def tearDown(self): self._settings_override.disable() super(FileBackendTests, self).tearDown() def flush_mailbox(self): for filename in os.listdir(self.tmp_dir): os.unlink(os.path.join(self.tmp_dir, filename)) def get_mailbox_content(self): messages = [] for filename in os.listdir(self.tmp_dir): with open(os.path.join(self.tmp_dir, filename), 'rb') as fp: session = fp.read().split(force_bytes('\n' + ('-' * 79) + '\n', encoding='ascii')) messages.extend(message_from_bytes(m) for m in session if m) return messages def test_file_sessions(self): """Make sure opening a connection creates a new file""" msg = EmailMessage( 'Subject', 'Content', '[email protected]', ['[email protected]'], headers={'From': '[email protected]'}, ) connection = mail.get_connection() connection.send_messages([msg]) self.assertEqual(len(os.listdir(self.tmp_dir)), 1) with open(os.path.join(self.tmp_dir, os.listdir(self.tmp_dir)[0]), 'rb') as fp: message = message_from_binary_file(fp) self.assertEqual(message.get_content_type(), 'text/plain') self.assertEqual(message.get('subject'), 'Subject') self.assertEqual(message.get('from'), '[email protected]') self.assertEqual(message.get('to'), '[email protected]') connection2 = mail.get_connection() connection2.send_messages([msg]) self.assertEqual(len(os.listdir(self.tmp_dir)), 2) connection.send_messages([msg]) self.assertEqual(len(os.listdir(self.tmp_dir)), 2) msg.connection = mail.get_connection() self.assertTrue(connection.open()) msg.send() self.assertEqual(len(os.listdir(self.tmp_dir)), 3) msg.send() self.assertEqual(len(os.listdir(self.tmp_dir)), 3) connection.close() class ConsoleBackendTests(BaseEmailBackendTests, SimpleTestCase): email_backend = 'django.core.mail.backends.console.EmailBackend' def setUp(self): super(ConsoleBackendTests, self).setUp() self.__stdout = sys.stdout self.stream = sys.stdout = StringIO() def tearDown(self): del self.stream sys.stdout = self.__stdout del self.__stdout super(ConsoleBackendTests, self).tearDown() def flush_mailbox(self): self.stream = sys.stdout = StringIO() def get_mailbox_content(self): messages = self.stream.getvalue().split(str('\n' + ('-' * 79) + '\n')) return [message_from_bytes(force_bytes(m)) for m in messages if m] def test_console_stream_kwarg(self): """ Test that the console backend can be pointed at an arbitrary stream. """ s = StringIO() connection = mail.get_connection('django.core.mail.backends.console.EmailBackend', stream=s) send_mail('Subject', 'Content', '[email protected]', ['[email protected]'], connection=connection) message = force_bytes(s.getvalue().split('\n' + ('-' * 79) + '\n')[0]) self.assertMessageHasHeaders(message, { ('MIME-Version', '1.0'), ('Content-Type', 'text/plain; charset="utf-8"'), ('Content-Transfer-Encoding', '7bit'), ('Subject', 'Subject'), ('From', '[email protected]'), ('To', '[email protected]')}) self.assertIn(b'\nDate: ', message) class FakeSMTPChannel(smtpd.SMTPChannel): def collect_incoming_data(self, data): try: smtpd.SMTPChannel.collect_incoming_data(self, data) except UnicodeDecodeError: # ignore decode error in SSL/TLS connection tests as we only care # whether the connection attempt was made pass def smtp_AUTH(self, arg): if arg == 'CRAM-MD5': # This is only the first part of the login process. But it's enough # for our tests. challenge = base64.b64encode(b'somerandomstring13579') self.push(str('334 %s' % challenge.decode())) else: self.push(str('502 Error: login "%s" not implemented' % arg)) class FakeSMTPServer(smtpd.SMTPServer, threading.Thread): """ Asyncore SMTP server wrapped into a thread. Based on DummyFTPServer from: http://svn.python.org/view/python/branches/py3k/Lib/test/test_ftplib.py?revision=86061&view=markup """ channel_class = FakeSMTPChannel def __init__(self, *args, **kwargs): threading.Thread.__init__(self) # New kwarg added in Python 3.5; default switching to False in 3.6. if sys.version_info >= (3, 5): kwargs['decode_data'] = True smtpd.SMTPServer.__init__(self, *args, **kwargs) self._sink = [] self.active = False self.active_lock = threading.Lock() self.sink_lock = threading.Lock() if not PY3: def handle_accept(self): # copy of Python 2.7 smtpd.SMTPServer.handle_accept with hardcoded # SMTPChannel replaced by self.channel_class pair = self.accept() if pair is not None: conn, addr = pair self.channel_class(self, conn, addr) def process_message(self, peer, mailfrom, rcpttos, data): if PY3: data = data.encode('utf-8') m = message_from_bytes(data) maddr = parseaddr(m.get('from'))[1] if mailfrom != maddr: # According to the spec, mailfrom does not necessarily match the # From header - on Python 3 this is the case where the local part # isn't encoded, so try to correct that. lp, domain = mailfrom.split('@', 1) lp = Header(lp, 'utf-8').encode() mailfrom = '@'.join([lp, domain]) if mailfrom != maddr: return "553 '%s' != '%s'" % (mailfrom, maddr) with self.sink_lock: self._sink.append(m) def get_sink(self): with self.sink_lock: return self._sink[:] def flush_sink(self): with self.sink_lock: self._sink[:] = [] def start(self): assert not self.active self.__flag = threading.Event() threading.Thread.start(self) self.__flag.wait() def run(self): self.active = True self.__flag.set() while self.active and asyncore.socket_map: with self.active_lock: asyncore.loop(timeout=0.1, count=1) asyncore.close_all() def stop(self): if self.active: self.active = False self.join() class FakeAUTHSMTPConnection(SMTP): """ A SMTP connection pretending support for the AUTH command. It does not, but at least this can allow testing the first part of the AUTH process. """ def ehlo(self, name=''): response = SMTP.ehlo(self, name=name) self.esmtp_features.update({ 'auth': 'CRAM-MD5 PLAIN LOGIN', }) return response class SMTPBackendTestsBase(SimpleTestCase): @classmethod def setUpClass(cls): super(SMTPBackendTestsBase, cls).setUpClass() cls.server = FakeSMTPServer(('127.0.0.1', 0), None) cls._settings_override = override_settings( EMAIL_HOST="127.0.0.1", EMAIL_PORT=cls.server.socket.getsockname()[1]) cls._settings_override.enable() cls.server.start() @classmethod def tearDownClass(cls): cls._settings_override.disable() cls.server.stop() super(SMTPBackendTestsBase, cls).tearDownClass() class SMTPBackendTests(BaseEmailBackendTests, SMTPBackendTestsBase): email_backend = 'django.core.mail.backends.smtp.EmailBackend' def setUp(self): super(SMTPBackendTests, self).setUp() self.server.flush_sink() def tearDown(self): self.server.flush_sink() super(SMTPBackendTests, self).tearDown() def flush_mailbox(self): self.server.flush_sink() def get_mailbox_content(self): return self.server.get_sink() @override_settings( EMAIL_HOST_USER="not empty username", EMAIL_HOST_PASSWORD="not empty password") def test_email_authentication_use_settings(self): backend = smtp.EmailBackend() self.assertEqual(backend.username, 'not empty username') self.assertEqual(backend.password, 'not empty password') @override_settings( EMAIL_HOST_USER="not empty username", EMAIL_HOST_PASSWORD="not empty password") def test_email_authentication_override_settings(self): backend = smtp.EmailBackend(username='username', password='password') self.assertEqual(backend.username, 'username') self.assertEqual(backend.password, 'password') @override_settings( EMAIL_HOST_USER="not empty username", EMAIL_HOST_PASSWORD="not empty password") def test_email_disabled_authentication(self): backend = smtp.EmailBackend(username='', password='') self.assertEqual(backend.username, '') self.assertEqual(backend.password, '') def test_auth_attempted(self): """ Test that opening the backend with non empty username/password tries to authenticate against the SMTP server. """ backend = smtp.EmailBackend( username='not empty username', password='not empty password') try: with self.assertRaisesMessage(SMTPException, 'SMTP AUTH extension not supported by server.'): backend.open() finally: backend.close() def test_server_open(self): """ Test that open() tells us whether it opened a connection. """ backend = smtp.EmailBackend(username='', password='') self.assertFalse(backend.connection) opened = backend.open() backend.close() self.assertTrue(opened) def test_server_login(self): """ Even if the Python SMTP server doesn't support authentication, the login process starts and the appropriate exception is raised. """ class CustomEmailBackend(smtp.EmailBackend): connection_class = FakeAUTHSMTPConnection backend = CustomEmailBackend(username='username', password='password') with self.assertRaises(SMTPAuthenticationError): backend.open() @override_settings(EMAIL_USE_TLS=True) def test_email_tls_use_settings(self): backend = smtp.EmailBackend() self.assertTrue(backend.use_tls) @override_settings(EMAIL_USE_TLS=True) def test_email_tls_override_settings(self): backend = smtp.EmailBackend(use_tls=False) self.assertFalse(backend.use_tls) def test_email_tls_default_disabled(self): backend = smtp.EmailBackend() self.assertFalse(backend.use_tls) @override_settings(EMAIL_USE_SSL=True) def test_email_ssl_use_settings(self): backend = smtp.EmailBackend() self.assertTrue(backend.use_ssl) @override_settings(EMAIL_USE_SSL=True) def test_email_ssl_override_settings(self): backend = smtp.EmailBackend(use_ssl=False) self.assertFalse(backend.use_ssl) def test_email_ssl_default_disabled(self): backend = smtp.EmailBackend() self.assertFalse(backend.use_ssl) @override_settings(EMAIL_SSL_CERTFILE='foo') def test_email_ssl_certfile_use_settings(self): backend = smtp.EmailBackend() self.assertEqual(backend.ssl_certfile, 'foo') @override_settings(EMAIL_SSL_CERTFILE='foo') def test_email_ssl_certfile_override_settings(self): backend = smtp.EmailBackend(ssl_certfile='bar') self.assertEqual(backend.ssl_certfile, 'bar') def test_email_ssl_certfile_default_disabled(self): backend = smtp.EmailBackend() self.assertIsNone(backend.ssl_certfile) @override_settings(EMAIL_SSL_KEYFILE='foo') def test_email_ssl_keyfile_use_settings(self): backend = smtp.EmailBackend() self.assertEqual(backend.ssl_keyfile, 'foo') @override_settings(EMAIL_SSL_KEYFILE='foo') def test_email_ssl_keyfile_override_settings(self): backend = smtp.EmailBackend(ssl_keyfile='bar') self.assertEqual(backend.ssl_keyfile, 'bar') def test_email_ssl_keyfile_default_disabled(self): backend = smtp.EmailBackend() self.assertIsNone(backend.ssl_keyfile) @override_settings(EMAIL_USE_TLS=True) def test_email_tls_attempts_starttls(self): backend = smtp.EmailBackend() self.assertTrue(backend.use_tls) try: with self.assertRaisesMessage(SMTPException, 'STARTTLS extension not supported by server.'): backend.open() finally: backend.close() @override_settings(EMAIL_USE_SSL=True) def test_email_ssl_attempts_ssl_connection(self): backend = smtp.EmailBackend() self.assertTrue(backend.use_ssl) try: with self.assertRaises(SSLError): backend.open() finally: backend.close() def test_connection_timeout_default(self): """Test that the connection's timeout value is None by default.""" connection = mail.get_connection('django.core.mail.backends.smtp.EmailBackend') self.assertIsNone(connection.timeout) def test_connection_timeout_custom(self): """Test that the timeout parameter can be customized.""" class MyEmailBackend(smtp.EmailBackend): def __init__(self, *args, **kwargs): kwargs.setdefault('timeout', 42) super(MyEmailBackend, self).__init__(*args, **kwargs) myemailbackend = MyEmailBackend() myemailbackend.open() self.assertEqual(myemailbackend.timeout, 42) self.assertEqual(myemailbackend.connection.timeout, 42) myemailbackend.close() @override_settings(EMAIL_TIMEOUT=10) def test_email_timeout_override_settings(self): backend = smtp.EmailBackend() self.assertEqual(backend.timeout, 10) def test_email_msg_uses_crlf(self): """#23063 -- Test that RFC-compliant messages are sent over SMTP.""" send = SMTP.send try: smtp_messages = [] def mock_send(self, s): smtp_messages.append(s) return send(self, s) SMTP.send = mock_send email = EmailMessage('Subject', 'Content', '[email protected]', ['[email protected]']) mail.get_connection().send_messages([email]) # Find the actual message msg = None for i, m in enumerate(smtp_messages): if m[:4] == 'data': msg = smtp_messages[i + 1] break self.assertTrue(msg) if PY3: msg = msg.decode('utf-8') # Ensure that the message only contains CRLF and not combinations of CRLF, LF, and CR. msg = msg.replace('\r\n', '') self.assertNotIn('\r', msg) self.assertNotIn('\n', msg) finally: SMTP.send = send def test_send_messages_after_open_failed(self): """ send_messages() shouldn't try to send messages if open() raises an exception after initializing the connection. """ backend = smtp.EmailBackend() # Simulate connection initialization success and a subsequent # connection exception. backend.connection = True backend.open = lambda: None email = EmailMessage('Subject', 'Content', '[email protected]', ['[email protected]']) self.assertEqual(backend.send_messages([email]), None) class SMTPBackendStoppedServerTests(SMTPBackendTestsBase): """ These tests require a separate class, because the FakeSMTPServer is shut down in setUpClass(), and it cannot be restarted ("RuntimeError: threads can only be started once"). """ @classmethod def setUpClass(cls): super(SMTPBackendStoppedServerTests, cls).setUpClass() cls.backend = smtp.EmailBackend(username='', password='') cls.server.stop() def test_server_stopped(self): """ Closing the backend while the SMTP server is stopped doesn't raise an exception. """ self.backend.close() def test_fail_silently_on_connection_error(self): """ A socket connection error is silenced with fail_silently=True. """ with self.assertRaises(socket.error): self.backend.open() self.backend.fail_silently = True self.backend.open()
41.828648
119
0.626544
3b8163cbba806c1cf04ec6c18d98c40cd6001c65
14,010
py
Python
google/cloud/aiplatform_v1beta1/services/migration_service/transports/grpc.py
connor-mccarthy/python-aiplatform
184f7f327aa00b4c8d1acc24dcb1c4c4be6c5bcc
[ "Apache-2.0" ]
null
null
null
google/cloud/aiplatform_v1beta1/services/migration_service/transports/grpc.py
connor-mccarthy/python-aiplatform
184f7f327aa00b4c8d1acc24dcb1c4c4be6c5bcc
[ "Apache-2.0" ]
null
null
null
google/cloud/aiplatform_v1beta1/services/migration_service/transports/grpc.py
connor-mccarthy/python-aiplatform
184f7f327aa00b4c8d1acc24dcb1c4c4be6c5bcc
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import grpc_helpers from google.api_core import operations_v1 from google.api_core import gapic_v1 import google.auth # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from google.cloud.aiplatform_v1beta1.types import migration_service from google.longrunning import operations_pb2 # type: ignore from .base import MigrationServiceTransport, DEFAULT_CLIENT_INFO class MigrationServiceGrpcTransport(MigrationServiceTransport): """gRPC backend transport for MigrationService. A service that migrates resources from automl.googleapis.com, datalabeling.googleapis.com and ml.googleapis.com to Vertex AI. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _stubs: Dict[str, Callable] def __init__( self, *, host: str = "aiplatform.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or application default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for the grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure a mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} self._operations_client: Optional[operations_v1.OperationsClient] = None if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, # use the credentials which are saved credentials=self._credentials, # Set ``credentials_file`` to ``None`` here as # the credentials that we saved earlier should be used. credentials_file=None, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @classmethod def create_channel( cls, host: str = "aiplatform.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs, ) -> grpc.Channel: """Create and return a gRPC channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. Raises: google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ return grpc_helpers.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs, ) @property def grpc_channel(self) -> grpc.Channel: """Return the channel designed to connect to this service.""" return self._grpc_channel @property def operations_client(self) -> operations_v1.OperationsClient: """Create the client designed to process long-running operations. This property caches on the instance; repeated calls return the same client. """ # Quick check: Only create a new client if we do not already have one. if self._operations_client is None: self._operations_client = operations_v1.OperationsClient(self.grpc_channel) # Return the client from cache. return self._operations_client @property def search_migratable_resources( self, ) -> Callable[ [migration_service.SearchMigratableResourcesRequest], migration_service.SearchMigratableResourcesResponse, ]: r"""Return a callable for the search migratable resources method over gRPC. Searches all of the resources in automl.googleapis.com, datalabeling.googleapis.com and ml.googleapis.com that can be migrated to Vertex AI's given location. Returns: Callable[[~.SearchMigratableResourcesRequest], ~.SearchMigratableResourcesResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "search_migratable_resources" not in self._stubs: self._stubs["search_migratable_resources"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.MigrationService/SearchMigratableResources", request_serializer=migration_service.SearchMigratableResourcesRequest.serialize, response_deserializer=migration_service.SearchMigratableResourcesResponse.deserialize, ) return self._stubs["search_migratable_resources"] @property def batch_migrate_resources( self, ) -> Callable[ [migration_service.BatchMigrateResourcesRequest], operations_pb2.Operation ]: r"""Return a callable for the batch migrate resources method over gRPC. Batch migrates resources from ml.googleapis.com, automl.googleapis.com, and datalabeling.googleapis.com to Vertex AI. Returns: Callable[[~.BatchMigrateResourcesRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "batch_migrate_resources" not in self._stubs: self._stubs["batch_migrate_resources"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.MigrationService/BatchMigrateResources", request_serializer=migration_service.BatchMigrateResourcesRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs["batch_migrate_resources"] def close(self): self.grpc_channel.close() __all__ = ("MigrationServiceGrpcTransport",)
44.47619
102
0.645967
199df702c3bf952ad21511a7c1775b148fc538f8
1,041
py
Python
salt/pillar/cmd_yaml.py
byteskeptical/salt
637fe0b04f38b2274191b005d73b3c6707d7f400
[ "Apache-2.0" ]
12
2015-01-21T00:18:25.000Z
2021-07-11T07:35:26.000Z
salt/pillar/cmd_yaml.py
byteskeptical/salt
637fe0b04f38b2274191b005d73b3c6707d7f400
[ "Apache-2.0" ]
86
2017-01-27T11:54:46.000Z
2020-05-20T06:25:26.000Z
salt/pillar/cmd_yaml.py
byteskeptical/salt
637fe0b04f38b2274191b005d73b3c6707d7f400
[ "Apache-2.0" ]
12
2015-01-05T09:50:42.000Z
2019-08-19T01:43:40.000Z
# -*- coding: utf-8 -*- ''' Execute a command and read the output as YAML. The YAML data is then directly overlaid onto the minion's Pillar data ''' from __future__ import absolute_import, print_function, unicode_literals # Don't "fix" the above docstring to put it on two lines, as the sphinx # autosummary pulls only the first line for its description. # Import Python libs import logging # Import Salt party libs import salt.utils.yaml # Set up logging log = logging.getLogger(__name__) def ext_pillar(minion_id, # pylint: disable=W0613 pillar, # pylint: disable=W0613 command): ''' Execute a command and read the output as YAML ''' try: command = command.replace('%s', minion_id) output = __salt__['cmd.run_stdout'](command, python_shell=True) return salt.utils.yaml.safe_load(output) except Exception: log.critical( 'YAML data from \'%s\' failed to parse. Command output:\n%s', command, output ) return {}
28.916667
116
0.660903
eda3677d2dd559dcad5bbf2b52b53c942d2a527d
65
py
Python
tinynn/converter/operators/__init__.py
www516717402/TinyNeuralNetwork
23e7931b4377462fad94a9ab0651b6d9a346252d
[ "MIT" ]
1
2022-01-11T06:40:13.000Z
2022-01-11T06:40:13.000Z
tinynn/converter/operators/__init__.py
www516717402/TinyNeuralNetwork
23e7931b4377462fad94a9ab0651b6d9a346252d
[ "MIT" ]
null
null
null
tinynn/converter/operators/__init__.py
www516717402/TinyNeuralNetwork
23e7931b4377462fad94a9ab0651b6d9a346252d
[ "MIT" ]
1
2021-12-20T07:21:37.000Z
2021-12-20T07:21:37.000Z
from .base import * from .graph import * from .optimize import *
16.25
23
0.723077
2d8abe6b9b57d08427d340d3b708d73c682b43e3
7,182
py
Python
ppdet/modeling/architectures/faceboxes.py
heavengate/PaddleDetection
84e79e8760ba2ef7fbc3972d865316af9aade014
[ "Apache-2.0" ]
10
2020-11-24T12:32:37.000Z
2021-09-06T08:41:04.000Z
ppdet/modeling/architectures/faceboxes.py
heavengate/PaddleDetection
84e79e8760ba2ef7fbc3972d865316af9aade014
[ "Apache-2.0" ]
null
null
null
ppdet/modeling/architectures/faceboxes.py
heavengate/PaddleDetection
84e79e8760ba2ef7fbc3972d865316af9aade014
[ "Apache-2.0" ]
2
2021-01-25T06:02:48.000Z
2021-11-10T10:14:25.000Z
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from collections import OrderedDict from paddle import fluid from paddle.fluid.param_attr import ParamAttr from paddle.fluid.regularizer import L2Decay from ppdet.core.workspace import register from ppdet.modeling.ops import SSDOutputDecoder __all__ = ['FaceBoxes'] @register class FaceBoxes(object): """ FaceBoxes: A CPU Real-time Face Detector with High Accuracy. see https://arxiv.org/abs/1708.05234 Args: backbone (object): backbone instance output_decoder (object): `SSDOutputDecoder` instance densities (list|None): the densities of generated density prior boxes, this attribute should be a list or tuple of integers. fixed_sizes (list|None): the fixed sizes of generated density prior boxes, this attribute should a list or tuple of same length with `densities`. num_classes (int): number of output classes. steps (list|None): step size of adjacent prior boxes on each feature map. """ __category__ = 'architecture' __inject__ = ['backbone', 'output_decoder'] __shared__ = ['num_classes'] def __init__(self, backbone="FaceBoxNet", output_decoder=SSDOutputDecoder().__dict__, densities=[[4, 2, 1], [1], [1]], fixed_sizes=[[32., 64., 128.], [256.], [512.]], num_classes=2, steps=[8., 16., 32.]): super(FaceBoxes, self).__init__() self.backbone = backbone self.num_classes = num_classes self.output_decoder = output_decoder if isinstance(output_decoder, dict): self.output_decoder = SSDOutputDecoder(**output_decoder) self.densities = densities self.fixed_sizes = fixed_sizes self.steps = steps def build(self, feed_vars, mode='train'): im = feed_vars['image'] if mode == 'train': gt_bbox = feed_vars['gt_bbox'] gt_class = feed_vars['gt_class'] body_feats = self.backbone(im) locs, confs, box, box_var = self._multi_box_head( inputs=body_feats, image=im, num_classes=self.num_classes) if mode == 'train': loss = fluid.layers.ssd_loss( locs, confs, gt_bbox, gt_class, box, box_var, overlap_threshold=0.35, neg_overlap=0.35) loss = fluid.layers.reduce_sum(loss) return {'loss': loss} else: pred = self.output_decoder(locs, confs, box, box_var) return {'bbox': pred} def _multi_box_head(self, inputs, image, num_classes=2): def permute_and_reshape(input, last_dim): trans = fluid.layers.transpose(input, perm=[0, 2, 3, 1]) compile_shape = [0, -1, last_dim] return fluid.layers.reshape(trans, shape=compile_shape) def _is_list_or_tuple_(data): return (isinstance(data, list) or isinstance(data, tuple)) locs, confs = [], [] boxes, vars = [], [] b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.)) for i, input in enumerate(inputs): densities = self.densities[i] fixed_sizes = self.fixed_sizes[i] box, var = fluid.layers.density_prior_box( input, image, densities=densities, fixed_sizes=fixed_sizes, fixed_ratios=[1.], clip=False, offset=0.5, steps=[self.steps[i]] * 2) num_boxes = box.shape[2] box = fluid.layers.reshape(box, shape=[-1, 4]) var = fluid.layers.reshape(var, shape=[-1, 4]) num_loc_output = num_boxes * 4 num_conf_output = num_boxes * num_classes # get loc mbox_loc = fluid.layers.conv2d( input, num_loc_output, 3, 1, 1, bias_attr=b_attr) loc = permute_and_reshape(mbox_loc, 4) # get conf mbox_conf = fluid.layers.conv2d( input, num_conf_output, 3, 1, 1, bias_attr=b_attr) conf = permute_and_reshape(mbox_conf, 2) locs.append(loc) confs.append(conf) boxes.append(box) vars.append(var) face_mbox_loc = fluid.layers.concat(locs, axis=1) face_mbox_conf = fluid.layers.concat(confs, axis=1) prior_boxes = fluid.layers.concat(boxes) box_vars = fluid.layers.concat(vars) return face_mbox_loc, face_mbox_conf, prior_boxes, box_vars def _inputs_def(self, image_shape): im_shape = [None] + image_shape # yapf: disable inputs_def = { 'image': {'shape': im_shape, 'dtype': 'float32', 'lod_level': 0}, 'im_id': {'shape': [None, 1], 'dtype': 'int64', 'lod_level': 0}, 'gt_bbox': {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 1}, 'gt_class': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1}, 'im_shape': {'shape': [None, 3], 'dtype': 'int32', 'lod_level': 0}, } # yapf: enable return inputs_def def build_inputs( self, image_shape=[3, None, None], fields=['image', 'im_id', 'gt_bbox', 'gt_class'], # for train use_dataloader=True, iterable=False): inputs_def = self._inputs_def(image_shape) feed_vars = OrderedDict([(key, fluid.data( name=key, shape=inputs_def[key]['shape'], dtype=inputs_def[key]['dtype'], lod_level=inputs_def[key]['lod_level'])) for key in fields]) loader = fluid.io.DataLoader.from_generator( feed_list=list(feed_vars.values()), capacity=16, use_double_buffer=True, iterable=iterable) if use_dataloader else None return feed_vars, loader def train(self, feed_vars): return self.build(feed_vars, 'train') def eval(self, feed_vars): return self.build(feed_vars, 'eval') def test(self, feed_vars, exclude_nms=False): assert not exclude_nms, "exclude_nms for {} is not support currently".format( self.__class__.__name__) return self.build(feed_vars, 'test') def is_bbox_normalized(self): return True
37.212435
85
0.597048
802d0339e515355925f14f9a157e072690af177a
15,571
py
Python
unstable_baselines/algo/td3/run.py
Ending2015a/unstable_baselines
1d304115406f6e29186cedb0160811d4139e2733
[ "MIT" ]
10
2021-04-26T17:48:27.000Z
2022-03-10T14:32:26.000Z
unstable_baselines/algo/td3/run.py
Ending2015a/unstable_baselines
1d304115406f6e29186cedb0160811d4139e2733
[ "MIT" ]
null
null
null
unstable_baselines/algo/td3/run.py
Ending2015a/unstable_baselines
1d304115406f6e29186cedb0160811d4139e2733
[ "MIT" ]
null
null
null
__copyright__ = ''' The MIT License (MIT) Copyright (c) 2021 Joe Hsiao Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' __license__ = 'MIT' # --- built in --- import os import re import sys import time import logging import argparse import datetime # --- 3rd party --- import gym import numpy as np import tensorflow as tf from gym.wrappers import TimeLimit # --- my module --- from unstable_baselines import logger from unstable_baselines.envs import * from unstable_baselines.utils import (NormalActionNoise, set_global_seeds) from unstable_baselines.td3.model import TD3 from unstable_baselines.td3.model import Agent as TD3Agent def parse_args(): parser = argparse.ArgumentParser(description='Twin-Delayed Deep Deterministic Policy Gradient (TD3)') parser.add_argument('--logdir', type=str, default='log/{env_id}/td3/{rank}',help='Root dir (args: {env_id}, {rank})') parser.add_argument('--logging', type=str, default='train.log', help='Log path (args: {env_id}, {rank})') parser.add_argument('--log_level', type=str, default='INFO', help='Log level') parser.add_argument('--monitor_dir', type=str, default='monitor', help='Monitor dir (args: {env_id}, {rank})') parser.add_argument('--tb_logdir', type=str, default='', help='Tensorboard log name (args: {env_id}, {rank})') parser.add_argument('--model_dir', type=str, default='model', help='Model save path (args: {env_id}, {rank})') parser.add_argument('--env_id', type=str, default='HalfCheetahBulletEnv-v0',help='Environment ID') parser.add_argument('--num_envs', type=int, default=1, help='Number of environments') parser.add_argument('--num_epochs', type=int, default=10000, help='Number of training epochs') parser.add_argument('--num_steps', type=int, default=100, help='Number of timesteps per epoch (interact with envs)') parser.add_argument('--num_gradsteps', type=int, default=100, help='Number of gradient steps') parser.add_argument('--batch_size', type=int, default=100, help='Training batch size') parser.add_argument('--buffer_size', type=int, default=1000000, help='Maximum size of replay buffer') parser.add_argument('--min_buffer', type=int, default=10000, help='Minimum number of samples in replay buffer') parser.add_argument('--policy_update', type=int, default=2, help='Delayed update to policy network (gradsteps)') parser.add_argument('--target_update', type=int, default=2, help='Target network update frequency (gradsteps)') parser.add_argument('--verbose', type=int, default=1, help='Print more message, 0=less, 1=more train log, 2=more eval log') parser.add_argument('--rank', type=int, default=0, help='Optional arguments for parallel training') parser.add_argument('--seed', type=int, default=0, help='Random seed') parser.add_argument('--log_interval', type=int, default=10, help='Logging interval (epochs)') parser.add_argument('--eval_interval', type=int, default=1000, help='Evaluation interval (epochs)') parser.add_argument('--eval_episodes', type=int, default=5, help='Number of episodes each evaluation') parser.add_argument('--eval_max_steps', type=int, default=1000, help='Maximum timesteps in each evaluation episode') parser.add_argument('--eval_seed', type=int, default=0, help='Environment seed for evaluation') parser.add_argument('--save_interval', type=int, default=1000, help='Model checkpoint interval (epochs)') parser.add_argument('--lr', type=float, default=1e-3, help='Learning rate') parser.add_argument('--gamma', type=float, default=0.99, help='Discount factor') parser.add_argument('--tau', type=float, default=0.005, help='Polyak update coefficient (tau in original paper)') parser.add_argument('--max_grad_norm', type=float, default=None, help='Gradient norm clip range') parser.add_argument('--action_noise', type=float, default=0.2, help='Noise scale added to target actions') parser.add_argument('--action_noise_clip', type=float, default=0.5, help='Noise range added to target actions') parser.add_argument('--explore_noise_mean', type=float, default=0, help='Mean of normal action noise') parser.add_argument('--explore_noise_scale', type=float, default=0.1, help='Scale of normal action noise') parser.add_argument('--explore_noise', action='store_true', help='Enable exploration noise') parser.add_argument('--force_mlp', action='store_true', help='Use MLP network') parser.add_argument('--record_video', action='store_true', help='Enable video recording') a = parser.parse_args() a.logdir = a.logdir.format(env_id=a.env_id, rank=a.rank) a.logging = os.path.join(a.logdir, a.logging).format(env_id=a.env_id, rank=a.rank) a.monitor_dir = os.path.join(a.logdir, a.monitor_dir).format(env_id=a.env_id, rank=a.rank) a.tb_logdir = os.path.join(a.logdir, a.tb_logdir).format(env_id=a.env_id, rank=a.rank) a.model_dir = os.path.join(a.logdir, a.model_dir).format(env_id=a.env_id, rank=a.rank) return a def make_env(a, eval=False): ''' Make non-Atari env (Pybullet) ''' import pybullet_envs if not eval: def _make_env(rank, a): def _init(): logger.Config.use(filename=a.logging, level=a.log_level, colored=True, reset=True) set_global_seeds(a.seed) import pybullet_envs env = gym.make(a.env_id) env = TimeFeatureWrapper(env) env = SeedEnv(env, seed=a.seed+rank) if a.record_video: env = VideoRecorder(env, os.path.join(a.monitor_dir, 'video/'), prefix='train.{}'.format(rank), force=True) env = Monitor(env, a.monitor_dir, prefix=str(rank), force=True) return env return _init env = SubprocVecEnv([_make_env(i, a) for i in range(a.num_envs)]) else: env = gym.make(a.env_id) env = TimeFeatureWrapper(env, test_mode=True) env = SeedEnv(env, seed=a.eval_seed) if a.record_video: env = VideoRecorder(env, os.path.join(a.monitor_dir, 'video/'), prefix='eval', callback=True, force=True) env = Monitor(env, a.monitor_dir, prefix='eval',force=True) return env if __name__ == '__main__': a = parse_args() # === Reset logger === logger.Config.use(filename=a.logging, level=a.log_level, colored=True, reset=True) LOG = logger.getLogger('TD3') # === Print welcome message === LOG.add_row('') LOG.add_rows('TD3', fmt='{:@f:ANSI_Shadow}', align='center') LOG.add_line() LOG.add_rows('{}'.format(__copyright__)) LOG.flush('INFO') time.sleep(1) # === Print arguments === LOG.set_header('Arguments') LOG.add_row('Log dir', a.logdir) LOG.add_row('Logging path', a.logging) LOG.add_row('Monitor path', a.monitor_dir) LOG.add_row('Tensorboard path', a.tb_logdir) LOG.add_row('Model path', a.model_dir) LOG.add_row('Env ID', a.env_id) LOG.add_row('Seed', a.seed) LOG.add_row('Eval seed', a.eval_seed) LOG.add_row('Record video', a.record_video) LOG.add_line() LOG.add_row('Num of envs', a.num_envs) LOG.add_row('Num of steps/epoch', a.num_steps) LOG.add_row('Num of gradient steps', a.num_gradsteps) LOG.add_row('Num of epochs', a.num_epochs) LOG.add_row('Target update freq', a.target_update) LOG.add_row('Log interval', a.log_interval) LOG.add_row('Eval interval', a.eval_interval) LOG.add_row('Eval episodes', a.eval_episodes) LOG.add_row('Eval max steps', a.eval_max_steps) LOG.add_row('Save interval', a.save_interval) LOG.add_row('Batch size', a.batch_size) LOG.add_row('Buffer size', a.buffer_size) LOG.add_row('Min buffer size', a.min_buffer) LOG.add_row('Verbose', a.verbose) LOG.add_line() LOG.add_row('Force MLP', a.force_mlp) LOG.add_row('Learning rate', a.lr) LOG.add_row('Gamma', a.gamma) LOG.add_row('Tau (Polyak)', a.tau) LOG.add_row('Policy update freq', a.policy_update) LOG.add_row('Target update freq', a.target_update) LOG.add_row('Action noise', a.action_noise) LOG.add_row('Action noise clip', a.action_noise_clip) LOG.add_row('Max gradient norm', a.max_grad_norm) LOG.add_row('Explore noise', a.explore_noise) LOG.add_row('Explore noise mean', a.explore_noise_mean) LOG.add_row('Explore noise scale', a.explore_noise_scale) LOG.flush('WARNING') set_global_seeds(a.seed) # === Make envs === env = make_env(a, eval=False) eval_env = make_env(a, eval=True) LOG.debug('Action space: {}'.format(env.action_space)) LOG.debug('Observation space: {}'.format(env.observation_space)) # === Create action noise === if a.explore_noise: explore_noise = NormalActionNoise(a.explore_noise_mean, a.explore_noise_scale) else: explore_noise = None # === Create model === try: model = TD3(env, learning_rate = a.lr, buffer_size = a.buffer_size, min_buffer = a.min_buffer, n_steps = a.num_steps, n_gradsteps = a.num_gradsteps, batch_size = a.batch_size, policy_update = a.policy_update, gamma = a.gamma, tau = a.tau, max_grad_norm = a.max_grad_norm, action_noise = a.action_noise, action_noise_clip = a.action_noise_clip, explore_noise = explore_noise, force_mlp = a.force_mlp, verbose = a.verbose) # Total timesteps = num_steps * num_envs * num_episodes (default ~ 1M) model.learn(a.num_steps * a.num_envs * a.num_epochs, tb_logdir = a.tb_logdir, log_interval = a.log_interval, eval_env = eval_env, eval_interval = a.eval_interval, eval_episodes = a.eval_episodes, eval_max_steps = a.eval_max_steps, save_interval = a.save_interval, save_path = a.model_dir, target_update = a.target_update) LOG.info('DONE') # Save complete model (continue training) saved_path = model.save(a.model_dir) LOG.info('Saving model to: {}'.format(saved_path)) # load the "latest" checkpoint loaded_model = TD3.load(a.model_dir) # or you can directly load from saved_path # loaded_model = TD3.load(saved_path) # set env to continue training # loaded_model.set_env(env) # loaded_model.learn(a.num_steps * a.num_envs * a.num_episodes * 2, # tb_logdir = a.tb_logdir, # log_interval = a.log_interval, # eval_env = eval_env, # eval_interval = a.eval_interval, # eval_episodes = a.eval_episodes, # eval_max_steps = a.eval_max_steps) # Save agent only # saved_path = model.agent.save(a.model_dir) # LOG.info('Saving model to: {}'.format(saved_path)) # loaded_model = TD3Agent.load(saved_path) # Evaluation LOG.info('Evaluating model (Latest checkpoint)') eps_rews, eps_steps = loaded_model.eval(eval_env, n_episodes=20) max_idx = np.argmax(eps_rews) max_rews = eps_rews[max_idx] max_steps = eps_steps[max_idx] mean_rews = np.mean(eps_rews) std_rews = np.std(eps_rews) mean_steps = np.mean(eps_steps) # === Print evaluation results === LOG.set_header('Final Evaluation Results') LOG.add_line() LOG.add_row('Max rewards', max_rews) LOG.add_row(' Length', max_steps) LOG.add_line() LOG.add_row('Mean rewards', mean_rews.round(3)) LOG.add_row('Std rewards', std_rews, fmt='{}: {:.6f}') LOG.add_row('Mean length', mean_steps) LOG.add_line() LOG.flush('INFO') # load the "best" checkpoints loaded_model = TD3.load(a.model_dir, best=True) LOG.info('Evaluating model (Best checkpoint)') eps_rews, eps_steps = loaded_model.eval(eval_env, n_episodes=20) max_idx = np.argmax(eps_rews) max_rews = eps_rews[max_idx] max_steps = eps_steps[max_idx] mean_rews = np.mean(eps_rews) std_rews = np.std(eps_rews) mean_steps = np.mean(eps_steps) # === Print evaluation results === LOG.set_header('Final Evaluation Results') LOG.add_line() LOG.add_row('Max rewards', max_rews) LOG.add_row(' Length', max_steps) LOG.add_line() LOG.add_row('Mean rewards', mean_rews.round(3)) LOG.add_row('Std rewards', std_rews, fmt='{}: {:.6f}') LOG.add_row('Mean length', mean_steps) LOG.add_line() LOG.flush('INFO') except: LOG.exception('Exception occurred') env.close() eval_env.close() exit(1) env.close() eval_env.close()
48.058642
148
0.594759
f08e9fef94779e8de47ef9a93ff00a1b7906bd4b
2,901
py
Python
APIs/samples/ScanerAPI/EVAL_LONGITUDINAL_CTRL/python/eval_longitudinal_ctrl_pedalPos.py
AVSGuillaume/SCANeR-Samples-Pack
fb872ebb77d2faeae25e74ad11a2e947cd0e0ff5
[ "MIT" ]
null
null
null
APIs/samples/ScanerAPI/EVAL_LONGITUDINAL_CTRL/python/eval_longitudinal_ctrl_pedalPos.py
AVSGuillaume/SCANeR-Samples-Pack
fb872ebb77d2faeae25e74ad11a2e947cd0e0ff5
[ "MIT" ]
null
null
null
APIs/samples/ScanerAPI/EVAL_LONGITUDINAL_CTRL/python/eval_longitudinal_ctrl_pedalPos.py
AVSGuillaume/SCANeR-Samples-Pack
fb872ebb77d2faeae25e74ad11a2e947cd0e0ff5
[ "MIT" ]
5
2022-02-01T06:27:22.000Z
2022-03-16T13:19:49.000Z
#!***************************************************************************** #* \project : SCANeR_API * #* \file : EVAL_LONGITUDINAL_CTRL.py * #* \Brief : Radar sensor, targets detection with SCANeR API. * #* \Copyright: OKTAL S.A. all rights reserved * # *****************************************************************************/ #!/usr/bin/python import os import inspect from time import sleep this_file = inspect.currentframe().f_code.co_filename this_dir = os.path.dirname(this_file) # to find scaner_api dll if (os.name == 'nt'): os.chdir(os.path.abspath(os.environ['STUDIO_PATH']+'./SCANeRstudio_2022/APIs/bin/x64/vs2019')) from scaner import * parser = ScanerApiOption() (options, args) = parser.parse_args() Process_InitParams(options.process_name, options.configuration, ctypes.c_float(options.frequency)) status = PS_DAEMON try: # read access to radar and ExportChannel radar_300000 = Com_declareInputData('Network/ISensor/SensorTargets', 300000); EC_1000 = Com_declareInputData('Network/IUser/ExportChannel', 1000); # write access to Shared Memory for longitudinal control CabToModelCorrective_0 = Com_declareOutputData('Shm/ModelCabin/CabToModelCorrective', 0); distanceToCollision = -1; while status != PS_DEAD: # Process manager Run Process_Wait() Process_Run() #Process manager State old_status = status status = Process_GetState() TimeOfUpdate = Process_GetTime() if status == PS_RUNNING: time = Process_GetTime(); if Com_updateInputs(UT_NetworkData) == 0: print('Update Network inputs failed...') targetsCount = Com_getShortData(radar_300000, "targetsArrayCount") throttle = 0; brakePedal = 0; if time < 10: throttle = .4; brakePedal = 0; else: if time < 20: throttle = .08; brakePedal = 0; else: throttle = 0; brakePedal = 50; Com_setDoubleData(CabToModelCorrective_0, "AcceleratorAdditive", throttle); Com_setDoubleData(CabToModelCorrective_0, "AcceleratorMultiplicative", 0); Com_setDoubleData(CabToModelCorrective_0, "BrakeAdditive", brakePedal); Com_setDoubleData(CabToModelCorrective_0, "BrakeMultiplicative", 0); Com_setDoubleData(CabToModelCorrective_0, "TimeOfUpdate", TimeOfUpdate); if Com_updateOutputs(UT_ShmData) == 0: #flush the corrective message print('Update Shm outputs failed...') except KeyboardInterrupt: print('Bye bye') Process_Close()
40.291667
98
0.574629
f61f9c1205e0e6a18102b4f63bafbab82b71903c
37,120
py
Python
.v/lib/python3.6/site-packages/ansible/modules/monitoring/zabbix/zabbix_host.py
binRick/ansible-callback-concise
fd7b05596b30872af3f79a32f223a0458bffbedd
[ "MIT" ]
1
2020-03-22T01:04:39.000Z
2020-03-22T01:04:39.000Z
.v/lib/python3.6/site-packages/ansible/modules/monitoring/zabbix/zabbix_host.py
binRick/ansible-callback-concise
fd7b05596b30872af3f79a32f223a0458bffbedd
[ "MIT" ]
null
null
null
.v/lib/python3.6/site-packages/ansible/modules/monitoring/zabbix/zabbix_host.py
binRick/ansible-callback-concise
fd7b05596b30872af3f79a32f223a0458bffbedd
[ "MIT" ]
1
2020-03-22T01:04:48.000Z
2020-03-22T01:04:48.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2013-2014, Epic Games, Inc. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: zabbix_host short_description: Create/update/delete Zabbix hosts description: - This module allows you to create, modify and delete Zabbix host entries and associated group and template data. version_added: "2.0" author: - "Cove (@cove)" - Tony Minfei Ding (!UNKNOWN) - Harrison Gu (@harrisongu) - Werner Dijkerman (@dj-wasabi) - Eike Frost (@eikef) requirements: - "python >= 2.6" - "zabbix-api >= 0.5.3" options: host_name: description: - Name of the host in Zabbix. - host_name is the unique identifier used and cannot be updated using this module. required: true visible_name: description: - Visible name of the host in Zabbix. version_added: '2.3' description: description: - Description of the host in Zabbix. version_added: '2.5' host_groups: description: - List of host groups the host is part of. link_templates: description: - List of templates linked to the host. inventory_mode: description: - Configure the inventory mode. choices: ['automatic', 'manual', 'disabled'] version_added: '2.1' inventory_zabbix: description: - Add Facts for a zabbix inventory (e.g. Tag) (see example below). - Please review the interface documentation for more information on the supported properties - 'https://www.zabbix.com/documentation/3.2/manual/api/reference/host/object#host_inventory' version_added: '2.5' status: description: - Monitoring status of the host. choices: ['enabled', 'disabled'] default: 'enabled' state: description: - State of the host. - On C(present), it will create if host does not exist or update the host if the associated data is different. - On C(absent) will remove a host if it exists. choices: ['present', 'absent'] default: 'present' proxy: description: - The name of the Zabbix proxy to be used. interfaces: description: - List of interfaces to be created for the host (see example below). - 'Available keys are: I(dns), I(ip), I(main), I(port), I(type), I(useip), and I(bulk).' - Please review the interface documentation for more information on the supported properties - 'https://www.zabbix.com/documentation/2.0/manual/appendix/api/hostinterface/definitions#host_interface' - If an interface definition is incomplete, this module will attempt to fill in sensible values. - I(type) can also be C(agent), C(snmp), C(ipmi), or C(jmx) instead of its numerical value. default: [] tls_connect: description: - Specifies what encryption to use for outgoing connections. - Possible values, 1 (no encryption), 2 (PSK), 4 (certificate). - Works only with >= Zabbix 3.0 default: 1 version_added: '2.5' tls_accept: description: - Specifies what types of connections are allowed for incoming connections. - The tls_accept parameter accepts values of 1 to 7 - Possible values, 1 (no encryption), 2 (PSK), 4 (certificate). - Values can be combined. - Works only with >= Zabbix 3.0 default: 1 version_added: '2.5' tls_psk_identity: description: - It is a unique name by which this specific PSK is referred to by Zabbix components - Do not put sensitive information in the PSK identity string, it is transmitted over the network unencrypted. - Works only with >= Zabbix 3.0 version_added: '2.5' tls_psk: description: - PSK value is a hard to guess string of hexadecimal digits. - The preshared key, at least 32 hex digits. Required if either tls_connect or tls_accept has PSK enabled. - Works only with >= Zabbix 3.0 version_added: '2.5' ca_cert: description: - Required certificate issuer. - Works only with >= Zabbix 3.0 version_added: '2.5' aliases: [ tls_issuer ] tls_subject: description: - Required certificate subject. - Works only with >= Zabbix 3.0 version_added: '2.5' ipmi_authtype: description: - IPMI authentication algorithm. - Please review the Host object documentation for more information on the supported properties - 'https://www.zabbix.com/documentation/3.4/manual/api/reference/host/object' - Possible values are, C(0) (none), C(1) (MD2), C(2) (MD5), C(4) (straight), C(5) (OEM), C(6) (RMCP+), with -1 being the API default. - Please note that the Zabbix API will treat absent settings as default when updating any of the I(ipmi_)-options; this means that if you attempt to set any of the four options individually, the rest will be reset to default values. version_added: '2.5' ipmi_privilege: description: - IPMI privilege level. - Please review the Host object documentation for more information on the supported properties - 'https://www.zabbix.com/documentation/3.4/manual/api/reference/host/object' - Possible values are C(1) (callback), C(2) (user), C(3) (operator), C(4) (admin), C(5) (OEM), with C(2) being the API default. - also see the last note in the I(ipmi_authtype) documentation version_added: '2.5' ipmi_username: description: - IPMI username. - also see the last note in the I(ipmi_authtype) documentation version_added: '2.5' ipmi_password: description: - IPMI password. - also see the last note in the I(ipmi_authtype) documentation version_added: '2.5' force: description: - Overwrite the host configuration, even if already present. type: bool default: 'yes' version_added: '2.0' extends_documentation_fragment: - zabbix ''' EXAMPLES = ''' - name: Create a new host or update an existing host's info local_action: module: zabbix_host server_url: http://monitor.example.com login_user: username login_password: password host_name: ExampleHost visible_name: ExampleName description: My ExampleHost Description host_groups: - Example group1 - Example group2 link_templates: - Example template1 - Example template2 status: enabled state: present inventory_mode: manual inventory_zabbix: tag: "{{ your_tag }}" alias: "{{ your_alias }}" notes: "Special Informations: {{ your_informations | default('None') }}" location: "{{ your_location }}" site_rack: "{{ your_site_rack }}" os: "{{ your_os }}" hardware: "{{ your_hardware }}" ipmi_authtype: 2 ipmi_privilege: 4 ipmi_username: username ipmi_password: password interfaces: - type: 1 main: 1 useip: 1 ip: 10.xx.xx.xx dns: "" port: 10050 - type: 4 main: 1 useip: 1 ip: 10.xx.xx.xx dns: "" port: 12345 proxy: a.zabbix.proxy - name: Update an existing host's TLS settings local_action: module: zabbix_host server_url: http://monitor.example.com login_user: username login_password: password host_name: ExampleHost visible_name: ExampleName host_groups: - Example group1 tls_psk_identity: test tls_connect: 2 tls_psk: 123456789abcdef123456789abcdef12 ''' import atexit import copy try: from zabbix_api import ZabbixAPI, ZabbixAPISubClass # Extend the ZabbixAPI # Since the zabbix-api python module too old (version 1.0, no higher version so far), # it does not support the 'hostinterface' api calls, # so we have to inherit the ZabbixAPI class to add 'hostinterface' support. class ZabbixAPIExtends(ZabbixAPI): hostinterface = None def __init__(self, server, timeout, user, passwd, validate_certs, **kwargs): ZabbixAPI.__init__(self, server, timeout=timeout, user=user, passwd=passwd, validate_certs=validate_certs) self.hostinterface = ZabbixAPISubClass(self, dict({"prefix": "hostinterface"}, **kwargs)) HAS_ZABBIX_API = True except ImportError: HAS_ZABBIX_API = False from ansible.module_utils.basic import AnsibleModule class Host(object): def __init__(self, module, zbx): self._module = module self._zapi = zbx # exist host def is_host_exist(self, host_name): result = self._zapi.host.get({'filter': {'host': host_name}}) return result # check if host group exists def check_host_group_exist(self, group_names): for group_name in group_names: result = self._zapi.hostgroup.get({'filter': {'name': group_name}}) if not result: self._module.fail_json(msg="Hostgroup not found: %s" % group_name) return True def get_template_ids(self, template_list): template_ids = [] if template_list is None or len(template_list) == 0: return template_ids for template in template_list: template_list = self._zapi.template.get({'output': 'extend', 'filter': {'host': template}}) if len(template_list) < 1: self._module.fail_json(msg="Template not found: %s" % template) else: template_id = template_list[0]['templateid'] template_ids.append(template_id) return template_ids def add_host(self, host_name, group_ids, status, interfaces, proxy_id, visible_name, description, tls_connect, tls_accept, tls_psk_identity, tls_psk, tls_issuer, tls_subject, ipmi_authtype, ipmi_privilege, ipmi_username, ipmi_password): try: if self._module.check_mode: self._module.exit_json(changed=True) parameters = {'host': host_name, 'interfaces': interfaces, 'groups': group_ids, 'status': status, 'tls_connect': tls_connect, 'tls_accept': tls_accept} if proxy_id: parameters['proxy_hostid'] = proxy_id if visible_name: parameters['name'] = visible_name if tls_psk_identity is not None: parameters['tls_psk_identity'] = tls_psk_identity if tls_psk is not None: parameters['tls_psk'] = tls_psk if tls_issuer is not None: parameters['tls_issuer'] = tls_issuer if tls_subject is not None: parameters['tls_subject'] = tls_subject if description: parameters['description'] = description if ipmi_authtype is not None: parameters['ipmi_authtype'] = ipmi_authtype if ipmi_privilege is not None: parameters['ipmi_privilege'] = ipmi_privilege if ipmi_username is not None: parameters['ipmi_username'] = ipmi_username if ipmi_password is not None: parameters['ipmi_password'] = ipmi_password host_list = self._zapi.host.create(parameters) if len(host_list) >= 1: return host_list['hostids'][0] except Exception as e: self._module.fail_json(msg="Failed to create host %s: %s" % (host_name, e)) def update_host(self, host_name, group_ids, status, host_id, interfaces, exist_interface_list, proxy_id, visible_name, description, tls_connect, tls_accept, tls_psk_identity, tls_psk, tls_issuer, tls_subject, ipmi_authtype, ipmi_privilege, ipmi_username, ipmi_password): try: if self._module.check_mode: self._module.exit_json(changed=True) parameters = {'hostid': host_id, 'groups': group_ids, 'status': status, 'tls_connect': tls_connect, 'tls_accept': tls_accept} if proxy_id >= 0: parameters['proxy_hostid'] = proxy_id if visible_name: parameters['name'] = visible_name if tls_psk_identity: parameters['tls_psk_identity'] = tls_psk_identity if tls_psk: parameters['tls_psk'] = tls_psk if tls_issuer: parameters['tls_issuer'] = tls_issuer if tls_subject: parameters['tls_subject'] = tls_subject if description: parameters['description'] = description if ipmi_authtype: parameters['ipmi_authtype'] = ipmi_authtype if ipmi_privilege: parameters['ipmi_privilege'] = ipmi_privilege if ipmi_username: parameters['ipmi_username'] = ipmi_username if ipmi_password: parameters['ipmi_password'] = ipmi_password self._zapi.host.update(parameters) interface_list_copy = exist_interface_list if interfaces: for interface in interfaces: flag = False interface_str = interface for exist_interface in exist_interface_list: interface_type = int(interface['type']) exist_interface_type = int(exist_interface['type']) if interface_type == exist_interface_type: # update interface_str['interfaceid'] = exist_interface['interfaceid'] self._zapi.hostinterface.update(interface_str) flag = True interface_list_copy.remove(exist_interface) break if not flag: # add interface_str['hostid'] = host_id self._zapi.hostinterface.create(interface_str) # remove remove_interface_ids = [] for remove_interface in interface_list_copy: interface_id = remove_interface['interfaceid'] remove_interface_ids.append(interface_id) if len(remove_interface_ids) > 0: self._zapi.hostinterface.delete(remove_interface_ids) except Exception as e: self._module.fail_json(msg="Failed to update host %s: %s" % (host_name, e)) def delete_host(self, host_id, host_name): try: if self._module.check_mode: self._module.exit_json(changed=True) self._zapi.host.delete([host_id]) except Exception as e: self._module.fail_json(msg="Failed to delete host %s: %s" % (host_name, e)) # get host by host name def get_host_by_host_name(self, host_name): host_list = self._zapi.host.get({'output': 'extend', 'selectInventory': 'extend', 'filter': {'host': [host_name]}}) if len(host_list) < 1: self._module.fail_json(msg="Host not found: %s" % host_name) else: return host_list[0] # get proxyid by proxy name def get_proxyid_by_proxy_name(self, proxy_name): proxy_list = self._zapi.proxy.get({'output': 'extend', 'filter': {'host': [proxy_name]}}) if len(proxy_list) < 1: self._module.fail_json(msg="Proxy not found: %s" % proxy_name) else: return int(proxy_list[0]['proxyid']) # get group ids by group names def get_group_ids_by_group_names(self, group_names): group_ids = [] if self.check_host_group_exist(group_names): group_list = self._zapi.hostgroup.get({'output': 'extend', 'filter': {'name': group_names}}) for group in group_list: group_id = group['groupid'] group_ids.append({'groupid': group_id}) return group_ids # get host templates by host id def get_host_templates_by_host_id(self, host_id): template_ids = [] template_list = self._zapi.template.get({'output': 'extend', 'hostids': host_id}) for template in template_list: template_ids.append(template['templateid']) return template_ids # get host groups by host id def get_host_groups_by_host_id(self, host_id): exist_host_groups = [] host_groups_list = self._zapi.hostgroup.get({'output': 'extend', 'hostids': host_id}) if len(host_groups_list) >= 1: for host_groups_name in host_groups_list: exist_host_groups.append(host_groups_name['name']) return exist_host_groups # check the exist_interfaces whether it equals the interfaces or not def check_interface_properties(self, exist_interface_list, interfaces): interfaces_port_list = [] if interfaces is not None: if len(interfaces) >= 1: for interface in interfaces: interfaces_port_list.append(int(interface['port'])) exist_interface_ports = [] if len(exist_interface_list) >= 1: for exist_interface in exist_interface_list: exist_interface_ports.append(int(exist_interface['port'])) if set(interfaces_port_list) != set(exist_interface_ports): return True for exist_interface in exist_interface_list: exit_interface_port = int(exist_interface['port']) for interface in interfaces: interface_port = int(interface['port']) if interface_port == exit_interface_port: for key in interface.keys(): if str(exist_interface[key]) != str(interface[key]): return True return False # get the status of host by host def get_host_status_by_host(self, host): return host['status'] # check all the properties before link or clear template def check_all_properties(self, host_id, host_groups, status, interfaces, template_ids, exist_interfaces, host, proxy_id, visible_name, description, host_name, inventory_mode, inventory_zabbix, tls_accept, tls_psk_identity, tls_psk, tls_issuer, tls_subject, tls_connect, ipmi_authtype, ipmi_privilege, ipmi_username, ipmi_password): # get the existing host's groups exist_host_groups = self.get_host_groups_by_host_id(host_id) if set(host_groups) != set(exist_host_groups): return True # get the existing status exist_status = self.get_host_status_by_host(host) if int(status) != int(exist_status): return True # check the exist_interfaces whether it equals the interfaces or not if self.check_interface_properties(exist_interfaces, interfaces): return True # get the existing templates exist_template_ids = self.get_host_templates_by_host_id(host_id) if set(list(template_ids)) != set(exist_template_ids): return True if int(host['proxy_hostid']) != int(proxy_id): return True # Check whether the visible_name has changed; Zabbix defaults to the technical hostname if not set. if visible_name: if host['name'] != visible_name and host['name'] != host_name: return True # Only compare description if it is given as a module parameter if description: if host['description'] != description: return True if inventory_mode: if host['inventory']: if int(host['inventory']['inventory_mode']) != self.inventory_mode_numeric(inventory_mode): return True elif inventory_mode != 'disabled': return True if inventory_zabbix: proposed_inventory = copy.deepcopy(host['inventory']) proposed_inventory.update(inventory_zabbix) if proposed_inventory != host['inventory']: return True if tls_accept is not None and 'tls_accept' in host: if int(host['tls_accept']) != tls_accept: return True if tls_psk_identity is not None and 'tls_psk_identity' in host: if host['tls_psk_identity'] != tls_psk_identity: return True if tls_psk is not None and 'tls_psk' in host: if host['tls_psk'] != tls_psk: return True if tls_issuer is not None and 'tls_issuer' in host: if host['tls_issuer'] != tls_issuer: return True if tls_subject is not None and 'tls_subject' in host: if host['tls_subject'] != tls_subject: return True if tls_connect is not None and 'tls_connect' in host: if int(host['tls_connect']) != tls_connect: return True if ipmi_authtype is not None: if int(host['ipmi_authtype']) != ipmi_authtype: return True if ipmi_privilege is not None: if int(host['ipmi_privilege']) != ipmi_privilege: return True if ipmi_username is not None: if host['ipmi_username'] != ipmi_username: return True if ipmi_password is not None: if host['ipmi_password'] != ipmi_password: return True return False # link or clear template of the host def link_or_clear_template(self, host_id, template_id_list, tls_connect, tls_accept, tls_psk_identity, tls_psk, tls_issuer, tls_subject, ipmi_authtype, ipmi_privilege, ipmi_username, ipmi_password): # get host's exist template ids exist_template_id_list = self.get_host_templates_by_host_id(host_id) exist_template_ids = set(exist_template_id_list) template_ids = set(template_id_list) template_id_list = list(template_ids) # get unlink and clear templates templates_clear = exist_template_ids.difference(template_ids) templates_clear_list = list(templates_clear) request_str = {'hostid': host_id, 'templates': template_id_list, 'templates_clear': templates_clear_list, 'tls_connect': tls_connect, 'tls_accept': tls_accept, 'ipmi_authtype': ipmi_authtype, 'ipmi_privilege': ipmi_privilege, 'ipmi_username': ipmi_username, 'ipmi_password': ipmi_password} if tls_psk_identity is not None: request_str['tls_psk_identity'] = tls_psk_identity if tls_psk is not None: request_str['tls_psk'] = tls_psk if tls_issuer is not None: request_str['tls_issuer'] = tls_issuer if tls_subject is not None: request_str['tls_subject'] = tls_subject try: if self._module.check_mode: self._module.exit_json(changed=True) self._zapi.host.update(request_str) except Exception as e: self._module.fail_json(msg="Failed to link template to host: %s" % e) def inventory_mode_numeric(self, inventory_mode): if inventory_mode == "automatic": return int(1) elif inventory_mode == "manual": return int(0) elif inventory_mode == "disabled": return int(-1) return inventory_mode # Update the host inventory_mode def update_inventory_mode(self, host_id, inventory_mode): # nothing was set, do nothing if not inventory_mode: return inventory_mode = self.inventory_mode_numeric(inventory_mode) # watch for - https://support.zabbix.com/browse/ZBX-6033 request_str = {'hostid': host_id, 'inventory_mode': inventory_mode} try: if self._module.check_mode: self._module.exit_json(changed=True) self._zapi.host.update(request_str) except Exception as e: self._module.fail_json(msg="Failed to set inventory_mode to host: %s" % e) def update_inventory_zabbix(self, host_id, inventory): if not inventory: return request_str = {'hostid': host_id, 'inventory': inventory} try: if self._module.check_mode: self._module.exit_json(changed=True) self._zapi.host.update(request_str) except Exception as e: self._module.fail_json(msg="Failed to set inventory to host: %s" % e) def main(): module = AnsibleModule( argument_spec=dict( server_url=dict(type='str', required=True, aliases=['url']), login_user=dict(type='str', required=True), login_password=dict(type='str', required=True, no_log=True), host_name=dict(type='str', required=True), http_login_user=dict(type='str', required=False, default=None), http_login_password=dict(type='str', required=False, default=None, no_log=True), validate_certs=dict(type='bool', required=False, default=True), host_groups=dict(type='list', required=False), link_templates=dict(type='list', required=False), status=dict(default="enabled", choices=['enabled', 'disabled']), state=dict(default="present", choices=['present', 'absent']), inventory_mode=dict(required=False, choices=['automatic', 'manual', 'disabled']), ipmi_authtype=dict(type='int', default=None), ipmi_privilege=dict(type='int', default=None), ipmi_username=dict(type='str', required=False, default=None), ipmi_password=dict(type='str', required=False, default=None, no_log=True), tls_connect=dict(type='int', default=1), tls_accept=dict(type='int', default=1), tls_psk_identity=dict(type='str', required=False), tls_psk=dict(type='str', required=False), ca_cert=dict(type='str', required=False, aliases=['tls_issuer']), tls_subject=dict(type='str', required=False), inventory_zabbix=dict(required=False, type='dict'), timeout=dict(type='int', default=10), interfaces=dict(type='list', required=False), force=dict(type='bool', default=True), proxy=dict(type='str', required=False), visible_name=dict(type='str', required=False), description=dict(type='str', required=False) ), supports_check_mode=True ) if not HAS_ZABBIX_API: module.fail_json(msg="Missing required zabbix-api module (check docs or install with: pip install zabbix-api)") server_url = module.params['server_url'] login_user = module.params['login_user'] login_password = module.params['login_password'] http_login_user = module.params['http_login_user'] http_login_password = module.params['http_login_password'] validate_certs = module.params['validate_certs'] host_name = module.params['host_name'] visible_name = module.params['visible_name'] description = module.params['description'] host_groups = module.params['host_groups'] link_templates = module.params['link_templates'] inventory_mode = module.params['inventory_mode'] ipmi_authtype = module.params['ipmi_authtype'] ipmi_privilege = module.params['ipmi_privilege'] ipmi_username = module.params['ipmi_username'] ipmi_password = module.params['ipmi_password'] tls_connect = module.params['tls_connect'] tls_accept = module.params['tls_accept'] tls_psk_identity = module.params['tls_psk_identity'] tls_psk = module.params['tls_psk'] tls_issuer = module.params['ca_cert'] tls_subject = module.params['tls_subject'] inventory_zabbix = module.params['inventory_zabbix'] status = module.params['status'] state = module.params['state'] timeout = module.params['timeout'] interfaces = module.params['interfaces'] force = module.params['force'] proxy = module.params['proxy'] # convert enabled to 0; disabled to 1 status = 1 if status == "disabled" else 0 zbx = None # login to zabbix try: zbx = ZabbixAPIExtends(server_url, timeout=timeout, user=http_login_user, passwd=http_login_password, validate_certs=validate_certs) zbx.login(login_user, login_password) atexit.register(zbx.logout) except Exception as e: module.fail_json(msg="Failed to connect to Zabbix server: %s" % e) host = Host(module, zbx) template_ids = [] if link_templates: template_ids = host.get_template_ids(link_templates) group_ids = [] if host_groups: group_ids = host.get_group_ids_by_group_names(host_groups) ip = "" if interfaces: # ensure interfaces are well-formed for interface in interfaces: if 'type' not in interface: module.fail_json(msg="(interface) type needs to be specified for interface '%s'." % interface) interfacetypes = {'agent': 1, 'snmp': 2, 'ipmi': 3, 'jmx': 4} if interface['type'] in interfacetypes.keys(): interface['type'] = interfacetypes[interface['type']] if interface['type'] < 1 or interface['type'] > 4: module.fail_json(msg="Interface type can only be 1-4 for interface '%s'." % interface) if 'useip' not in interface: interface['useip'] = 0 if 'dns' not in interface: if interface['useip'] == 0: module.fail_json(msg="dns needs to be set if useip is 0 on interface '%s'." % interface) interface['dns'] = '' if 'ip' not in interface: if interface['useip'] == 1: module.fail_json(msg="ip needs to be set if useip is 1 on interface '%s'." % interface) interface['ip'] = '' if 'main' not in interface: interface['main'] = 0 if 'port' not in interface: if interface['type'] == 1: interface['port'] = "10050" elif interface['type'] == 2: interface['port'] = "161" elif interface['type'] == 3: interface['port'] = "623" elif interface['type'] == 4: interface['port'] = "12345" if interface['type'] == 1: ip = interface['ip'] # Use proxy specified, or set to 0 if proxy: proxy_id = host.get_proxyid_by_proxy_name(proxy) else: proxy_id = 0 # check if host exist is_host_exist = host.is_host_exist(host_name) if is_host_exist: # get host id by host name zabbix_host_obj = host.get_host_by_host_name(host_name) host_id = zabbix_host_obj['hostid'] # If proxy is not specified as a module parameter, use the existing setting if proxy is None: proxy_id = int(zabbix_host_obj['proxy_hostid']) if state == "absent": # remove host host.delete_host(host_id, host_name) module.exit_json(changed=True, result="Successfully delete host %s" % host_name) else: if not host_groups: # if host_groups have not been specified when updating an existing host, just # get the group_ids from the existing host without updating them. host_groups = host.get_host_groups_by_host_id(host_id) group_ids = host.get_group_ids_by_group_names(host_groups) # get existing host's interfaces exist_interfaces = host._zapi.hostinterface.get({'output': 'extend', 'hostids': host_id}) # if no interfaces were specified with the module, start with an empty list if not interfaces: interfaces = [] # When force=no is specified, append existing interfaces to interfaces to update. When # no interfaces have been specified, copy existing interfaces as specified from the API. # Do the same with templates and host groups. if not force or not interfaces: for interface in copy.deepcopy(exist_interfaces): # remove values not used during hostinterface.add/update calls for key in tuple(interface.keys()): if key in ['interfaceid', 'hostid', 'bulk']: interface.pop(key, None) for index in interface.keys(): if index in ['useip', 'main', 'type', 'port']: interface[index] = int(interface[index]) if interface not in interfaces: interfaces.append(interface) if not force or link_templates is None: template_ids = list(set(template_ids + host.get_host_templates_by_host_id(host_id))) if not force: for group_id in host.get_group_ids_by_group_names(host.get_host_groups_by_host_id(host_id)): if group_id not in group_ids: group_ids.append(group_id) # update host if host.check_all_properties(host_id, host_groups, status, interfaces, template_ids, exist_interfaces, zabbix_host_obj, proxy_id, visible_name, description, host_name, inventory_mode, inventory_zabbix, tls_accept, tls_psk_identity, tls_psk, tls_issuer, tls_subject, tls_connect, ipmi_authtype, ipmi_privilege, ipmi_username, ipmi_password): host.update_host(host_name, group_ids, status, host_id, interfaces, exist_interfaces, proxy_id, visible_name, description, tls_connect, tls_accept, tls_psk_identity, tls_psk, tls_issuer, tls_subject, ipmi_authtype, ipmi_privilege, ipmi_username, ipmi_password) host.link_or_clear_template(host_id, template_ids, tls_connect, tls_accept, tls_psk_identity, tls_psk, tls_issuer, tls_subject, ipmi_authtype, ipmi_privilege, ipmi_username, ipmi_password) host.update_inventory_mode(host_id, inventory_mode) host.update_inventory_zabbix(host_id, inventory_zabbix) module.exit_json(changed=True, result="Successfully update host %s (%s) and linked with template '%s'" % (host_name, ip, link_templates)) else: module.exit_json(changed=False) else: if state == "absent": # the host is already deleted. module.exit_json(changed=False) if not group_ids: module.fail_json(msg="Specify at least one group for creating host '%s'." % host_name) if not interfaces or (interfaces and len(interfaces) == 0): module.fail_json(msg="Specify at least one interface for creating host '%s'." % host_name) # create host host_id = host.add_host(host_name, group_ids, status, interfaces, proxy_id, visible_name, description, tls_connect, tls_accept, tls_psk_identity, tls_psk, tls_issuer, tls_subject, ipmi_authtype, ipmi_privilege, ipmi_username, ipmi_password) host.link_or_clear_template(host_id, template_ids, tls_connect, tls_accept, tls_psk_identity, tls_psk, tls_issuer, tls_subject, ipmi_authtype, ipmi_privilege, ipmi_username, ipmi_password) host.update_inventory_mode(host_id, inventory_mode) host.update_inventory_zabbix(host_id, inventory_zabbix) module.exit_json(changed=True, result="Successfully added host %s (%s) and linked with template '%s'" % ( host_name, ip, link_templates)) if __name__ == '__main__': main()
43.11266
145
0.607462
0602c4ff576225a31ae3c98b25777941238ad55d
15,215
py
Python
django/apps/registry.py
jedie/django
09f2cdbe1a43e79e31f5ea509b59d4c87db29832
[ "BSD-3-Clause" ]
null
null
null
django/apps/registry.py
jedie/django
09f2cdbe1a43e79e31f5ea509b59d4c87db29832
[ "BSD-3-Clause" ]
null
null
null
django/apps/registry.py
jedie/django
09f2cdbe1a43e79e31f5ea509b59d4c87db29832
[ "BSD-3-Clause" ]
null
null
null
import sys import threading import warnings from collections import Counter, OrderedDict, defaultdict from functools import partial from django.core.exceptions import AppRegistryNotReady, ImproperlyConfigured from django.utils import lru_cache from .config import AppConfig class Apps(object): """ A registry that stores the configuration of installed applications. It also keeps track of models eg. to provide reverse-relations. """ def __init__(self, installed_apps=()): # installed_apps is set to None when creating the master registry # because it cannot be populated at that point. Other registries must # provide a list of installed apps and are populated immediately. if installed_apps is None and hasattr(sys.modules[__name__], 'apps'): raise RuntimeError("You must supply an installed_apps argument.") # Mapping of app labels => model names => model classes. Every time a # model is imported, ModelBase.__new__ calls apps.register_model which # creates an entry in all_models. All imported models are registered, # regardless of whether they're defined in an installed application # and whether the registry has been populated. Since it isn't possible # to reimport a module safely (it could reexecute initialization code) # all_models is never overridden or reset. self.all_models = defaultdict(OrderedDict) # Mapping of labels to AppConfig instances for installed apps. self.app_configs = OrderedDict() # Stack of app_configs. Used to store the current state in # set_available_apps and set_installed_apps. self.stored_app_configs = [] # Whether the registry is populated. self.apps_ready = self.models_ready = self.ready = False # Lock for thread-safe population. self._lock = threading.Lock() # Maps ("app_label", "modelname") tuples to lists of functions to be # called when the corresponding model is ready. Used by this class's # `lazy_model_operation()` and `do_pending_operations()` methods. self._pending_operations = defaultdict(list) # Populate apps and models, unless it's the master registry. if installed_apps is not None: self.populate(installed_apps) def populate(self, installed_apps=None): """ Loads application configurations and models. This method imports each application module and then each model module. It is thread safe and idempotent, but not reentrant. """ if self.ready: return # populate() might be called by two threads in parallel on servers # that create threads before initializing the WSGI callable. with self._lock: if self.ready: return # app_config should be pristine, otherwise the code below won't # guarantee that the order matches the order in INSTALLED_APPS. if self.app_configs: raise RuntimeError("populate() isn't reentrant") # Load app configs and app modules. for entry in installed_apps: if isinstance(entry, AppConfig): app_config = entry else: app_config = AppConfig.create(entry) if app_config.label in self.app_configs: raise ImproperlyConfigured( "Application labels aren't unique, " "duplicates: %s" % app_config.label) self.app_configs[app_config.label] = app_config # Check for duplicate app names. counts = Counter( app_config.name for app_config in self.app_configs.values()) duplicates = [ name for name, count in counts.most_common() if count > 1] if duplicates: raise ImproperlyConfigured( "Application names aren't unique, " "duplicates: %s" % ", ".join(duplicates)) self.apps_ready = True # Load models. for app_config in self.app_configs.values(): all_models = self.all_models[app_config.label] app_config.import_models(all_models) self.clear_cache() self.models_ready = True for app_config in self.get_app_configs(): app_config.ready() self.ready = True def check_apps_ready(self): """ Raises an exception if all apps haven't been imported yet. """ if not self.apps_ready: raise AppRegistryNotReady("Apps aren't loaded yet.") def check_models_ready(self): """ Raises an exception if all models haven't been imported yet. """ if not self.models_ready: raise AppRegistryNotReady("Models aren't loaded yet.") def get_app_configs(self): """ Imports applications and returns an iterable of app configs. """ self.check_apps_ready() return self.app_configs.values() def get_app_config(self, app_label): """ Imports applications and returns an app config for the given label. Raises LookupError if no application exists with this label. """ self.check_apps_ready() try: return self.app_configs[app_label] except KeyError: message = "No installed app with label '%s'." % app_label for app_config in self.get_app_configs(): if app_config.name == app_label: message += " Did you mean '%s'?" % app_config.label break raise LookupError(message) # This method is performance-critical at least for Django's test suite. @lru_cache.lru_cache(maxsize=None) def get_models(self, include_auto_created=False, include_deferred=False, include_swapped=False): """ Returns a list of all installed models. By default, the following models aren't included: - auto-created models for many-to-many relations without an explicit intermediate table, - models created to satisfy deferred attribute queries, - models that have been swapped out. Set the corresponding keyword argument to True to include such models. """ self.check_models_ready() result = [] for app_config in self.app_configs.values(): result.extend(list(app_config.get_models( include_auto_created, include_deferred, include_swapped))) return result def get_model(self, app_label, model_name=None): """ Returns the model matching the given app_label and model_name. As a shortcut, this function also accepts a single argument in the form <app_label>.<model_name>. model_name is case-insensitive. Raises LookupError if no application exists with this label, or no model exists with this name in the application. Raises ValueError if called with a single argument that doesn't contain exactly one dot. """ self.check_models_ready() if model_name is None: app_label, model_name = app_label.split('.') return self.get_app_config(app_label).get_model(model_name.lower()) def register_model(self, app_label, model): # Since this method is called when models are imported, it cannot # perform imports because of the risk of import loops. It mustn't # call get_app_config(). model_name = model._meta.model_name app_models = self.all_models[app_label] if model_name in app_models: if (model.__name__ == app_models[model_name].__name__ and model.__module__ == app_models[model_name].__module__): warnings.warn( "Model '%s.%s' was already registered. " "Reloading models is not advised as it can lead to inconsistencies, " "most notably with related models." % (model_name, app_label), RuntimeWarning, stacklevel=2) else: raise RuntimeError( "Conflicting '%s' models in application '%s': %s and %s." % (model_name, app_label, app_models[model_name], model)) app_models[model_name] = model self.do_pending_operations(model) self.clear_cache() def is_installed(self, app_name): """ Checks whether an application with this name exists in the registry. app_name is the full name of the app eg. 'django.contrib.admin'. """ self.check_apps_ready() return any(ac.name == app_name for ac in self.app_configs.values()) def get_containing_app_config(self, object_name): """ Look for an app config containing a given object. object_name is the dotted Python path to the object. Returns the app config for the inner application in case of nesting. Returns None if the object isn't in any registered app config. """ self.check_apps_ready() candidates = [] for app_config in self.app_configs.values(): if object_name.startswith(app_config.name): subpath = object_name[len(app_config.name):] if subpath == '' or subpath[0] == '.': candidates.append(app_config) if candidates: return sorted(candidates, key=lambda ac: -len(ac.name))[0] def get_registered_model(self, app_label, model_name): """ Similar to get_model(), but doesn't require that an app exists with the given app_label. It's safe to call this method at import time, even while the registry is being populated. """ model = self.all_models[app_label].get(model_name.lower()) if model is None: raise LookupError( "Model '%s.%s' not registered." % (app_label, model_name)) return model def set_available_apps(self, available): """ Restricts the set of installed apps used by get_app_config[s]. available must be an iterable of application names. set_available_apps() must be balanced with unset_available_apps(). Primarily used for performance optimization in TransactionTestCase. This method is safe is the sense that it doesn't trigger any imports. """ available = set(available) installed = set(app_config.name for app_config in self.get_app_configs()) if not available.issubset(installed): raise ValueError("Available apps isn't a subset of installed " "apps, extra apps: %s" % ", ".join(available - installed)) self.stored_app_configs.append(self.app_configs) self.app_configs = OrderedDict( (label, app_config) for label, app_config in self.app_configs.items() if app_config.name in available) self.clear_cache() def unset_available_apps(self): """ Cancels a previous call to set_available_apps(). """ self.app_configs = self.stored_app_configs.pop() self.clear_cache() def set_installed_apps(self, installed): """ Enables a different set of installed apps for get_app_config[s]. installed must be an iterable in the same format as INSTALLED_APPS. set_installed_apps() must be balanced with unset_installed_apps(), even if it exits with an exception. Primarily used as a receiver of the setting_changed signal in tests. This method may trigger new imports, which may add new models to the registry of all imported models. They will stay in the registry even after unset_installed_apps(). Since it isn't possible to replay imports safely (eg. that could lead to registering listeners twice), models are registered when they're imported and never removed. """ if not self.ready: raise AppRegistryNotReady("App registry isn't ready yet.") self.stored_app_configs.append(self.app_configs) self.app_configs = OrderedDict() self.apps_ready = self.models_ready = self.ready = False self.clear_cache() self.populate(installed) def unset_installed_apps(self): """ Cancels a previous call to set_installed_apps(). """ self.app_configs = self.stored_app_configs.pop() self.apps_ready = self.models_ready = self.ready = True self.clear_cache() def clear_cache(self): """ Clears all internal caches, for methods that alter the app registry. This is mostly used in tests. """ # Call expire cache on each model. This will purge # the relation tree and the fields cache. self.get_models.cache_clear() if self.ready: # Circumvent self.get_models() to prevent that the cache is refilled. # This particularly prevents that an empty value is cached while cloning. for app_config in self.app_configs.values(): for model in app_config.get_models(include_auto_created=True): model._meta._expire_cache() def lazy_model_operation(self, function, *model_keys): """ Take a function and a number of ("app_label", "modelname") tuples, and when all the corresponding models have been imported and registered, call the function with the model classes as its arguments. The function passed to this method must accept exactly n models as arguments, where n=len(model_keys). """ # If this function depends on more than one model, we recursively turn # it into a chain of functions that accept a single model argument and # pass each in turn to lazy_model_operation. model_key, more_models = model_keys[0], model_keys[1:] if more_models: supplied_fn = function def function(model): next_function = partial(supplied_fn, model) self.lazy_model_operation(next_function, *more_models) # If the model is already loaded, pass it to the function immediately. # Otherwise, delay execution until the class is prepared. try: model_class = self.get_registered_model(*model_key) except LookupError: self._pending_operations[model_key].append(function) else: function(model_class) def do_pending_operations(self, model): """ Take a newly-prepared model and pass it to each function waiting for it. This is called at the very end of `Apps.register_model()`. """ key = model._meta.app_label, model._meta.model_name for function in self._pending_operations.pop(key, []): function(model) apps = Apps(installed_apps=None)
39.725849
89
0.634045
b6fbe51cbaf5ede275748c926a942b625abfd7fb
4,523
py
Python
integration-tests/integration/write_pyarrow.py
youngsofun/parquet2
e8a0c3576d5b43636fd16a942bc392d450344416
[ "Apache-2.0" ]
127
2021-03-30T14:18:38.000Z
2022-03-28T09:47:39.000Z
integration-tests/integration/write_pyarrow.py
youngsofun/parquet2
e8a0c3576d5b43636fd16a942bc392d450344416
[ "Apache-2.0" ]
90
2021-04-02T19:31:39.000Z
2022-03-30T20:53:30.000Z
integration-tests/integration/write_pyarrow.py
youngsofun/parquet2
e8a0c3576d5b43636fd16a942bc392d450344416
[ "Apache-2.0" ]
28
2021-04-03T07:41:36.000Z
2022-03-12T11:18:31.000Z
import pyarrow as pa import pyarrow.parquet import os PYARROW_PATH = "fixtures/pyarrow3" def case_basic_nullable(size=1): int64 = [0, 1, None, 3, None, 5, 6, 7, None, 9] float64 = [0.0, 1.0, None, 3.0, None, 5.0, 6.0, 7.0, None, 9.0] string = ["Hello", None, "aa", "", None, "abc", None, None, "def", "aaa"] boolean = [True, None, False, False, None, True, None, None, True, True] fields = [ pa.field("int64", pa.int64()), pa.field("float64", pa.float64()), pa.field("string", pa.utf8()), pa.field("bool", pa.bool_()), pa.field("date", pa.timestamp("ms")), pa.field("uint32", pa.uint32()), ] schema = pa.schema(fields) return ( { "int64": int64 * size, "float64": float64 * size, "string": string * size, "bool": boolean * size, "date": int64 * size, "uint32": int64 * size, }, schema, f"basic_nullable_{size*10}.parquet", ) def case_basic_required(size=1): int64 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] float64 = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] string = ["Hello", "bbb", "aa", "", "bbb", "abc", "bbb", "bbb", "def", "aaa"] boolean = [True, True, False, False, False, True, True, True, True, True] fields = [ pa.field("int64", pa.int64(), nullable=False), pa.field("float64", pa.float64(), nullable=False), pa.field("string", pa.utf8(), nullable=False), pa.field("bool", pa.bool_(), nullable=False), pa.field("date", pa.timestamp("ms"), nullable=False), pa.field("uint32", pa.uint32(), nullable=False), ] schema = pa.schema(fields) return ( { "int64": int64 * size, "float64": float64 * size, "string": string * size, "bool": boolean * size, "date": int64 * size, "uint32": int64 * size, }, schema, f"basic_required_{size*10}.parquet", ) def case_nested(size): items = [[0, 1], None, [2, None, 3], [4, 5, 6], [], [7, 8, 9], None, [10]] fields = [ pa.field("list_int64", pa.list_(pa.int64())), ] schema = pa.schema(fields) return ( { "list_int64": items * size, }, schema, f"nested_nullable_{size*10}.parquet", ) def case_struct(size): string = ["Hello", None, "aa", "", None, "abc", None, None, "def", "aaa"] boolean = [True, None, False, False, None, True, None, None, True, True] validity = [True, False, False, False, False, False, False, False, False, False] struct_fields = [ ("f1", pa.utf8()), ("f2", pa.bool_()), ] fields = [ pa.field( "struct_nullable", pa.struct(struct_fields), ), pa.field( "struct_required", pa.struct(struct_fields), ), ] schema = pa.schema(fields) return ( { "struct_nullable": pa.StructArray.from_arrays( [pa.array(string * size), pa.array(boolean * size)], fields=struct_fields, mask=pa.array(validity * size), ), "struct_required": pa.StructArray.from_arrays( [pa.array(string * size), pa.array(boolean * size)], fields=struct_fields, ), }, schema, f"struct_nullable_{size*10}.parquet", ) def write_pyarrow( case, size=1, page_version=1, use_dictionary=False, use_compression=False ): data, schema, path = case(size) compression_path = "/snappy" if use_compression else "" if use_dictionary: base_path = f"{PYARROW_PATH}/v{page_version}/dict{compression_path}" else: base_path = f"{PYARROW_PATH}/v{page_version}/non_dict{compression_path}" t = pa.table(data, schema=schema) os.makedirs(base_path, exist_ok=True) pa.parquet.write_table( t, f"{base_path}/{path}", version=f"{page_version}.0", data_page_version=f"{page_version}.0", write_statistics=True, compression="snappy" if use_compression else None, use_dictionary=use_dictionary, ) for case in [case_basic_nullable, case_basic_required, case_nested, case_struct]: for version in [1, 2]: for use_dict in [False, True]: for compression in [False, True]: write_pyarrow(case, 1, version, use_dict, compression)
30.355705
84
0.539686
755d33b0e526e6ec02325d4c386976b925a6813a
3,727
py
Python
PlatformAgents/com/cognizant/devops/platformagents/agents/ci/spinnaker/SpinnakerAgent3.py
tamilselvansellamuthu/Insights
fb75d06df8238fbc8604e4dd7a10775dcb92ff5e
[ "Apache-2.0" ]
49
2017-09-05T15:04:00.000Z
2022-03-01T18:58:48.000Z
PlatformAgents/com/cognizant/devops/platformagents/agents/ci/spinnaker/SpinnakerAgent3.py
tamilselvansellamuthu/Insights
fb75d06df8238fbc8604e4dd7a10775dcb92ff5e
[ "Apache-2.0" ]
153
2017-11-20T09:07:31.000Z
2022-03-22T05:36:52.000Z
PlatformAgents/com/cognizant/devops/platformagents/agents/ci/spinnaker/SpinnakerAgent3.py
tamilselvansellamuthu/Insights
fb75d06df8238fbc8604e4dd7a10775dcb92ff5e
[ "Apache-2.0" ]
85
2017-09-04T10:20:16.000Z
2022-03-28T14:49:39.000Z
#------------------------------------------------------------------------------- # Copyright 2017 Cognizant Technology Solutions # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. #------------------------------------------------------------------------------- ''' Created on Jul 15, 2021 @author: 658723 ''' from dateutil import parser from datetime import datetime from datetime import timedelta from ....core.BaseAgent3 import BaseAgent import json class SpinnakerAgent(BaseAgent): @BaseAgent.timed def process(self): baseUrl = self.config.get("baseUrl", '') applicationsUrl = baseUrl + 'applications' accessToken = self.getCredential("accessToken") headers = {"Authorization": "Bearer " + accessToken} startFrom = self.config.get("startFrom", '') spinnakerApplications = self.getResponse(applicationsUrl, 'GET', None, None, None, reqHeaders=headers) responseTemplate = self.getResponseTemplate() dynamicTemplate = self.config.get('dynamicTemplate', {}) stagesTemplate = dynamicTemplate.get('stages', {}) stageMetadata = dynamicTemplate.get('extensions', {}).get('relationMetadata', None) executionMetadata = dynamicTemplate.get('metadata', {}).get('executions', None) for application in spinnakerApplications: applicationName = application["name"] data = [] stageData = [] timestamp = self.tracking.get(applicationName, startFrom) lastUpdatedDate = None executionsUrl = applicationsUrl + '/' + applicationName + '/executions/search?triggerTimeStartBoundary=' + str(timestamp) executions = self.getResponse(executionsUrl, 'GET', None, None, None, reqHeaders=headers) pagenum = 0 fetchNextPage = True while fetchNextPage: if len(executions) == 0: fetchNextPage = False break for execution in executions: data += self.parseResponse(responseTemplate, execution) stages = execution.get("stages", {}) stageData += self.getStageDetails(stages, stagesTemplate, execution["id"]) if lastUpdatedDate is None: lastUpdatedDate = execution.get("buildTime") self.tracking[applicationName] =str(lastUpdatedDate + 1) self.publishToolsData(data, executionMetadata, "buildTime", None, True) self.publishToolsData(stageData, stageMetadata, "stageStartTime", None, True) pagenum = pagenum + 10 executionsPageUrl = executionsUrl + '&startIndex=' + str(pagenum) executions = self.getResponse(executionsPageUrl, 'GET', None, None, None, reqHeaders=headers) self.updateTrackingJson(self.tracking) def getStageDetails(self, stages, template, executionId): data = [] for stage in stages: stageData = self.parseResponse(template, stage) stageData[0]['pipelineExecutionId'] = executionId data += stageData return data if __name__ == "__main__": SpinnakerAgent()
46.012346
133
0.618997
e926086348465b3d926ac9a184c73101af639180
10,047
py
Python
test/functional/p2p-acceptblock.py
yasirmx/Megacoin
f5066e2af768f1d8a4db84e47e1d095a0324570a
[ "MIT" ]
null
null
null
test/functional/p2p-acceptblock.py
yasirmx/Megacoin
f5066e2af768f1d8a4db84e47e1d095a0324570a
[ "MIT" ]
null
null
null
test/functional/p2p-acceptblock.py
yasirmx/Megacoin
f5066e2af768f1d8a4db84e47e1d095a0324570a
[ "MIT" ]
1
2019-09-01T11:20:29.000Z
2019-09-01T11:20:29.000Z
#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test processing of unrequested blocks. Since behavior differs when receiving unrequested blocks from whitelisted peers versus non-whitelisted peers, this tests the behavior of both (effectively two separate tests running in parallel). Setup: two nodes, node0 and node1, not connected to each other. Node0 does not whitelist localhost, but node1 does. They will each be on their own chain for this test. We have one NodeConn connection to each, test_node and white_node respectively. The test: 1. Generate one block on each node, to leave IBD. 2. Mine a new block on each tip, and deliver to each node from node's peer. The tip should advance. 3. Mine a block that forks the previous block, and deliver to each node from corresponding peer. Node0 should not process this block (just accept the header), because it is unrequested and doesn't have more work than the tip. Node1 should process because this is coming from a whitelisted peer. 4. Send another block that builds on the forking block. Node0 should process this block but be stuck on the shorter chain, because it's missing an intermediate block. Node1 should reorg to this longer chain. 4b.Send 288 more blocks on the longer chain. Node0 should process all but the last block (too far ahead in height). Send all headers to Node1, and then send the last block in that chain. Node1 should accept the block because it's coming from a whitelisted peer. 5. Send a duplicate of the block in #3 to Node0. Node0 should not process the block because it is unrequested, and stay on the shorter chain. 6. Send Node0 an inv for the height 3 block produced in #4 above. Node0 should figure out that Node0 has the missing height 2 block and send a getdata. 7. Send Node0 the missing block again. Node0 should process and the tip should advance. """ from test_framework.mininode import * from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * import time from test_framework.blocktools import create_block, create_coinbase class AcceptBlockTest(BitcoinTestFramework): def add_options(self, parser): parser.add_option("--testbinary", dest="testbinary", default=os.getenv("MEGACOIND", "megacoind"), help="megacoind binary to test") def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 2 self.extra_args = [[], ["-whitelist=127.0.0.1"]] def setup_network(self): # Node0 will be used to test behavior of processing unrequested blocks # from peers which are not whitelisted, while Node1 will be used for # the whitelisted case. self.setup_nodes() def run_test(self): # Setup the p2p connections and start up the network thread. test_node = NodeConnCB() # connects to node0 (not whitelisted) white_node = NodeConnCB() # connects to node1 (whitelisted) connections = [] connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_node)) connections.append(NodeConn('127.0.0.1', p2p_port(1), self.nodes[1], white_node)) test_node.add_connection(connections[0]) white_node.add_connection(connections[1]) NetworkThread().start() # Start up network handling in another thread # Test logic begins here test_node.wait_for_verack() white_node.wait_for_verack() # 1. Have both nodes mine a block (leave IBD) [ n.generate(1) for n in self.nodes ] tips = [ int("0x" + n.getbestblockhash(), 0) for n in self.nodes ] # 2. Send one block that builds on each tip. # This should be accepted. blocks_h2 = [] # the height 2 blocks on each node's chain block_time = int(time.time()) + 1 for i in range(2): blocks_h2.append(create_block(tips[i], create_coinbase(2), block_time)) blocks_h2[i].solve() block_time += 1 test_node.send_message(msg_block(blocks_h2[0])) white_node.send_message(msg_block(blocks_h2[1])) [ x.sync_with_ping() for x in [test_node, white_node] ] assert_equal(self.nodes[0].getblockcount(), 2) assert_equal(self.nodes[1].getblockcount(), 2) self.log.info("First height 2 block accepted by both nodes") # 3. Send another block that builds on the original tip. blocks_h2f = [] # Blocks at height 2 that fork off the main chain for i in range(2): blocks_h2f.append(create_block(tips[i], create_coinbase(2), blocks_h2[i].nTime+1)) blocks_h2f[i].solve() test_node.send_message(msg_block(blocks_h2f[0])) white_node.send_message(msg_block(blocks_h2f[1])) [ x.sync_with_ping() for x in [test_node, white_node] ] for x in self.nodes[0].getchaintips(): if x['hash'] == blocks_h2f[0].hash: assert_equal(x['status'], "headers-only") for x in self.nodes[1].getchaintips(): if x['hash'] == blocks_h2f[1].hash: assert_equal(x['status'], "valid-headers") self.log.info("Second height 2 block accepted only from whitelisted peer") # 4. Now send another block that builds on the forking chain. blocks_h3 = [] for i in range(2): blocks_h3.append(create_block(blocks_h2f[i].sha256, create_coinbase(3), blocks_h2f[i].nTime+1)) blocks_h3[i].solve() test_node.send_message(msg_block(blocks_h3[0])) white_node.send_message(msg_block(blocks_h3[1])) [ x.sync_with_ping() for x in [test_node, white_node] ] # Since the earlier block was not processed by node0, the new block # can't be fully validated. for x in self.nodes[0].getchaintips(): if x['hash'] == blocks_h3[0].hash: assert_equal(x['status'], "headers-only") # But this block should be accepted by node0 since it has more work. self.nodes[0].getblock(blocks_h3[0].hash) self.log.info("Unrequested more-work block accepted from non-whitelisted peer") # Node1 should have accepted and reorged. assert_equal(self.nodes[1].getblockcount(), 3) self.log.info("Successfully reorged to length 3 chain from whitelisted peer") # 4b. Now mine 288 more blocks and deliver; all should be processed but # the last (height-too-high) on node0. Node1 should process the tip if # we give it the headers chain leading to the tip. tips = blocks_h3 headers_message = msg_headers() all_blocks = [] # node0's blocks for j in range(2): for i in range(288): next_block = create_block(tips[j].sha256, create_coinbase(i + 4), tips[j].nTime+1) next_block.solve() if j==0: test_node.send_message(msg_block(next_block)) all_blocks.append(next_block) else: headers_message.headers.append(CBlockHeader(next_block)) tips[j] = next_block time.sleep(2) # Blocks 1-287 should be accepted, block 288 should be ignored because it's too far ahead for x in all_blocks[:-1]: self.nodes[0].getblock(x.hash) assert_raises_jsonrpc(-1, "Block not found on disk", self.nodes[0].getblock, all_blocks[-1].hash) headers_message.headers.pop() # Ensure the last block is unrequested white_node.send_message(headers_message) # Send headers leading to tip white_node.send_message(msg_block(tips[1])) # Now deliver the tip white_node.sync_with_ping() self.nodes[1].getblock(tips[1].hash) self.log.info("Unrequested block far ahead of tip accepted from whitelisted peer") # 5. Test handling of unrequested block on the node that didn't process # Should still not be processed (even though it has a child that has more # work). test_node.send_message(msg_block(blocks_h2f[0])) # Here, if the sleep is too short, the test could falsely succeed (if the # node hasn't processed the block by the time the sleep returns, and then # the node processes it and incorrectly advances the tip). # But this would be caught later on, when we verify that an inv triggers # a getdata request for this block. test_node.sync_with_ping() assert_equal(self.nodes[0].getblockcount(), 2) self.log.info("Unrequested block that would complete more-work chain was ignored") # 6. Try to get node to request the missing block. # Poke the node with an inv for block at height 3 and see if that # triggers a getdata on block 2 (it should if block 2 is missing). with mininode_lock: # Clear state so we can check the getdata request test_node.last_message.pop("getdata", None) test_node.send_message(msg_inv([CInv(2, blocks_h3[0].sha256)])) test_node.sync_with_ping() with mininode_lock: getdata = test_node.last_message["getdata"] # Check that the getdata includes the right block assert_equal(getdata.inv[0].hash, blocks_h2f[0].sha256) self.log.info("Inv at tip triggered getdata for unprocessed block") # 7. Send the missing block for the third time (now it is requested) test_node.send_message(msg_block(blocks_h2f[0])) test_node.sync_with_ping() assert_equal(self.nodes[0].getblockcount(), 290) self.log.info("Successfully reorged to longer chain from non-whitelisted peer") [ c.disconnect_node() for c in connections ] if __name__ == '__main__': AcceptBlockTest().main()
44.653333
107
0.667264
5d946846a9879af55034593e127d7f20ac0608e3
1,378
py
Python
python-new-trunk/sfapi2/sflib/profiler-stats.py
raychorn/svn_molten-magma
8aa2ff2340707eecae6514943e86f5afba9cd54a
[ "CC0-1.0" ]
null
null
null
python-new-trunk/sfapi2/sflib/profiler-stats.py
raychorn/svn_molten-magma
8aa2ff2340707eecae6514943e86f5afba9cd54a
[ "CC0-1.0" ]
null
null
null
python-new-trunk/sfapi2/sflib/profiler-stats.py
raychorn/svn_molten-magma
8aa2ff2340707eecae6514943e86f5afba9cd54a
[ "CC0-1.0" ]
null
null
null
import os, sys, pstats from stat import * from vyperlogix.misc import _utils from vyperlogix.daemon.daemon import Log cmp_dates = lambda x,y:x > y theKey = lambda x:x[-1] _fpath = os.path.abspath('logs/profiler.txt') fpath = _fpath if (len(sys.argv) == 1) else sys.argv[1] if (os.path.exists(sys.argv[1])) else _fpath _root_ = os.path.dirname(fpath) if (os.path.isfile(fpath)) else fpath fname = os.sep.join([_root_,'profiler.txt']) if (not os.path.exists(fname)): dname = os.path.dirname(fname) d_list = [os.sep.join([dname,f]) for f in os.listdir(dname) if (os.path.isdir(os.sep.join([dname,f])))] d_list = [(f,_utils.dateFromSeconds(os.stat(f)[ST_MTIME],useLocalTime=_utils.isUsingLocalTimeConversions)) for f in d_list] d_list.sort(cmp_dates,theKey) while (len(d_list) > 0): t = d_list.pop() dlogs = os.sep.join([t[0],'logs']) dplogs = os.sep.join([dlogs,'profiler.txt']) if (os.path.exists(dlogs)) and (os.path.exists(dplogs)): fname = dplogs break pass _stdOut = open(os.sep.join([os.path.dirname(fname),'profiler_report.txt']),'w') _sys_stdout = sys.stdout sys.stdout = Log(_stdOut) try: p = pstats.Stats(fname) print >>sys.stdout, p.strip_dirs().sort_stats(-1).print_stats() finally: sys.stdout.close() sys.stdout = _sys_stdout
34.45
128
0.648766
b5ffdcf8c2ae28ab3ba428bb3e089f1edf15c1db
25
py
Python
src/__init__.py
bowdbeg/brat_loader
2fe594e59e420d30436636700c6532b9291acc2f
[ "MIT" ]
null
null
null
src/__init__.py
bowdbeg/brat_loader
2fe594e59e420d30436636700c6532b9291acc2f
[ "MIT" ]
null
null
null
src/__init__.py
bowdbeg/brat_loader
2fe594e59e420d30436636700c6532b9291acc2f
[ "MIT" ]
null
null
null
from brat_loader import *
25
25
0.84
bc869d7156fff130d55607a5bcc3edac0b3261bf
5,531
py
Python
Result_Window_Final.py
Sawera557/PhotoChamp-Image-Forensic-Tool
e7550a97d33cdf58a66ea0efcc451178bfd88a8d
[ "MIT" ]
null
null
null
Result_Window_Final.py
Sawera557/PhotoChamp-Image-Forensic-Tool
e7550a97d33cdf58a66ea0efcc451178bfd88a8d
[ "MIT" ]
null
null
null
Result_Window_Final.py
Sawera557/PhotoChamp-Image-Forensic-Tool
e7550a97d33cdf58a66ea0efcc451178bfd88a8d
[ "MIT" ]
null
null
null
from PyQt5.QtWidgets import QApplication, QVBoxLayout, QMessageBox, QPushButton, QDialog, QHBoxLayout import sys import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import numpy as np from PyQt5 import QtCore from PyQt5 import QtGui from PyQt5.QtWidgets import QApplication, QVBoxLayout, QMessageBox, QPushButton, QDialog, QHBoxLayout from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure def resource_path(relative_path): try: base_path = sys._MEIPASS except Exception: base_path = os.path.abspath("D:\\FYP-3\\PhotoChampEXE\\media\\Icons") return os.path.join(base_path, relative_path) #resource_path('icon.png'))) def resource_remodel_path(relative_path): try: base_path = sys._MEIPASS except Exception: base_path = os.path.abspath("D:\\FYP-3\\PhotoChampEXE\\Re_Traind_Models") catch: base_path = os.path.abspath("D:\\FYP-3\\PhotoChampEXE\\Re_Traind_Models") return os.path.join(base_path, relative_path) class ResultWindow(QDialog): def __init__(self , label , prob ): super().__init__() self.title = "Result" self.top = 200 self.left = 500 self.width = 400 self.height = 400 self.button_Test_again = QPushButton("Test Again", self) self.button_quit = QPushButton("Quit", self) label = label prob = prob self.init_window(label , prob) def init_window(self,label , prob): self.setWindowTitle(self.title) self.setWindowIcon(QtGui.QIcon(resource_path('icon.png'))) #"D:\\fyp\\PhotoChamp_FYP-03\\PhotoChamp\\Icons\\icons8-cbs-512.ico")) self.setGeometry(self.left, self.top, self.width, self.height) self.setFixedSize(self.width, self.height) hbox = QHBoxLayout() hbox.addStretch(1) m = PlotCanvas(self, width=5, height=4, dpi=80, label=label, prob=prob) m.move(0, 0) self.button_Test_again.setToolTip("<h5>to test Another image just Click Test button<h5>") self.button_Test_again.setIcon(QtGui.QIcon(resource_path('698827-icon-101-folder-search-512.png'))) #"D:\\fyp\\PhotoChamp_FYP-03\\PhotoChamp\\Icons\\698827-icon-101-folder-search-512.png")) self.button_Test_again.setIconSize(QtCore.QSize(15, 15)) self.button_Test_again.clicked.connect(self.test_again) hbox.addWidget(self.button_Test_again) self.button_quit.setToolTip("<h5>Close the program<h5>") self.button_quit.setIcon(QtGui.QIcon(resource_path('cancel-symbol-transparent-9.png'))) #"D:\\fyp\\PhotoChamp_FYP-03\\PhotoChamp\\Icons\\cancel-symbol-transparent-9.png")) self.button_quit.setIconSize(QtCore.QSize(15, 15)) self.button_quit.clicked.connect(self.close_main_window) hbox.addWidget(self.button_quit) vbox = QVBoxLayout() vbox.addStretch(1) vbox.addLayout(hbox) self.setLayout(vbox) self.show() def test_again(self): from Test_window_Final import Test_window self.Main_window = Test_window() self.Main_window.show() self.close() def close_main_window(self): """ Generate 'question' dialog on clicking 'X' button in title bar. Reimplement the closeEvent() event handler to include a 'Question' dialog with options on how to proceed - Save, Close, Cancel buttons """ reply = QMessageBox.question(self, "Quit", "Are you sure you want to quit?", QMessageBox.Cancel | QMessageBox.Close) if reply == QMessageBox.Close: self.close() class PlotCanvas(FigureCanvas): def __init__(self, parent=None, width=5, height=4, dpi=80 , label = "Forged" , prob = 0.1): fig = Figure(figsize=(width, height), dpi=dpi) self.axes = fig.add_subplot(111) FigureCanvas.__init__(self, fig) self.setParent(parent) self.label = label self.prob = prob self.plotpie(self.label, self.prob) def plotpie(self , label , prob): ax = self.figure.add_subplot(111) if label == "Forged": labels = [label, "Not Forged"] probs = [np.abs(prob * 100), np.abs(prob - 1) * 100] print(np.abs(prob * 100), np.abs(prob - 1) * 100) colors = ['Red', 'Blue'] ax.text(0.25, 0.95, 'Decision ' + "Forged", transform=ax.transAxes) ax.axis("equal") ax.pie(probs, autopct='%1.1f%%', shadow=True, colors=colors, radius=1.5, counterclock=True) ax.legend(labels, loc=3) self.draw() elif label == "Not_Forged": labels = [label, "Forged"] probs = [np.abs(prob * 100), np.abs((prob - 1) * 100)] print(np.abs(prob * 100), np.abs(prob - 1) * 100) colors = ['Blue', 'Red'] ax.text(0.25, 0.95, 'Decision ' + " Not Forged", transform=ax.transAxes) ax.axis("equal") ax.pie(probs, autopct='%1.1f%%', shadow=True, colors=colors, radius=1.5, counterclock=True) ax.legend(labels, loc=3) self.draw() if __name__ == "__main__": App = QApplication(sys.argv) App.setStyle('Fusion') window = ResultWindow(label = "Test" , prob = 50) sys.exit(App.exec())
40.97037
218
0.613813
5fa6a694cb6c5e6d0d1c1a8e3ebfc5441a0ad0cf
152
py
Python
FitNesseRoot/files/sikuliScripts/EclipseStuff.sikuli/OpenEclipseHelp.py
xebia/FitnesseSikuli
47730bdd59e61f3462b0c40e00e9ce47fe3d1d64
[ "Apache-2.0" ]
1
2018-08-09T10:55:49.000Z
2018-08-09T10:55:49.000Z
FitNesseRoot/files/sikuliScripts/EclipseStuff.sikuli/OpenEclipseHelp.py
xebia/FitnesseSikuli
47730bdd59e61f3462b0c40e00e9ce47fe3d1d64
[ "Apache-2.0" ]
1
2015-03-30T07:49:48.000Z
2015-03-30T07:49:48.000Z
FitNesseRoot/files/sikuliScripts/EclipseStuff.sikuli/OpenEclipseHelp.py
xebia/FitnesseSikuli
47730bdd59e61f3462b0c40e00e9ce47fe3d1d64
[ "Apache-2.0" ]
3
2015-03-26T14:11:21.000Z
2018-10-30T22:15:37.000Z
App.focus("Eclipse") wait("Helo.png") click("Helo.png") hover("Eclipse") hover("File") click("Open file") type("g",KeyModifier.CMD+KeyModifier.SHIFT)
15.2
43
0.703947
932915c6b08ed34966daf9e97aa663011f7ecbb2
10,452
py
Python
config/settings/base.py
badri/django-sample
c8e544e79e81827c91d009ac4d73c127845597b3
[ "MIT" ]
null
null
null
config/settings/base.py
badri/django-sample
c8e544e79e81827c91d009ac4d73c127845597b3
[ "MIT" ]
null
null
null
config/settings/base.py
badri/django-sample
c8e544e79e81827c91d009ac4d73c127845597b3
[ "MIT" ]
null
null
null
""" Base settings for Django Gitlab CI project. For more information on this file, see https://docs.djangoproject.com/en/dev/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/dev/ref/settings/ """ import environ ROOT_DIR = environ.Path(__file__) - 3 # (django_gitlab_ci/config/settings/base.py - 3 = django_gitlab_ci/) APPS_DIR = ROOT_DIR.path('django_gitlab_ci') # Load operating system environment variables and then prepare to use them env = environ.Env() # .env file, should load only in development environment READ_DOT_ENV_FILE = env.bool('DJANGO_READ_DOT_ENV_FILE', default=False) if READ_DOT_ENV_FILE: # Operating System Environment variables have precedence over variables defined in the .env file, # that is to say variables from the .env files will only be used if not defined # as environment variables. env_file = str(ROOT_DIR.path('.env')) print('Loading : {}'.format(env_file)) env.read_env(env_file) print('The .env file has been loaded. See base.py for more information') # APP CONFIGURATION # ------------------------------------------------------------------------------ DJANGO_APPS = [ # Default Django apps: 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # Useful template tags: # 'django.contrib.humanize', # Admin 'django.contrib.admin', ] THIRD_PARTY_APPS = [ 'crispy_forms', # Form layouts 'allauth', # registration 'allauth.account', # registration 'allauth.socialaccount', # registration ] # Apps specific for this project go here. LOCAL_APPS = [ # custom users app 'django_gitlab_ci.users.apps.UsersConfig', # Your stuff: custom apps go here ] # See: https://docs.djangoproject.com/en/dev/ref/settings/#installed-apps INSTALLED_APPS = DJANGO_APPS + THIRD_PARTY_APPS + LOCAL_APPS # MIDDLEWARE CONFIGURATION # ------------------------------------------------------------------------------ MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] # MIGRATIONS CONFIGURATION # ------------------------------------------------------------------------------ MIGRATION_MODULES = { 'sites': 'django_gitlab_ci.contrib.sites.migrations' } # DEBUG # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = env.bool('DJANGO_DEBUG', False) # FIXTURE CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-FIXTURE_DIRS FIXTURE_DIRS = ( str(APPS_DIR.path('fixtures')), ) # EMAIL CONFIGURATION # ------------------------------------------------------------------------------ EMAIL_BACKEND = env('DJANGO_EMAIL_BACKEND', default='django.core.mail.backends.smtp.EmailBackend') # MANAGER CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#admins ADMINS = [ ("""Lakshmi Narasimhan""", '[email protected]'), ] # See: https://docs.djangoproject.com/en/dev/ref/settings/#managers MANAGERS = ADMINS # DATABASE CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#databases # Uses django-environ to accept uri format # See: https://django-environ.readthedocs.io/en/latest/#supported-types DATABASES = { 'default': env.db('DATABASE_URL', default='postgres:///django_gitlab_ci'), } DATABASES['default']['ATOMIC_REQUESTS'] = True # GENERAL CONFIGURATION # ------------------------------------------------------------------------------ # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'UTC' # See: https://docs.djangoproject.com/en/dev/ref/settings/#language-code LANGUAGE_CODE = 'en-us' # See: https://docs.djangoproject.com/en/dev/ref/settings/#site-id SITE_ID = 1 # See: https://docs.djangoproject.com/en/dev/ref/settings/#use-i18n USE_I18N = True # See: https://docs.djangoproject.com/en/dev/ref/settings/#use-l10n USE_L10N = True # See: https://docs.djangoproject.com/en/dev/ref/settings/#use-tz USE_TZ = True # TEMPLATE CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES = [ { # See: https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-TEMPLATES-BACKEND 'BACKEND': 'django.template.backends.django.DjangoTemplates', # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-dirs 'DIRS': [ str(APPS_DIR.path('templates')), ], 'OPTIONS': { # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-debug 'debug': DEBUG, # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-loaders # https://docs.djangoproject.com/en/dev/ref/templates/api/#loader-types 'loaders': [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ], # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-context-processors 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.template.context_processors.i18n', 'django.template.context_processors.media', 'django.template.context_processors.static', 'django.template.context_processors.tz', 'django.contrib.messages.context_processors.messages', # Your stuff: custom template context processors go here ], }, }, ] # See: http://django-crispy-forms.readthedocs.io/en/latest/install.html#template-packs CRISPY_TEMPLATE_PACK = 'bootstrap4' # STATIC FILE CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#static-root STATIC_ROOT = str(ROOT_DIR('staticfiles')) # See: https://docs.djangoproject.com/en/dev/ref/settings/#static-url STATIC_URL = '/static/' # See: https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#std:setting-STATICFILES_DIRS STATICFILES_DIRS = [ str(APPS_DIR.path('static')), ] # See: https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#staticfiles-finders STATICFILES_FINDERS = [ 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ] # MEDIA CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#media-root MEDIA_ROOT = str(APPS_DIR('media')) # See: https://docs.djangoproject.com/en/dev/ref/settings/#media-url MEDIA_URL = '/media/' # URL Configuration # ------------------------------------------------------------------------------ ROOT_URLCONF = 'config.urls' # See: https://docs.djangoproject.com/en/dev/ref/settings/#wsgi-application WSGI_APPLICATION = 'config.wsgi.application' # PASSWORD STORAGE SETTINGS # ------------------------------------------------------------------------------ # See https://docs.djangoproject.com/en/dev/topics/auth/passwords/#using-argon2-with-django PASSWORD_HASHERS = [ 'django.contrib.auth.hashers.Argon2PasswordHasher', 'django.contrib.auth.hashers.PBKDF2PasswordHasher', 'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher', 'django.contrib.auth.hashers.BCryptSHA256PasswordHasher', 'django.contrib.auth.hashers.BCryptPasswordHasher', ] # PASSWORD VALIDATION # https://docs.djangoproject.com/en/dev/ref/settings/#auth-password-validators # ------------------------------------------------------------------------------ AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # AUTHENTICATION CONFIGURATION # ------------------------------------------------------------------------------ AUTHENTICATION_BACKENDS = [ 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend', ] # Some really nice defaults ACCOUNT_AUTHENTICATION_METHOD = 'username' ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_EMAIL_VERIFICATION = 'none' ACCOUNT_ALLOW_REGISTRATION = env.bool('DJANGO_ACCOUNT_ALLOW_REGISTRATION', True) ACCOUNT_ADAPTER = 'django_gitlab_ci.users.adapters.AccountAdapter' SOCIALACCOUNT_ADAPTER = 'django_gitlab_ci.users.adapters.SocialAccountAdapter' # Custom user app defaults # Select the correct user model AUTH_USER_MODEL = 'users.User' LOGIN_REDIRECT_URL = 'users:redirect' LOGIN_URL = 'account_login' # SLUGLIFIER AUTOSLUG_SLUGIFY_FUNCTION = 'slugify.slugify' # django-compressor # ------------------------------------------------------------------------------ INSTALLED_APPS += ['compressor'] STATICFILES_FINDERS += ['compressor.finders.CompressorFinder'] # Location of root django.contrib.admin URL, use {% url 'admin:index' %} ADMIN_URL = r'^admin/' # Your common stuff: Below this line define 3rd party library settings # ------------------------------------------------------------------------------
37.462366
107
0.6261
9f216390cebbe24dcda27f8e5ba118b5f07c0a74
2,848
py
Python
mmf/models/transformers/heads/wra.py
facebookresearch/pythia
079740bee4b357a7b1b866d35e2f1fad6edba8a4
[ "BSD-3-Clause" ]
3,252
2018-07-27T02:32:24.000Z
2020-05-07T17:54:46.000Z
mmf/models/transformers/heads/wra.py
facebookresearch/pythia
079740bee4b357a7b1b866d35e2f1fad6edba8a4
[ "BSD-3-Clause" ]
209
2018-07-30T06:39:59.000Z
2020-05-04T22:03:48.000Z
mmf/models/transformers/heads/wra.py
facebookresearch/pythia
079740bee4b357a7b1b866d35e2f1fad6edba8a4
[ "BSD-3-Clause" ]
431
2018-07-27T04:17:37.000Z
2020-05-05T13:58:02.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # Initial version was taken from https://github.com/ChenRocks/UNITER/ # and adapted for MMF. from typing import Dict from mmf.common.registry import registry from mmf.modules.ot import optimal_transport_dist from torch import nn, Tensor @registry.register_transformer_head("wra") class WRA(nn.Module): """ Word Region Alignment from UNITER. Optimal Transport (OT) distance between text and image features is used to optimize for WRA. OT transport plan (T) is approximated through IPOT. """ def __init__( self, loss_name: str = "wra_loss", ot_inputs_key: str = "wra_info", wra_label_key: str = "is_correct", *args, **kwargs, ): super().__init__() self.loss_name = loss_name self.ot_inputs_key = ot_inputs_key self.wra_label_key = wra_label_key def forward( self, sequence_output: Tensor, processed_sample_list: Dict[str, Dict[str, Tensor]], ) -> Dict[str, Dict[str, Tensor]]: output_dict = {} assert ( self.ot_inputs_key in processed_sample_list and processed_sample_list[self.ot_inputs_key] is not None ), ( f"WRA pretraining requires {self.ot_inputs_key} to be in sample " + "list with value not None." ) ot_inputs = processed_sample_list[self.ot_inputs_key] assert ( ot_inputs.get("txt_pad") is not None and ot_inputs.get("img_pad") is not None ), ( "WRA pretraining requires 'txt_pad', and 'img_pad' to be in " + f"'processed_sample_list[{self.ot_inputs_key}]' with" + " values not None." ) assert processed_sample_list.get(self.wra_label_key) is not None, ( f"WRA pretraining requires {self.wra_label_key} to be in sample " + "list with value not None." ) ctx_emb = sequence_output tl = processed_sample_list["input_ids"].size(1) il = processed_sample_list["image_feat"].size(1) txt_emb = ctx_emb[:, :tl, :] img_emb = ctx_emb[:, tl : tl + il, :] txt_pad = ot_inputs["txt_pad"].bool() img_pad = ot_inputs["img_pad"].bool() itm_labels = processed_sample_list[self.wra_label_key] # NOTE: run in fp32 for stability ot_dist = optimal_transport_dist( txt_emb.float(), img_emb.float(), txt_pad, img_pad ).to(txt_emb) ot_pos = ot_dist.masked_select(itm_labels == 1) ot_neg = ot_dist.masked_select(itm_labels == 0) ot_loss = (ot_pos.sum() - ot_neg.sum()) / (ot_pos.size(0) + ot_neg.size(0)) output_dict["losses"] = {} output_dict["losses"][self.loss_name] = ot_loss return output_dict
33.505882
83
0.618329
5f6831cc8e079b6b4688376122fb5e8d7fd6d8c8
2,804
py
Python
cartoon/cartoon/spiders/comic_spider.py
lhuibin/Spider
7dfebf2f77fe1bd4ec70963f0b30e717682f5aa9
[ "MIT" ]
2
2018-08-07T16:51:30.000Z
2018-08-09T17:52:06.000Z
cartoon/cartoon/spiders/comic_spider.py
lhuibin/Spider
7dfebf2f77fe1bd4ec70963f0b30e717682f5aa9
[ "MIT" ]
null
null
null
cartoon/cartoon/spiders/comic_spider.py
lhuibin/Spider
7dfebf2f77fe1bd4ec70963f0b30e717682f5aa9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import re import scrapy from scrapy import Selector from cartoon.items import ComicItem class ComicSpider(scrapy.Spider): name = 'comic' def __init__(self): #图片链接server域名 self.server_img = 'http://n.1whour.com/' #章节链接server域名 self.server_link = 'http://comic.kukudm.com' self.allowed_domains = ['comic.kukudm.com'] self.start_urls = ['http://comic.kukudm.com/comiclist/3/'] #匹配图片地址的正则表达式 self.pattern_img = re.compile(r'\+"(.+)\'><span') #从start_requests发送请求 def start_requests(self): yield scrapy.Request(url = self.start_urls[0], callback = self.parse1) #解析response,获得章节图片链接地址 def parse1(self, response): hxs = Selector(response) items = [] #章节链接地址 urls = hxs.xpath('//dd/a[1]/@href').extract() #章节名 dir_names = hxs.xpath('//dd/a[1]/text()').extract() #保存章节链接和章节名 for index in range(len(urls)): item = ComicItem() item['link_url'] = self.server_link + urls[index] item['dir_name'] = dir_names[index] items.append(item) #根据每个章节的链接,发送Request请求,并传递item参数 for item in items[-13:-1]: yield scrapy.Request(url = item['link_url'], meta = {'item':item}, callback = self.parse2) #解析获得章节第一页的页码数和图片链接 def parse2(self, response): #接收传递的item item = response.meta['item'] #获取章节的第一页的链接 item['link_url'] = response.url hxs = Selector(response) #获取章节的第一页的图片链接 pre_img_url = hxs.xpath('//script/text()').extract() #注意这里返回的图片地址,应该为列表,否则会报错 img_url = [self.server_img + re.findall(self.pattern_img, pre_img_url[0])[0]] #将获取的章节的第一页的图片链接保存到img_url中 item['img_url'] = img_url #返回item,交给item pipeline下载图片 yield item #获取章节的页数 page_num = hxs.xpath('//td[@valign="top"]/text()').re(u'共(\d+)页')[0] #根据页数,整理出本章节其他页码的链接 pre_link = item['link_url'][:-5] for each_link in range(2, int(page_num) + 1): new_link = pre_link + str(each_link) + '.htm' #根据本章节其他页码的链接发送Request请求,用于解析其他页码的图片链接,并传递item yield scrapy.Request(url = new_link, meta = {'item':item}, callback = self.parse3) #解析获得本章节其他页面的图片链接 def parse3(self, response): #接收传递的item item = response.meta['item'] #获取该页面的链接 item['link_url'] = response.url hxs = Selector(response) pre_img_url = hxs.xpath('//script/text()').extract() #注意这里返回的图片地址,应该为列表,否则会报错 img_url = [self.server_img + re.findall(self.pattern_img, pre_img_url[0])[0]] #将获取的图片链接保存到img_url中 item['img_url'] = img_url #返回item,交给item pipeline下载图片 yield item
34.617284
102
0.595934
6d936738a4c3224df6ced2dde55bae75a6406807
1,676
py
Python
abc185/d.py
nishio/atcoder
8db36537b5d8580745d5f98312162506ad7d7ab4
[ "MIT" ]
1
2021-03-09T04:28:13.000Z
2021-03-09T04:28:13.000Z
abc185/d.py
nishio/atcoder
8db36537b5d8580745d5f98312162506ad7d7ab4
[ "MIT" ]
null
null
null
abc185/d.py
nishio/atcoder
8db36537b5d8580745d5f98312162506ad7d7ab4
[ "MIT" ]
null
null
null
# included from snippets/main.py def debug(*x, msg=""): import sys print(msg, *x, file=sys.stderr) def solve(SOLVE_PARAMS): pass def main(): # parse input N, M = map(int, input().split()) AS = list(map(int, input().split())) AS.append(0) AS.append(N + 1) AS.sort() # debug(AS, msg=":AS") DS = [] for i in range(M + 1): d = AS[i + 1] - AS[i] if d > 1: DS.append(d - 1) if not DS: print(0) return # debug(DS, msg=":DS") k = min(DS) # debug(k, msg=":k") ret = 0 for d in DS: ret += (d - 1) // k + 1 print(ret) # tests T1 = """ 5 2 1 3 """ TEST_T1 = """ >>> as_input(T1) >>> main() 3 """ T2 = """ 13 3 13 3 9 """ TEST_T2 = """ >>> as_input(T2) >>> main() 6 """ T3 = """ 5 5 5 2 1 4 3 """ TEST_T3 = """ >>> as_input(T3) >>> main() 0 """ T4 = """ 1 0 """ TEST_T4 = """ >>> as_input(T4) >>> main() 1 """ def _test(): import doctest doctest.testmod() g = globals() for k in sorted(g): if k.startswith("TEST_"): print(k) doctest.run_docstring_examples(g[k], g, name=k) def as_input(s): "use in test, use given string as input file" import io f = io.StringIO(s.strip()) g = globals() g["input"] = lambda: bytes(f.readline(), "ascii") g["read"] = lambda: bytes(f.read(), "ascii") if __name__ == "__main__": import sys input = sys.stdin.buffer.readline read = sys.stdin.buffer.read sys.setrecursionlimit(10 ** 6) if sys.argv[-1] == "-t": print("testing") _test() sys.exit() main() sys.exit() # end of snippets/main.py
15.099099
59
0.498807
57e9426964e5b1a78cfefc38977d4a620f521ade
183
py
Python
nbpawspublic/__init__.py
toolforge/nbpawspublic
a1938ca6de0bb4087e5a47fece653f1cf4364efc
[ "BSD-2-Clause" ]
null
null
null
nbpawspublic/__init__.py
toolforge/nbpawspublic
a1938ca6de0bb4087e5a47fece653f1cf4364efc
[ "BSD-2-Clause" ]
null
null
null
nbpawspublic/__init__.py
toolforge/nbpawspublic
a1938ca6de0bb4087e5a47fece653f1cf4364efc
[ "BSD-2-Clause" ]
null
null
null
def _jupyter_nbextension_paths(): return [{ "section": "notebook", "dest": "nbpawspublic", "src": "static", "require": "nbpawspublic/main" }]
20.333333
38
0.535519
72213fcc78c70a55e3e4e6655ff6dbb0d02d51d4
10,295
py
Python
procare_python_package/procare/convert.py
dominiquesydow/ProCare
f01487c07a5b5de9b7aca2cba7f6315fc7275bc7
[ "MIT" ]
1
2021-06-04T17:46:36.000Z
2021-06-04T17:46:36.000Z
procare_python_package/procare/convert.py
dominiquesydow/ProCare
f01487c07a5b5de9b7aca2cba7f6315fc7275bc7
[ "MIT" ]
null
null
null
procare_python_package/procare/convert.py
dominiquesydow/ProCare
f01487c07a5b5de9b7aca2cba7f6315fc7275bc7
[ "MIT" ]
null
null
null
# ---------------------------------------------------------------------------- # < ProCare > # ---------------------------------------------------------------------------- # The MIT License (MIT) # # Copyright (c) 2020 Merveille Eguida # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # ---------------------------------------------------------------------------- """Conversion between mol2 and pcd format of protein IChem VolSite cavities""" class _mol2_: def _mol2_to_pcd(self, ifile_, color_): """ Extracts coordinates from mol2 files and convert into pcd format """ if ifile_[-5:] != '.mol2': print("incorrect file extension") print("file format may be wrong --> no output") import os try: with open(ifile_, "r") as f: mol2 = f.read().split("\n") del mol2[-1] except IOError: print("Cannot read {}".format(ifile_)) return -1, None, None try: start = mol2.index("@<TRIPOS>ATOM")+1 #print("Coordinates start at: {}".format(start)) except ValueError: print("Cannot index @<TRIPOS>ATOM in mol2 file") return -1, None, None try: end = mol2.index("@<TRIPOS>BOND")-1 #print("Coordinates end at: {}".format(end)) except ValueError: print("Cannot index @<TRIPOS>BOND in mol2 file") return -1, None, None ofilename = os.path.basename(ifile_).replace("mol2", "pcd") try: ofile = open(ofilename, "w") except IOError: print("mol2_to_pcd: Cannot write to current directory: " "{}. Please check for access rights.".format(os.getcwd())) ofile.close() return -1, None, None properties = [] colors = [] ofile.write("VERSION .7\nFIELDS x y z rgb\nSIZE 4 4 4 4\n" "TYPE F F F F\nCOUNT 1 1 1 1\n") ofile.write("WIDTH {}\nHEIGHT 1\nVIEWPOINT 0 0 0 1 0 0 0\n" "POINTS {}\nDATA ascii".format(end-start+1, end-start+1)) for i in range(start, end+1): mol2lines = mol2[i].split() index = int(mol2lines[0]) atom = str(mol2lines[1]) x = float(mol2lines[2]) y = float(mol2lines[3]) z = float(mol2lines[4]) properties.append([index, atom]) colors.append(color_[atom]) ofile.write("\n{} {} {} {}".format(x, y, z, color_[atom])) ofile.close() #print(ofilename) return ofilename, properties, colors class _pcd_: def _get_coordinates(self, ifile_): if ifile_[-4:] != '.pcd': print("incorrect file extension") print("file format may be wrong --> no output") if "DATA ascii" not in open(ifile_, 'r').read(): return -1 coordinates = [] errors = [] with open(ifile_, 'r') as f: data = f.read().split('\n') data = [l for l in data[10:] if l != ''] for line_ in data: x, y, z, rgb = line_.split() try: x = float(x) except ValueError: errors.append(-1) try: y = float(y) except ValueError: errors.append(-1) try: z = float(z) except ValueError: errors.append(-1) try: rgb = int(rgb) except ValueError: errors.append(-1) if -1 in errors: print("Errors while parsing PCD") break coordinates.append([x, y, z, rgb]) if -1 not in errors: self.coordinates = coordinates return coordinates else: return -1 def _write_mol2(self, ofile_, coordinates_, atom_, atom_type_, residue_, macromol_="PROTEIN"): import os from time import strftime, localtime if ofile_[-5:] != '.mol2': ofile_ += '.mol2' name = os.path.splitext(ofile_)[0] of_string = "" of_string += "# Modified by ProCare\n" of_string += "# Modification time: {}\n".format( strftime("%a %d %b %Y %H:%M:%S", localtime())) of_string += "# Name: {}.mol2\n\n".format(name) of_string += "@<TRIPOS>MOLECULE\n" of_string += "{}\n".format(name) of_string += "{:>5}{:>6}{:>6}{:>6}{:>6}\n".format( len(coordinates_), 0, 0, 0, 0) of_string += "{}\n".format(macromol_) of_string += "NO_CHARGES\n" of_string += "@<TRIPOS>ATOM" for i, point in enumerate(coordinates_): x, y, z, rgb = [*point] of_string += ("\n{:>7} {:<8} {:>9.4f} {:>9.4f} {:>9.4f} " "{:<5} {:>5} {:<8} {:>9}".format(i+1, atom_[rgb], x, y, z, atom_type_[rgb], i+1, residue_[rgb]+str(i+1), 0.0000 )) of_string += "\n@<TRIPOS>BOND" with open(ofile_, 'w') as of: of.write(of_string) print("written mol2 to {}".format(ofile_)) self.type = "pcd" return ofile_ def _pcd_to_mol2(self, ifile_, atom_, atom_type_, residue_, macromol_="PROTEIN"): import os coordinates = self._get_coordinates(ifile_) if coordinates != -1: ofile = os.path.basename(ifile_).replace('pcd', 'mol2') if self._write_mol2(ofile, coordinates, atom_, atom_type_, residue_, macromol_) == ofile: self.ifile = ifile_ return ofile else: return -1 class _volsite_cavity_(_mol2_, _pcd_): def __init__(self): __COLOR = {"OG":8204959, "N":30894, "O":15219528, "NZ":15231913, "CZ":4646984, "CA":16741671, "DU":7566712, "OD1":0,} __ATOM = {val:key for key, val in __COLOR.items()} __ATOM_TYPE = {"OG":"O.3", "N":"N.am", "O":"O.2", "NZ":"N.4", "CZ":"C.ar", "CA":"C.3", "DU":"H", "OD1":"O.co2",} __RESIDUE = {"OG":"SER", "N":"ALA", "O":"ALA", "NZ":"LYS", "CZ":"PHE", "CA":"GLY", "DU":"CUB", "OD1":"ASP",} self.COLOR = __COLOR self.ATOM = __ATOM self.ATOM_TYPE = {key:__ATOM_TYPE[val] for key, val in __ATOM.items()} self.RESIDUE = {key:__RESIDUE[val] for key, val in __ATOM.items()} def mol2_to_pcd(self, ifile_): return self._mol2_to_pcd(ifile_, self.COLOR) def pcd_to_mol2(self, ifile_): return self._pcd_to_mol2(ifile_, self.ATOM, self.ATOM_TYPE, self.RESIDUE) def write_mol2(self, ofile_, coordinates_): return self._write_mol2(ofile_, coordinates_, self.ATOM, self.ATOM_TYPE, self.RESIDUE) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('-i', '--input', type=str, help="input file", required=True) parser.add_argument('-t', '--itype', type=str, help="input file type: mol2 or pcd", choices=["mol2", "pcd"], required=True) parser.add_argument('-m', '--macromol', type=str, help="macromolecule type: cavity, ...", choices=["cav"], required=True, default="cav") args = parser.parse_args() if args.macromol == "cav": molecule = _volsite_cavity_() if args.itype == "pcd": molecule.pcd_to_mol2(args.input) elif args.itype == "mol2": molecule.mol2_to_pcd(args.input) #coords = [[1, 2, 3, 8204959], [4, 5, 6, 8204959]] #molecule.write_mol2('test.mol2', coords)
33.865132
80
0.45323
c6236482dfcda36adae0d7fe79a291a4c3cc040b
17,487
py
Python
main.py
zyyhhxx/convNet.pytorch
85f65f80b6d75810077c54bd3a8c9094cc2a26f9
[ "MIT" ]
null
null
null
main.py
zyyhhxx/convNet.pytorch
85f65f80b6d75810077c54bd3a8c9094cc2a26f9
[ "MIT" ]
null
null
null
main.py
zyyhhxx/convNet.pytorch
85f65f80b6d75810077c54bd3a8c9094cc2a26f9
[ "MIT" ]
null
null
null
import argparse import time import logging import json import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import models import torch.distributed as dist from os import path, makedirs from data import DataRegime, SampledDataRegime from utils.log import setup_logging, ResultsLog, save_checkpoint, export_args_namespace from utils.optim import OptimRegime from utils.cross_entropy import CrossEntropyLoss from utils.misc import torch_dtypes from utils.param_filter import FilterModules, is_bn from datetime import datetime from ast import literal_eval from trainer import Trainer import time model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) parser = argparse.ArgumentParser(description='PyTorch ConvNet Training') parser.add_argument('--config-file', default=None, help='json configuration file') parser.add_argument('--results-dir', metavar='RESULTS_DIR', default='./results', help='results dir') parser.add_argument('--save', metavar='SAVE', default='', help='saved folder') parser.add_argument('--datasets-dir', metavar='DATASETS_DIR', default='~/Datasets', help='datasets dir') parser.add_argument('--dataset', metavar='DATASET', default='imagenet', help='dataset name or folder') parser.add_argument('--model', '-a', metavar='MODEL', default='alexnet', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: alexnet)') parser.add_argument('--input-size', type=int, default=None, help='image input size') parser.add_argument('--model-config', default='', help='additional architecture configuration') parser.add_argument('--dtype', default='float', help='type of tensor: ' + ' | '.join(torch_dtypes.keys()) + ' (default: float)') parser.add_argument('--device', default='cuda', help='device assignment ("cpu" or "cuda")') parser.add_argument('--device-ids', default=[0], type=int, nargs='+', help='device ids assignment (e.g 0 1 2 3') parser.add_argument('--world-size', default=-1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int, help='rank of distributed processes') parser.add_argument('--dist-init', default='env://', type=str, help='init used to set up distributed training') parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend') parser.add_argument('-j', '--workers', default=8, type=int, metavar='N', help='number of data loading workers (default: 8)') parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=-1, type=int, metavar='N', help='manual epoch number (useful on restarts). -1 for unset (will start at 0)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--eval-batch-size', default=-1, type=int, help='mini-batch size (default: same as training)') parser.add_argument('--optimizer', default='SGD', type=str, metavar='OPT', help='optimizer function used') parser.add_argument('--drop-optim-state', action='store_true', default=False, help='do not save optimizer state for resume') parser.add_argument('--save-all', action='store_true', default=False, help='save checkpoint for every epoch') parser.add_argument('--label-smoothing', default=0, type=float, help='label smoothing coefficient - default 0') parser.add_argument('--mixup', default=None, type=float, help='mixup alpha coefficient - default None') parser.add_argument('--cutmix', default=None, type=float, help='cutmix alpha coefficient - default None') parser.add_argument('--duplicates', default=1, type=int, help='number of augmentations over singel example') parser.add_argument('--chunk-batch', default=1, type=int, help='chunk batch size for multiple passes (training)') parser.add_argument('--cutout', action='store_true', default=False, help='cutout augmentations') parser.add_argument('--autoaugment', action='store_true', default=False, help='use autoaugment policies') parser.add_argument('--grad-clip', default=-1, type=float, help='maximum grad norm value, -1 for none') parser.add_argument('--loss-scale', default=1, type=float, help='loss scale for mixed precision training.') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--weight-decay', '--wd', default=0, type=float, metavar='W', help='weight decay (default: 0)') parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--adapt-grad-norm', default=None, type=int, help='adapt gradient scale frequency (default: None)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('-e', '--evaluate', type=str, metavar='FILE', help='evaluate model FILE on validation set') parser.add_argument('--seed', default=123, type=int, help='random seed (default: 123)') parser.add_argument('--tensorwatch', action='store_true', default=False, help='set tensorwatch logging') parser.add_argument('--tensorwatch-port', default=0, type=int, help='set tensorwatch port') def main(): args = parser.parse_args() if args.config_file is not None: with open(args.config_file) as f: config_dict = json.loads(f.read()) parser.set_defaults(**config_dict) args = parser.parse_args() main_worker(args) def main_worker(args): global best_prec1, dtype best_prec1 = 0 dtype = torch_dtypes.get(args.dtype) torch.manual_seed(args.seed) time_stamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') if args.evaluate: args.results_dir = '/tmp' if args.save is '': args.save = time_stamp save_path = path.join(args.results_dir, args.save) args.distributed = args.local_rank >= 0 or args.world_size > 1 if args.distributed: dist.init_process_group(backend=args.dist_backend, init_method=args.dist_init, world_size=args.world_size, rank=args.local_rank) args.local_rank = dist.get_rank() args.world_size = dist.get_world_size() if args.dist_backend == 'mpi': # If using MPI, select all visible devices args.device_ids = list(range(torch.cuda.device_count())) else: args.device_ids = [args.local_rank] if not (args.distributed and args.local_rank > 0): if not path.exists(save_path): makedirs(save_path) export_args_namespace(args, path.join(save_path, 'config.json')) setup_logging(path.join(save_path, 'log.txt'), resume=args.resume is not '', dummy=args.distributed and args.local_rank > 0) results_path = path.join(save_path) results = ResultsLog(results_path, title='Training Results - %s' % args.save) logging.info("saving to %s", save_path) logging.debug("run arguments: %s", args) logging.info("creating model %s", args.model) if 'cuda' in args.device and torch.cuda.is_available(): torch.cuda.manual_seed_all(args.seed) torch.cuda.set_device(args.device_ids[0]) cudnn.benchmark = True else: args.device_ids = None # create model model = models.__dict__[args.model] model_config = {'dataset': args.dataset} if args.model_config is not '': model_config = dict(model_config, **literal_eval(args.model_config)) model = model(**model_config) logging.info("created model with configuration: %s", model_config) num_parameters = sum([l.nelement() for l in model.parameters()]) logging.info("number of parameters: %d", num_parameters) # optionally resume from a checkpoint if args.evaluate: if not path.isfile(args.evaluate): parser.error('invalid checkpoint: {}'.format(args.evaluate)) checkpoint = torch.load(args.evaluate, map_location="cpu") # Overrride configuration with checkpoint info args.model = checkpoint.get('model', args.model) args.model_config = checkpoint.get('config', args.model_config) # load checkpoint model.load_state_dict(checkpoint['state_dict']) logging.info("loaded checkpoint '%s' (epoch %s)", args.evaluate, checkpoint['epoch']) if args.resume: checkpoint_file = args.resume if path.isdir(checkpoint_file): results.load(path.join(checkpoint_file, 'results.csv')) checkpoint_file = path.join( checkpoint_file, 'model_best.pth.tar') if path.isfile(checkpoint_file): logging.info("loading checkpoint '%s'", args.resume) checkpoint = torch.load(checkpoint_file, map_location="cpu") if args.start_epoch < 0: # not explicitly set args.start_epoch = checkpoint['epoch'] best_prec1 = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) optim_state_dict = checkpoint.get('optim_state_dict', None) logging.info("loaded checkpoint '%s' (epoch %s)", checkpoint_file, checkpoint['epoch']) else: logging.error("no checkpoint found at '%s'", args.resume) else: optim_state_dict = None # define loss function (criterion) and optimizer loss_params = {} if args.label_smoothing > 0: loss_params['smooth_eps'] = args.label_smoothing criterion = getattr(model, 'criterion', CrossEntropyLoss)(**loss_params) criterion.to(args.device, dtype) model.to(args.device, dtype) # Batch-norm should always be done in float if 'half' in args.dtype: FilterModules(model, module=is_bn).to(dtype=torch.float) # optimizer configuration optim_regime = getattr(model, 'regime', [{'epoch': 0, 'optimizer': args.optimizer, 'lr': args.lr, 'momentum': args.momentum, 'weight_decay': args.weight_decay}]) optimizer = optim_regime if isinstance(optim_regime, OptimRegime) \ else OptimRegime(model, optim_regime, use_float_copy='half' in args.dtype) if optim_state_dict is not None: optimizer.load_state_dict(optim_state_dict) trainer = Trainer(model, criterion, optimizer, device_ids=args.device_ids, device=args.device, dtype=dtype, print_freq=args.print_freq, distributed=args.distributed, local_rank=args.local_rank, mixup=args.mixup, cutmix=args.cutmix, loss_scale=args.loss_scale, grad_clip=args.grad_clip, adapt_grad_norm=args.adapt_grad_norm) if args.tensorwatch: trainer.set_watcher(filename=path.abspath(path.join(save_path, 'tensorwatch.log')), port=args.tensorwatch_port) # Evaluation Data loading code args.eval_batch_size = args.eval_batch_size if args.eval_batch_size > 0 else args.batch_size val_data = DataRegime(getattr(model, 'data_eval_regime', None), defaults={'datasets_path': args.datasets_dir, 'name': args.dataset, 'split': 'val', 'augment': False, 'input_size': args.input_size, 'batch_size': args.eval_batch_size, 'shuffle': False, 'num_workers': args.workers, 'pin_memory': True, 'drop_last': False}) if args.evaluate: results = trainer.validate(val_data.get_loader()) logging.info(results) return # Training Data loading code train_data_defaults = {'datasets_path': args.datasets_dir, 'name': args.dataset, 'split': 'train', 'augment': True, 'input_size': args.input_size, 'batch_size': args.batch_size, 'shuffle': True, 'num_workers': args.workers, 'pin_memory': True, 'drop_last': True, 'distributed': args.distributed, 'duplicates': args.duplicates, 'autoaugment': args.autoaugment, 'cutout': {'holes': 1, 'length': 16} if args.cutout else None} if hasattr(model, 'sampled_data_regime'): sampled_data_regime = model.sampled_data_regime probs, regime_configs = zip(*sampled_data_regime) regimes = [] for config in regime_configs: defaults = {**train_data_defaults} defaults.update(config) regimes.append(DataRegime(None, defaults=defaults)) train_data = SampledDataRegime(regimes, probs) else: train_data = DataRegime( getattr(model, 'data_regime', None), defaults=train_data_defaults) logging.info('optimization regime: %s', optim_regime) logging.info('data regime: %s', train_data) args.start_epoch = max(args.start_epoch, 0) trainer.training_steps = args.start_epoch * len(train_data) start_time = time.time() end_time = None end_epoch = None found = False for epoch in range(args.start_epoch, args.epochs): trainer.epoch = epoch train_data.set_epoch(epoch) val_data.set_epoch(epoch) logging.info('\nStarting Epoch: {0}\n'.format(epoch + 1)) # train for one epoch train_results = trainer.train(train_data.get_loader(), chunk_batch=args.chunk_batch) # evaluate on validation set val_results = trainer.validate(val_data.get_loader()) if args.distributed and args.local_rank > 0: continue # remember best prec@1 and save checkpoint is_best = val_results['prec1'] > best_prec1 best_prec1 = max(val_results['prec1'], best_prec1) if args.drop_optim_state: optim_state_dict = None else: optim_state_dict = optimizer.state_dict() save_checkpoint({ 'epoch': epoch + 1, 'model': args.model, 'config': args.model_config, 'state_dict': model.state_dict(), 'optim_state_dict': optim_state_dict, 'best_prec1': best_prec1 }, is_best, path=save_path, save_all=args.save_all) logging.info('\nResults - Epoch: {0}\n' 'Training Loss {train[loss]:.4f} \t' 'Training Prec@1 {train[prec1]:.3f} \t' 'Training Prec@5 {train[prec5]:.3f} \t' 'Validation Loss {val[loss]:.4f} \t' 'Validation Prec@1 {val[prec1]:.3f} \t' 'Validation Prec@5 {val[prec5]:.3f} \t\n' .format(epoch + 1, train=train_results, val=val_results)) values = dict(epoch=epoch + 1, steps=trainer.training_steps) values.update({'training ' + k: v for k, v in train_results.items()}) values.update({'validation ' + k: v for k, v in val_results.items()}) results.add(**values) results.plot(x='epoch', y=['training loss', 'validation loss'], legend=['training', 'validation'], title='Loss', ylabel='loss') results.plot(x='epoch', y=['training error1', 'validation error1'], legend=['training', 'validation'], title='Error@1', ylabel='error %') results.plot(x='epoch', y=['training error5', 'validation error5'], legend=['training', 'validation'], title='Error@5', ylabel='error %') if 'grad' in train_results.keys(): results.plot(x='epoch', y=['training grad'], legend=['gradient L2 norm'], title='Gradient Norm', ylabel='value') results.save() if not found and val_results['prec1'] > 94: found = True end_time = time.time() - start_time end_epoch = epoch + 1 if not found: end_time = time.time() - start_time end_epoch = epoch + 1 print("Target reached: {}, minutes: {}, epochs: {}".format(found, round(end_time / 60, 3), end_epoch)) if __name__ == '__main__': main()
46.261905
127
0.614171
7bfef390355062218bfa38c55710315a4f7fc63f
1,281
py
Python
baya/templatetags/baya_tags.py
hrichards/baya
f319cef5e95cd6a166265d51ae0ea236b6f65be3
[ "MIT" ]
null
null
null
baya/templatetags/baya_tags.py
hrichards/baya
f319cef5e95cd6a166265d51ae0ea236b6f65be3
[ "MIT" ]
1
2018-12-28T16:53:42.000Z
2018-12-28T16:53:42.000Z
baya/templatetags/baya_tags.py
hrichards/baya
f319cef5e95cd6a166265d51ae0ea236b6f65be3
[ "MIT" ]
null
null
null
from baya.utils import has_permission from django import template from django.core.urlresolvers import resolve from django.core.urlresolvers import reverse register = template.Library() @register.assignment_tag(takes_context=True) def can_user_perform_action(context, action, *args, **kwargs): """ Assignment tag to check user permission within a template. Example: {% can_user_perform_action "home" as can_view_homepage %} Args: context: The template context (implicitly passed in because takes_context=True) action: The name of the url args/kwargs: The args/kwargs required by reverse Returns: bool: True if user has permission, False otherwise. Caveats: If there is no Gate (no requires function wrapping the viewfunc), has_permission returns False. action, args, and kwargs are fed directly into reverse. If they aren't given correctly, exceptions will be thrown. e.g. You supply both args and kwargs. For details please see django docs: https://docs.djangoproject.com/en/1.8/ref/urlresolvers/#reverse """ view_func = resolve(reverse(action, args=args, kwargs=kwargs)).func return has_permission(view_func, context['user'], 'any')
33.710526
78
0.708821
3749c9f4dff13c02363fe070f4a2155a56f424da
4,284
py
Python
test/functional/p2p_add_connections.py
fujicoin/fujicoin-22.0
acdf52ee4b54ba24e904fb2ed0cb578b2d755e48
[ "MIT" ]
17
2017-03-21T11:33:12.000Z
2021-08-10T04:11:30.000Z
test/functional/p2p_add_connections.py
fujicoin/fujicoin-22.0
acdf52ee4b54ba24e904fb2ed0cb578b2d755e48
[ "MIT" ]
2
2018-01-20T04:45:53.000Z
2020-01-06T19:52:13.000Z
test/functional/p2p_add_connections.py
fujicoin/fujicoin
acdf52ee4b54ba24e904fb2ed0cb578b2d755e48
[ "MIT" ]
7
2017-02-12T08:49:39.000Z
2021-07-18T11:33:59.000Z
#!/usr/bin/env python3 # Copyright (c) 2020 The Fujicoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test add_outbound_p2p_connection test framework functionality""" from test_framework.p2p import P2PInterface from test_framework.test_framework import FujicoinTestFramework from test_framework.util import assert_equal def check_node_connections(*, node, num_in, num_out): info = node.getnetworkinfo() assert_equal(info["connections_in"], num_in) assert_equal(info["connections_out"], num_out) class P2PAddConnections(FujicoinTestFramework): def set_test_params(self): self.num_nodes = 2 def setup_network(self): self.setup_nodes() # Don't connect the nodes def run_test(self): self.log.info("Add 8 outbounds to node 0") for i in range(8): self.log.info(f"outbound: {i}") self.nodes[0].add_outbound_p2p_connection(P2PInterface(), p2p_idx=i, connection_type="outbound-full-relay") self.log.info("Add 2 block-relay-only connections to node 0") for i in range(2): self.log.info(f"block-relay-only: {i}") # set p2p_idx based on the outbound connections already open to the # node, so add 8 to account for the previous full-relay connections self.nodes[0].add_outbound_p2p_connection(P2PInterface(), p2p_idx=i + 8, connection_type="block-relay-only") self.log.info("Add 2 block-relay-only connections to node 1") for i in range(2): self.log.info(f"block-relay-only: {i}") self.nodes[1].add_outbound_p2p_connection(P2PInterface(), p2p_idx=i, connection_type="block-relay-only") self.log.info("Add 5 inbound connections to node 1") for i in range(5): self.log.info(f"inbound: {i}") self.nodes[1].add_p2p_connection(P2PInterface()) self.log.info("Add 8 outbounds to node 1") for i in range(8): self.log.info(f"outbound: {i}") # bump p2p_idx to account for the 2 existing outbounds on node 1 self.nodes[1].add_outbound_p2p_connection(P2PInterface(), p2p_idx=i + 2) self.log.info("Check the connections opened as expected") check_node_connections(node=self.nodes[0], num_in=0, num_out=10) check_node_connections(node=self.nodes[1], num_in=5, num_out=10) self.log.info("Disconnect p2p connections & try to re-open") self.nodes[0].disconnect_p2ps() check_node_connections(node=self.nodes[0], num_in=0, num_out=0) self.log.info("Add 8 outbounds to node 0") for i in range(8): self.log.info(f"outbound: {i}") self.nodes[0].add_outbound_p2p_connection(P2PInterface(), p2p_idx=i) check_node_connections(node=self.nodes[0], num_in=0, num_out=8) self.log.info("Add 2 block-relay-only connections to node 0") for i in range(2): self.log.info(f"block-relay-only: {i}") # bump p2p_idx to account for the 8 existing outbounds on node 0 self.nodes[0].add_outbound_p2p_connection(P2PInterface(), p2p_idx=i + 8, connection_type="block-relay-only") check_node_connections(node=self.nodes[0], num_in=0, num_out=10) self.log.info("Restart node 0 and try to reconnect to p2ps") self.restart_node(0) self.log.info("Add 4 outbounds to node 0") for i in range(4): self.log.info(f"outbound: {i}") self.nodes[0].add_outbound_p2p_connection(P2PInterface(), p2p_idx=i) check_node_connections(node=self.nodes[0], num_in=0, num_out=4) self.log.info("Add 2 block-relay-only connections to node 0") for i in range(2): self.log.info(f"block-relay-only: {i}") # bump p2p_idx to account for the 4 existing outbounds on node 0 self.nodes[0].add_outbound_p2p_connection(P2PInterface(), p2p_idx=i + 4, connection_type="block-relay-only") check_node_connections(node=self.nodes[0], num_in=0, num_out=6) check_node_connections(node=self.nodes[1], num_in=5, num_out=10) if __name__ == '__main__': P2PAddConnections().main()
44.164948
120
0.6669
94c10f9c5f0aec9265d46b7273f0b45d36e03b8e
4,218
py
Python
src/iron_throne/pretenders.py
BernardFW/iron-throne
23130dfdb033f12c6fce443447ee2cdb46cbdea1
[ "Apache-2.0" ]
1
2018-02-26T15:16:19.000Z
2018-02-26T15:16:19.000Z
src/iron_throne/pretenders.py
BernardFW/iron-throne
23130dfdb033f12c6fce443447ee2cdb46cbdea1
[ "Apache-2.0" ]
2
2018-02-08T09:08:23.000Z
2018-02-08T09:20:22.000Z
src/iron_throne/pretenders.py
BernardFW/iron-throne
23130dfdb033f12c6fce443447ee2cdb46cbdea1
[ "Apache-2.0" ]
null
null
null
from collections import ( defaultdict, ) from typing import ( Any, Dict, Iterator, List, NamedTuple, Optional, Text, Tuple, ) from iron_throne.claim import ( Proof, ) from .claim import ( Claim, ) from .words import ( Word, tokenize, ) class Pretender(object): """ What if I say I'm not like the others? A pretender is an object capable of claiming words within a list of words. """ def claim(self, words: List['Word']) -> None: """ Iterate the list of words in order to claim them. Claimed words will get a claim appended to their claims list. """ raise NotImplementedError class Expression(object): """ Several words that come together. Like a wine name or multi-word color name. """ def __init__(self, text: Text, entity: Text, value: Any): self.text = text self.entity = entity self.value = value self._words = list(tokenize(text)) def __hash__(self): return hash(self.text) ^ hash(self.entity) ^ hash(self.value) def __eq__(self, other): return self.text == other.text and \ self.entity == other.entity and \ self.value == other.value def __repr__(self): return f'Expression<{self.entity}={self.value} "{self.text}">' @property def words(self) -> List['Word']: """ Provide a read-only access to the words list, because it is generated automatically at init. """ return self._words class ExpressionMatch(NamedTuple): expression: Expression word: Word seq: int order: int TrigramIndex = Dict[ Tuple[Optional[Text], Optional[Text], Optional[Text]], List[ExpressionMatch] ] class ExpressionPretender(Pretender): MIN_SCORE = .6 def __init__(self, expressions: List[Expression], seq: int = 0): self.expressions = expressions self.seq = seq self.index: TrigramIndex = self.build_index() def build_index(self) -> TrigramIndex: index: TrigramIndex = defaultdict(lambda: []) for seq, expression in enumerate(self.expressions): for order, word in enumerate(expression.words): for t in word.trigrams: index[t].append(ExpressionMatch( expression, word, self.seq + seq, order, )) return index def claim_word(self, word: Word, claims: Dict[Expression, Claim]) -> None: matches: Dict[ExpressionMatch, int] = defaultdict(lambda: 0) len2 = float(len(word.trigrams)) for t in word.trigrams: for match in self.index[t]: matches[match] += 1 def compute_scores() -> Iterator[Tuple[ExpressionMatch, float]]: for m, count in matches.items(): count = float(count) len1 = float(len(m.word.trigrams)) s = count / (len1 + len2 - count) if s > self.MIN_SCORE: yield m, s for match, score in compute_scores(): claim = self.get_claim(claims, match) Proof.attach( order=match.order, claim=claim, word=word, score=score, ) def get_claim(self, claims: Dict[Expression, Claim], match: ExpressionMatch) -> Claim: if match.expression not in claims: claims[match.expression] = Claim( entity=match.expression.entity, value=match.expression.value, score=0, length=len(match.expression.words), seq=match.seq, ) return claims[match.expression] def claim(self, words: List[Word]) -> None: claims: Dict[Expression, Claim] = {} for word in words: self.claim_word(word, claims) for claim in claims.values(): total = sum(p.score for p in claim.proofs) claim.score = float(total) / float(len(claim.proofs))
25.877301
78
0.556899
a888f4a309d27bd72220edb167f006812d611001
4,008
py
Python
awacs/route53.py
mprince/awacs
f6a16af326ac7fd11e2e2be3a48180475f150611
[ "BSD-2-Clause" ]
null
null
null
awacs/route53.py
mprince/awacs
f6a16af326ac7fd11e2e2be3a48180475f150611
[ "BSD-2-Clause" ]
null
null
null
awacs/route53.py
mprince/awacs
f6a16af326ac7fd11e2e2be3a48180475f150611
[ "BSD-2-Clause" ]
1
2020-04-03T06:37:42.000Z
2020-04-03T06:37:42.000Z
# Copyright (c) 2012-2013, Mark Peek <[email protected]> # All rights reserved. # # See LICENSE file for full license. from aws import Action as BaseAction from aws import BaseARN service_name = 'Amazon Route 53' prefix = 'route53' class Action(BaseAction): def __init__(self, action=None): sup = super(Action, self) sup.__init__(prefix, action) class ARN(BaseARN): def __init__(self, resource='', region='', account=''): sup = super(ARN, self) sup.__init__(service=prefix, resource=resource, region=region, account=account) AssociateVPCWithHostedZone = Action('AssociateVPCWithHostedZone') ChangeResourceRecordSets = Action('ChangeResourceRecordSets') ChangeTagsForResource = Action('ChangeTagsForResource') CreateHealthCheck = Action('CreateHealthCheck') CreateHostedZone = Action('CreateHostedZone') CreateQueryLoggingConfig = Action('CreateQueryLoggingConfig') CreateReusableDelegationSet = Action('CreateReusableDelegationSet') CreateTrafficPolicy = Action('CreateTrafficPolicy') CreateTrafficPolicyInstance = Action('CreateTrafficPolicyInstance') CreateTrafficPolicyVersion = Action('CreateTrafficPolicyVersion') CreateVPCAssociationAuthorization = \ Action('CreateVPCAssociationAuthorization') DeleteHealthCheck = Action('DeleteHealthCheck') DeleteHostedZone = Action('DeleteHostedZone') DeleteQueryLoggingConfig = Action('DeleteQueryLoggingConfig') DeleteReusableDelegationSet = Action('DeleteReusableDelegationSet') DeleteTrafficPolicy = Action('DeleteTrafficPolicy') DeleteTrafficPolicyInstance = Action('DeleteTrafficPolicyInstance') DeleteVPCAssociationAuthorization = \ Action('DeleteVPCAssociationAuthorization') DisableDomainAutoRenew = Action('DisableDomainAutoRenew') DisassociateVPCFromHostedZone = Action('DisassociateVPCFromHostedZone') EnableDomainAutoRenew = Action('EnableDomainAutoRenew') GetAccountLimit = Action('GetAccountLimit') GetChange = Action('GetChange') GetCheckerIpRanges = Action('GetCheckerIpRanges') GetGeoLocation = Action('GetGeoLocation') GetHealthCheck = Action('GetHealthCheck') GetHealthCheckCount = Action('GetHealthCheckCount') GetHealthCheckLastFailureReason = \ Action('GetHealthCheckLastFailureReason') GetHealthCheckStatus = Action('GetHealthCheckStatus') GetHostedZone = Action('GetHostedZone') GetHostedZoneCount = Action('GetHostedZoneCount') GetHostedZoneLimit = Action('GetHostedZoneLimit') GetQueryLoggingConfig = Action('GetQueryLoggingConfig') GetReusableDelegationSet = Action('GetReusableDelegationSet') GetReusableDelegationSetLimit = Action('GetReusableDelegationSetLimit') GetTrafficPolicy = Action('GetTrafficPolicy') GetTrafficPolicyInstance = Action('GetTrafficPolicyInstance') GetTrafficPolicyInstanceCount = Action('GetTrafficPolicyInstanceCount') ListGeoLocations = Action('ListGeoLocations') ListHealthChecks = Action('ListHealthChecks') ListHostedZones = Action('ListHostedZones') ListHostedZonesByName = Action('ListHostedZonesByName') ListQueryLoggingConfigs = Action('ListQueryLoggingConfigs') ListResourceRecordSets = Action('ListResourceRecordSets') ListReusableDelegationSets = Action('ListReusableDelegationSets') ListTagsForResource = Action('ListTagsForResource') ListTagsForResources = Action('ListTagsForResources') ListTrafficPolicies = Action('ListTrafficPolicies') ListTrafficPolicyInstances = Action('ListTrafficPolicyInstances') ListTrafficPolicyInstancesByHostedZone = \ Action('ListTrafficPolicyInstancesByHostedZone') ListTrafficPolicyInstancesByPolicy = \ Action('ListTrafficPolicyInstancesByPolicy') ListTrafficPolicyVersions = Action('ListTrafficPolicyVersions') ListVPCAssociationAuthorizations = \ Action('ListVPCAssociationAuthorizations') TestDNSAnswer = Action('TestDNSAnswer') UpdateHealthCheck = Action('UpdateHealthCheck') UpdateHostedZoneComment = Action('UpdateHostedZoneComment') UpdateTrafficPolicyComment = Action('UpdateTrafficPolicyComment') UpdateTrafficPolicyInstance = Action('UpdateTrafficPolicyInstance')
44.533333
71
0.825349
3e9cf51fcf3213638dbbdca77a07c5fbe70b80b4
687
py
Python
FaceRecognitionWebsite/codeDesign/myDjango02/app01/migrations/0022_teacherregister.py
ChunjunHu/FaceRecognitionLibraryWebsite
d979d410dfab52d8bda7a5328242b66d6a6b752d
[ "MIT" ]
1
2021-11-05T21:04:47.000Z
2021-11-05T21:04:47.000Z
FaceRecognitionWebsite/codeDesign/myDjango02/app01/migrations/0022_teacherregister.py
ChunjunHu/FaceRecognitionLibraryWebsite
d979d410dfab52d8bda7a5328242b66d6a6b752d
[ "MIT" ]
null
null
null
FaceRecognitionWebsite/codeDesign/myDjango02/app01/migrations/0022_teacherregister.py
ChunjunHu/FaceRecognitionLibraryWebsite
d979d410dfab52d8bda7a5328242b66d6a6b752d
[ "MIT" ]
null
null
null
# Generated by Django 2.0.1 on 2019-01-11 15:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app01', '0021_auto_20190111_1533'), ] operations = [ migrations.CreateModel( name='teacherRegister', fields=[ ('did', models.AutoField(primary_key=True, serialize=False)), ('dname', models.CharField(max_length=30)), ('dkey', models.CharField(max_length=30)), ('demail', models.EmailField(max_length=50)), ('dsex', models.CharField(max_length=30)), ], ), ]
28.625
78
0.541485
e16a79d02b7aa53439810709203e7f5be7491805
19,141
py
Python
models/loss.py
Co1lin/RfDNet
9a6910a0d3f8ab3bffbba9d992757d29a1d96bea
[ "MIT" ]
143
2021-04-09T12:28:47.000Z
2022-03-25T13:57:16.000Z
models/loss.py
Co1lin/RfDNet
9a6910a0d3f8ab3bffbba9d992757d29a1d96bea
[ "MIT" ]
10
2021-04-12T08:24:17.000Z
2022-01-02T22:33:01.000Z
models/loss.py
Co1lin/RfDNet
9a6910a0d3f8ab3bffbba9d992757d29a1d96bea
[ "MIT" ]
22
2021-04-10T06:05:44.000Z
2022-03-31T09:08:50.000Z
# loss function library. # author: ynie # date: Feb, 2020 import numpy as np import torch import torch.nn as nn from external.pyTorchChamferDistance.chamfer_distance import ChamferDistance from models.registers import LOSSES from net_utils.nn_distance import nn_distance, huber_loss chamfer_func = ChamferDistance() FAR_THRESHOLD = 0.6 NEAR_THRESHOLD = 0.3 GT_VOTE_FACTOR = 3 # number of GT votes per point OBJECTNESS_CLS_WEIGHTS = [0.2,0.8] # put larger weights on positive objectness criterion_heading_class = nn.CrossEntropyLoss(reduction='none') objectness_criterion = nn.CrossEntropyLoss(torch.Tensor(OBJECTNESS_CLS_WEIGHTS).cuda(), reduction='none') criterion_size_class = nn.CrossEntropyLoss(reduction='none') criterion_sem_cls = nn.CrossEntropyLoss(reduction='none') class BaseLoss(object): '''base loss class''' def __init__(self, weight=1): '''initialize loss module''' self.weight = weight @LOSSES.register_module class Null(BaseLoss): '''This loss function is for modules where a loss preliminary calculated.''' def __call__(self, loss): return self.weight * torch.mean(loss) def compute_vote_loss(est_data, gt_data): """ Compute vote loss: Match predicted votes to GT votes. Args: est_data, gt_data: dict (read-only) Returns: vote_loss: scalar Tensor Overall idea: If the seed point belongs to an object (votes_label_mask == 1), then we require it to vote for the object center. Each seed point may vote for multiple translations v1,v2,v3 A seed point may also be in the boxes of multiple objects: o1,o2,o3 with corresponding GT votes c1,c2,c3 Then the loss for this seed point is: min(d(v_i,c_j)) for i=1,2,3 and j=1,2,3 """ # Load ground truth votes and assign them to seed points batch_size = est_data['seed_xyz'].shape[0] num_seed = est_data['seed_xyz'].shape[1] # B,num_seed,3 vote_xyz = est_data['vote_xyz'] # B,num_seed*vote_factor,3 seed_inds = est_data['seed_inds'].long() # B,num_seed in [0,num_points-1] # Get groundtruth votes for the seed points # vote_label_mask: Use gather to select B,num_seed from B,num_point # non-object point has no GT vote mask = 0, object point has mask = 1 # vote_label: Use gather to select B,num_seed,9 from B,num_point,9 # with inds in shape B,num_seed,9 and 9 = GT_VOTE_FACTOR * 3 seed_gt_votes_mask = torch.gather(gt_data['vote_label_mask'], 1, seed_inds) seed_inds_expand = seed_inds.view(batch_size, num_seed, 1).repeat(1, 1, 3 * GT_VOTE_FACTOR) seed_gt_votes = torch.gather(gt_data['vote_label'], 1, seed_inds_expand) seed_gt_votes += est_data['seed_xyz'].repeat(1, 1, 3) # Compute the min of min of distance vote_xyz_reshape = vote_xyz.view(batch_size * num_seed, -1, 3) # from B,num_seed*vote_factor,3 to B*num_seed,vote_factor,3 seed_gt_votes_reshape = seed_gt_votes.view(batch_size * num_seed, GT_VOTE_FACTOR, 3) # from B,num_seed,3*GT_VOTE_FACTOR to B*num_seed,GT_VOTE_FACTOR,3 # A predicted vote to no where is not penalized as long as there is a good vote near the GT vote. dist1, _, dist2, _ = nn_distance(vote_xyz_reshape, seed_gt_votes_reshape, l1=True) votes_dist, _ = torch.min(dist2, dim=1) # (B*num_seed,vote_factor) to (B*num_seed,) votes_dist = votes_dist.view(batch_size, num_seed) vote_loss = torch.sum(votes_dist * seed_gt_votes_mask.float()) / (torch.sum(seed_gt_votes_mask.float()) + 1e-6) return vote_loss def compute_objectness_loss(est_data, gt_data): """ Compute objectness loss for the proposals. Args: end_points: dict (read-only) Returns: objectness_loss: scalar Tensor objectness_label: (batch_size, num_seed) Tensor with value 0 or 1 objectness_mask: (batch_size, num_seed) Tensor with value 0 or 1 object_assignment: (batch_size, num_seed) Tensor with long int within [0,num_gt_object-1] """ # Associate proposal and GT objects by point-to-point distances aggregated_vote_xyz = est_data['aggregated_vote_xyz'] gt_center = gt_data['center_label'][:,:,0:3] B = gt_center.shape[0] K = aggregated_vote_xyz.shape[1] K2 = gt_center.shape[1] dist1, ind1, dist2, _ = nn_distance(aggregated_vote_xyz, gt_center) # dist1: BxK, dist2: BxK2 # Generate objectness label and mask # objectness_label: 1 if pred object center is within NEAR_THRESHOLD of any GT object # objectness_mask: 0 if pred object center is in gray zone (DONOTCARE), 1 otherwise euclidean_dist1 = torch.sqrt(dist1+1e-6) objectness_label = torch.zeros((B,K), dtype=torch.long).cuda() objectness_mask = torch.zeros((B,K)).cuda() objectness_label[euclidean_dist1<NEAR_THRESHOLD] = 1 objectness_mask[euclidean_dist1<NEAR_THRESHOLD] = 1 objectness_mask[euclidean_dist1>FAR_THRESHOLD] = 1 # Compute objectness loss objectness_scores = est_data['objectness_scores'] objectness_loss = objectness_criterion(objectness_scores.transpose(2,1), objectness_label) objectness_loss = torch.sum(objectness_loss * objectness_mask)/(torch.sum(objectness_mask)+1e-6) # Set assignment object_assignment = ind1 # (B,K) with values in 0,1,...,K2-1 return objectness_loss, objectness_label, objectness_mask, object_assignment def compute_box_and_sem_cls_loss(est_data, gt_data, meta_data, config): """ Compute 3D bounding box and semantic classification loss. Args: est_data, gt_data, meta_data: dict (read-only) Returns: center_loss heading_cls_loss heading_reg_loss size_cls_loss size_reg_loss sem_cls_loss """ num_heading_bin = config.num_heading_bin num_size_cluster = config.num_size_cluster num_class = config.num_class mean_size_arr = config.mean_size_arr object_assignment = meta_data['object_assignment'] batch_size = object_assignment.shape[0] # Compute center loss pred_center = est_data['center'] gt_center = gt_data['center_label'][:,:,0:3] dist1, ind1, dist2, _ = nn_distance(pred_center, gt_center) # dist1: BxK, dist2: BxK2 box_label_mask = gt_data['box_label_mask'] objectness_label = meta_data['objectness_label'].float() centroid_reg_loss1 = \ torch.sum(dist1*objectness_label)/(torch.sum(objectness_label)+1e-6) centroid_reg_loss2 = \ torch.sum(dist2*box_label_mask)/(torch.sum(box_label_mask)+1e-6) center_loss = centroid_reg_loss1 + centroid_reg_loss2 # Compute heading loss heading_class_label = torch.gather(gt_data['heading_class_label'], 1, object_assignment) # select (B,K) from (B,K2) heading_class_loss = criterion_heading_class(est_data['heading_scores'].transpose(2,1), heading_class_label) # (B,K) heading_class_loss = torch.sum(heading_class_loss * objectness_label)/(torch.sum(objectness_label)+1e-6) heading_residual_label = torch.gather(gt_data['heading_residual_label'], 1, object_assignment) # select (B,K) from (B,K2) heading_residual_normalized_label = heading_residual_label / (np.pi/num_heading_bin) # Ref: https://discuss.pytorch.org/t/convert-int-into-one-hot-format/507/3 heading_label_one_hot = torch.cuda.FloatTensor(batch_size, heading_class_label.shape[1], num_heading_bin).zero_() heading_label_one_hot.scatter_(2, heading_class_label.unsqueeze(-1), 1) # src==1 so it's *one-hot* (B,K,num_heading_bin) heading_residual_normalized_loss = huber_loss(torch.sum(est_data['heading_residuals_normalized']*heading_label_one_hot, -1) - heading_residual_normalized_label, delta=1.0) # (B,K) heading_residual_normalized_loss = torch.sum(heading_residual_normalized_loss*objectness_label)/(torch.sum(objectness_label)+1e-6) # Compute size loss size_class_label = torch.gather(gt_data['size_class_label'], 1, object_assignment) # select (B,K) from (B,K2) size_class_loss = criterion_size_class(est_data['size_scores'].transpose(2,1), size_class_label) # (B,K) size_class_loss = torch.sum(size_class_loss * objectness_label)/(torch.sum(objectness_label)+1e-6) size_residual_label = torch.gather(gt_data['size_residual_label'], 1, object_assignment.unsqueeze(-1).repeat(1,1,3)) # select (B,K,3) from (B,K2,3) size_label_one_hot = torch.cuda.FloatTensor(batch_size, size_class_label.shape[1], num_size_cluster).zero_() size_label_one_hot.scatter_(2, size_class_label.unsqueeze(-1), 1) # src==1 so it's *one-hot* (B,K,num_size_cluster) size_label_one_hot_tiled = size_label_one_hot.unsqueeze(-1).repeat(1,1,1,3) # (B,K,num_size_cluster,3) predicted_size_residual_normalized = torch.sum(est_data['size_residuals_normalized']*size_label_one_hot_tiled, 2) # (B,K,3) mean_size_arr_expanded = torch.from_numpy(mean_size_arr.astype(np.float32)).cuda().unsqueeze(0).unsqueeze(0) # (1,1,num_size_cluster,3) mean_size_label = torch.sum(size_label_one_hot_tiled * mean_size_arr_expanded, 2) # (B,K,3) size_residual_label_normalized = size_residual_label / mean_size_label # (B,K,3) size_residual_normalized_loss = torch.mean(huber_loss(predicted_size_residual_normalized - size_residual_label_normalized, delta=1.0), -1) # (B,K,3) -> (B,K) size_residual_normalized_loss = torch.sum(size_residual_normalized_loss*objectness_label)/(torch.sum(objectness_label)+1e-6) # 3.4 Semantic cls loss sem_cls_label = torch.gather(gt_data['sem_cls_label'], 1, object_assignment) # select (B,K) from (B,K2) sem_cls_loss = criterion_sem_cls(est_data['sem_cls_scores'].transpose(2,1), sem_cls_label) # (B,K) sem_cls_loss = torch.sum(sem_cls_loss * objectness_label)/(torch.sum(objectness_label)+1e-6) return center_loss, heading_class_loss, heading_residual_normalized_loss, size_class_loss, size_residual_normalized_loss, sem_cls_loss @LOSSES.register_module class DetectionLoss(BaseLoss): def __call__(self, est_data, gt_data, dataset_config): """ Loss functions Args: end_points: dict { seed_xyz, seed_inds, vote_xyz, center, heading_scores, heading_residuals_normalized, size_scores, size_residuals_normalized, sem_cls_scores, #seed_logits,# center_label, heading_class_label, heading_residual_label, size_class_label, size_residual_label, sem_cls_label, box_label_mask, vote_label, vote_label_mask } config: dataset config instance Returns: loss: pytorch scalar tensor end_points: dict """ # Vote loss vote_loss = compute_vote_loss(est_data, gt_data) # Obj loss objectness_loss, objectness_label, objectness_mask, object_assignment = \ compute_objectness_loss(est_data, gt_data) total_num_proposal = objectness_label.shape[0] * objectness_label.shape[1] pos_ratio = \ torch.sum(objectness_label.float().cuda()) / float(total_num_proposal) neg_ratio = \ torch.sum(objectness_mask.float()) / float(total_num_proposal) - pos_ratio # Box loss and sem cls loss meta_data = {'object_assignment':object_assignment, 'objectness_label':objectness_label} center_loss, heading_cls_loss, heading_reg_loss, size_cls_loss, size_reg_loss, sem_cls_loss = \ compute_box_and_sem_cls_loss(est_data, gt_data, meta_data, dataset_config) box_loss = center_loss + 0.1 * heading_cls_loss + heading_reg_loss + 0.1 * size_cls_loss + size_reg_loss # Final loss function loss = vote_loss + 0.5 * objectness_loss + box_loss + 0.1 * sem_cls_loss loss *= 10 # -------------------------------------------- # Some other statistics obj_pred_val = torch.argmax(est_data['objectness_scores'], 2) # B,K obj_acc = torch.sum((obj_pred_val == objectness_label.long()).float() * objectness_mask) / ( torch.sum(objectness_mask) + 1e-6) return {'total':loss, 'vote_loss': vote_loss.item(), 'objectness_loss': objectness_loss.item(), 'box_loss': box_loss.item(), 'sem_cls_loss': sem_cls_loss.item(), 'pos_ratio': pos_ratio.item(), 'neg_ratio': neg_ratio.item(), 'center_loss': center_loss.item(), 'heading_cls_loss': heading_cls_loss.item(), 'heading_reg_loss': heading_reg_loss.item(), 'size_cls_loss': size_cls_loss.item(), 'size_reg_loss': size_reg_loss.item(), 'obj_acc': obj_acc.item()} @LOSSES.register_module class ChamferDist(BaseLoss): def __call__(self, pointset1, pointset2): ''' calculate the chamfer distance between two point sets. :param pointset1 (B x N x 3): torch.FloatTensor :param pointset2 (B x N x 3): torch.FloatTensor :return: ''' dist1, dist2 = chamfer_func(pointset1, pointset2)[:2] loss = self.weight * ((torch.mean(dist1)) + (torch.mean(dist2))) return loss @LOSSES.register_module class PCN_Loss(BaseLoss): def __init__(self, weight): super(PCN_Loss, self).__init__(weight) self.chamfer_distance = ChamferDist() def __call__(self, pred_fine, pred_coarses, full_scan, full_scan_coarse): CD_LOSS = self.chamfer_distance(pred_fine, full_scan) errG = CD_LOSS + 0.1 * self.chamfer_distance(pred_coarses, full_scan_coarse) return self.weight * errG, CD_LOSS.item() @LOSSES.register_module class ONet_Loss(BaseLoss): def __call__(self, value): completion_loss = torch.mean(value[:,0]) mask_loss = torch.mean(value[:,1]) total_loss = self.weight * (completion_loss + 100*mask_loss) return {'total_loss': total_loss, 'completion_loss': completion_loss.item(), 'mask_loss': mask_loss.item()} def compute_objectness_loss_boxnet(est_data, gt_data): """ Compute objectness loss for the proposals. Args: end_points: dict (read-only) Returns: objectness_loss: scalar Tensor objectness_label: (batch_size, num_seed) Tensor with value 0 or 1 objectness_mask: (batch_size, num_seed) Tensor with value 0 or 1 object_assignment: (batch_size, num_seed) Tensor with long int within [0,num_gt_object-1] """ # Associate proposal and GT objects by point-to-point distances aggregated_vote_xyz = est_data['aggregated_vote_xyz'] gt_center = gt_data['center_label'][:,:,0:3] B = gt_center.shape[0] K = aggregated_vote_xyz.shape[1] K2 = gt_center.shape[1] dist1, ind1, dist2, _ = nn_distance(aggregated_vote_xyz, gt_center) # dist1: BxK, dist2: BxK2 # Generate objectness label and mask # NOTE: Different from VoteNet, here we use seed label as objectness label. seed_inds = est_data['seed_inds'].long() # B,num_seed in [0,num_points-1] seed_gt_votes_mask = torch.gather(gt_data['vote_label_mask'], 1, seed_inds) est_data['seed_labels'] = seed_gt_votes_mask aggregated_vote_inds = est_data['aggregated_vote_inds'] objectness_label = torch.gather(est_data['seed_labels'], 1, aggregated_vote_inds.long()) # select (B,K) from (B,1024) objectness_mask = torch.ones((objectness_label.shape[0], objectness_label.shape[1])).cuda() # no ignore zone anymore # Compute objectness loss objectness_scores = est_data['objectness_scores'] criterion = nn.CrossEntropyLoss(torch.Tensor(OBJECTNESS_CLS_WEIGHTS).cuda(), reduction='none') objectness_loss = criterion(objectness_scores.transpose(2,1), objectness_label) objectness_loss = torch.sum(objectness_loss * objectness_mask)/(torch.sum(objectness_mask)+1e-6) # Set assignment object_assignment = ind1 # (B,K) with values in 0,1,...,K2-1 return objectness_loss, objectness_label, objectness_mask, object_assignment @LOSSES.register_module class BoxNetDetectionLoss(BaseLoss): def __call__(self, est_data, gt_data, dataset_config): """ Loss functions Args: end_points: dict { seed_xyz, seed_inds, center, heading_scores, heading_residuals_normalized, size_scores, size_residuals_normalized, sem_cls_scores, #seed_logits,# center_label, heading_class_label, heading_residual_label, size_class_label, size_residual_label, sem_cls_label, box_label_mask, vote_label, vote_label_mask } config: dataset config instance Returns: loss: pytorch scalar tensor end_points: dict """ # Obj loss objectness_loss, objectness_label, objectness_mask, object_assignment = \ compute_objectness_loss_boxnet(est_data, gt_data) total_num_proposal = objectness_label.shape[0] * objectness_label.shape[1] pos_ratio = \ torch.sum(objectness_label.float().cuda()) / float(total_num_proposal) neg_ratio = \ torch.sum(objectness_mask.float()) / float(total_num_proposal) - pos_ratio # Box loss and sem cls loss meta_data = {'object_assignment':object_assignment, 'objectness_label':objectness_label} center_loss, heading_cls_loss, heading_reg_loss, size_cls_loss, size_reg_loss, sem_cls_loss = \ compute_box_and_sem_cls_loss(est_data, gt_data, meta_data, dataset_config) box_loss = center_loss + 0.1 * heading_cls_loss + heading_reg_loss + 0.1 * size_cls_loss + size_reg_loss # Final loss function loss = 0.5 * objectness_loss + box_loss + 0.1 * sem_cls_loss loss *= 10 # -------------------------------------------- # Some other statistics obj_pred_val = torch.argmax(est_data['objectness_scores'], 2) # B,K obj_acc = torch.sum((obj_pred_val == objectness_label.long()).float() * objectness_mask) / ( torch.sum(objectness_mask) + 1e-6) return {'total':loss, 'objectness_loss': objectness_loss.item(), 'box_loss': box_loss.item(), 'sem_cls_loss': sem_cls_loss.item(), 'pos_ratio': pos_ratio.item(), 'neg_ratio': neg_ratio.item(), 'center_loss': center_loss.item(), 'heading_cls_loss': heading_cls_loss.item(), 'heading_reg_loss': heading_reg_loss.item(), 'size_cls_loss': size_cls_loss.item(), 'size_reg_loss': size_reg_loss.item(), 'obj_acc': obj_acc.item()}
46.2343
183
0.677446
6b7f6253e67eaa8c64f3ba0b691e1fe34855f7f1
1,277
py
Python
artists/models.py
flannerykj/urbanapplause
c9b6c0f9a2f65b869fe1e6fa921972e7236e4fe5
[ "MIT" ]
null
null
null
artists/models.py
flannerykj/urbanapplause
c9b6c0f9a2f65b869fe1e6fa921972e7236e4fe5
[ "MIT" ]
null
null
null
artists/models.py
flannerykj/urbanapplause
c9b6c0f9a2f65b869fe1e6fa921972e7236e4fe5
[ "MIT" ]
null
null
null
from __future__ import unicode_literals from django.db import models from django.utils.encoding import python_2_unicode_compatible from django.contrib.auth.models import User import datetime from django.utils import timezone from geoposition.fields import GeopositionField from django.conf import settings from taggit.managers import TaggableManager from taggit.models import TaggedItemBase class InstrumentTag(TaggedItemBase): content_object = models.ForeignKey('Artist') class Artist(models.Model): name = models.CharField(max_length=100) pub_date = models.DateTimeField(auto_now_add=True) last_updated = models.DateTimeField(auto_now=True) author = models.ForeignKey(User) tags = TaggableManager(through=InstrumentTag) def was_published_recently(self): return self.pub_date >= timezone.now() - datetime.timedelta(days=1) def __str__(self): return self.name def get_absolute_url(self): return reverse('artists', kwargs={'pk': self.pk}) class Musician(Artist): INSTRUMENT_CHOICES = ( ('Unspecified', 'Unspecified'), ('Guitar', 'Guitar'), ('Violin', 'Violin'), ('Drums', 'Drums'), ('Keyboard', 'Keyboard'), ('Voice', 'Voice'), ) instruments = models.CharField(max_length=100, choices=INSTRUMENT_CHOICES, default='Unspecified')
32.74359
98
0.768207
04c777fd7c421d19c5da564359623c6dcb4e3b7f
3,843
py
Python
src/securityAbandonerAndInjector/NonpublicVarAccessdByPublicFunc/main.py
xf97/HuangGai
40a349be6102d5eb63893fb914659405ae162d93
[ "MIT" ]
23
2020-09-20T02:10:44.000Z
2022-03-22T12:58:13.000Z
src/securityAbandonerAndInjector/NonpublicVarAccessdByPublicFunc/main.py
contractshark/HuangGai
1b26f77b043aa5903774420964c61ab370eb6c7a
[ "MIT" ]
3
2020-09-22T15:28:33.000Z
2022-01-22T07:48:53.000Z
src/securityAbandonerAndInjector/NonpublicVarAccessdByPublicFunc/main.py
contractshark/HuangGai
1b26f77b043aa5903774420964c61ab370eb6c7a
[ "MIT" ]
5
2021-07-15T02:45:09.000Z
2022-03-21T13:36:40.000Z
#!/usr/bin/python #-*- coding: utf-8 -*- #cache路径 CACHE_PATH = "./cache/" #缓存合约路径 CACHE_CONTRACT_PATH = "./cache/temp.sol" #缓存路径信息文件 CACHE_PATHINFO_PATH = "./cache/temp_sol.json" #缓存抽象语法树文件 CACHE_AST_PATH = "./cache/temp.sol_json.ast" #源代码保存路径 CONTRACT_PATH = "../../contractExtractor/NonpublicVarAccessdByPublicFuncExtractor/result" #注入信息保存路径 INJECT_INFO_PATH = "../../contractExtractor/NonpublicVarAccessdByPublicFuncExtractor/injectInfo" #sol文件后缀 SOL_SUFFIX = ".sol" #json.ast文件后缀 JSON_AST_SUFFIX = "_json.ast" from NonpublicVarAccessdByPublicFuncInjector import NonpublicVarAccessdByPublicFuncInjector #注入器 import os import time class NonpublicVarAccessdByPublicFunc: def __init__(self, _injectInfo, _contractPath): self.injectInfo = _injectInfo #所有文件的路径信息情况 self.targetInfoFile = self.targetPathInfo(self.injectInfo) self.targetContract = self.targetContractList(self.targetInfoFile, _contractPath) #合约列表 self.targetAstFile = self.targetAstList(self.targetInfoFile, _contractPath) #ast列表 self.nowNum = 0 try: os.mkdir(CACHE_PATH) #建立缓存文件夹 except: #print("The cache folder already exists.") pass def targetAstList(self, _fileList, _contractPath): result = list() for filename in _fileList: jsonAstName = os.path.splitext(os.path.split(filename)[1])[0] + SOL_SUFFIX + JSON_AST_SUFFIX result.append(os.path.join(_contractPath, jsonAstName)) return result def targetContractList(self, _fileList, _contractPath): result = list() for filename in _fileList: contractName = os.path.splitext(os.path.split(filename)[1])[0] + SOL_SUFFIX result.append(os.path.join(_contractPath, contractName)) return result def targetPathInfo(self, _pathInfo): fileList = os.listdir(_pathInfo) result = list() for item in fileList: result.append(os.path.join(_pathInfo, item)) return result def getInfoFile(self, _contractName, _infoFileList): preName = os.path.splitext(os.path.split(_contractName)[1])[0] for file in _infoFileList: if preName in file: return file else: continue return str() def getAstFile(self, _contractName, _astFileList): preName = os.path.splitext(os.path.split(_contractName)[1])[0] for file in _astFileList: if preName in file: return file else: continue return str() def cacheFile(self, _contract, _pathInfo, _astPath): try: with open(CACHE_CONTRACT_PATH, "w+", encoding = "utf-8") as f: f.write(open(_contract).read()) with open(CACHE_PATHINFO_PATH, "w+", encoding = "utf-8") as f: f.write(open(_pathInfo).read()) with open(CACHE_AST_PATH, "w+", encoding = "utf-8") as f: f.write(open(_astPath).read()) return except: raise Exception("Failed to cache contract.") def run(self): stime = time.time() contractNum = 0 for contractFile in self.targetContract: contractNum += 1 try: #1. 获取每个合约的源代码, ast和注入信息 pathInfoFile = self.getInfoFile(contractFile, self.targetInfoFile) astFile = self.getAstFile(contractFile, self.targetAstFile) print("\r\t Injecting contract: ", os.path.split(contractFile)[1], end = "") #2. 缓存当前文件 self.cacheFile(contractFile, pathInfoFile, astFile) #3. 根据目标路径和源代码注入bug NI = NonpublicVarAccessdByPublicFuncInjector(CACHE_CONTRACT_PATH, CACHE_PATHINFO_PATH, astFile, self.getOriginalContractName(contractFile)) NI.inject() NI.output() #4. 输出进度 self.nowNum += 1 #print("\r当前注入进度: %.2f" % (self.nowNum / len(self.targetContract))) except Exception as e: self.nowNum += 1 #print(e) continue print() #print(time.time() - stime) #print(contractNum) def getOriginalContractName(self, _contractPath): return os.path.splitext(os.path.split(_contractPath)[1])[0] #单元测试 if __name__ == "__main__": nvabpf = NonpublicVarAccessdByPublicFunc(INJECT_INFO_PATH, CONTRACT_PATH) nvabpf.run()
30.991935
143
0.733021
043a3eafcaef83a163556f238ca9590cd1b1953f
358
py
Python
scripts/figures/figure5/pipeswitch_inception_v3/remote_run_data.py
CcTtry/PipeSwitch
c6d632ee20b6dbbaea9a6fb95b9ea0ed4bbbf67e
[ "Apache-2.0" ]
null
null
null
scripts/figures/figure5/pipeswitch_inception_v3/remote_run_data.py
CcTtry/PipeSwitch
c6d632ee20b6dbbaea9a6fb95b9ea0ed4bbbf67e
[ "Apache-2.0" ]
null
null
null
scripts/figures/figure5/pipeswitch_inception_v3/remote_run_data.py
CcTtry/PipeSwitch
c6d632ee20b6dbbaea9a6fb95b9ea0ed4bbbf67e
[ "Apache-2.0" ]
null
null
null
import os import sys from scripts.common.util import RunDocker def main(): with RunDocker('pipeswitch:pipeswitch', 'figure5_pipeswitch_inception_v3') as rd: # Start the server: pipeswitch rd.run('python PipeSwitch/scripts/run_data.py') # Get and return the data point if __name__ == '__main__': main()
25.571429
86
0.659218
8e4efe5d5a222cebdec85a1463c382d34ab22321
257
py
Python
Harijith/Web-Scrapping
c474071e4e929ec3c44d63484251c3d0096a7836
[ "bzip2-1.0.6" ]
null
null
null
Harijith/Web-Scrapping
c474071e4e929ec3c44d63484251c3d0096a7836
[ "bzip2-1.0.6" ]
null
null
null
Harijith/Web-Scrapping
c474071e4e929ec3c44d63484251c3d0096a7836
[ "bzip2-1.0.6" ]
null
null
null
x=float(input("\n Enter the Score")) if(x>=0.9 and x<=1): print("A") elif(x>=0.8 and x<=1): print("B") elif(x>=0.7 and x<=1): print("C") elif(x>=0.6 and x<=1): print("D") elif(x<0.6): print("F") else: print("Bad Score")
18.357143
37
0.486381
999b8020ed4727d7ca8aa40296d5fee3b62e178a
326
py
Python
robonomicsinterface/exceptions.py
Multi-Agent-io/robonomics-interface
139276c93b25e39ff0bf537cf6e5632234dbbc50
[ "Apache-2.0" ]
3
2022-01-14T13:50:01.000Z
2022-02-19T19:02:47.000Z
robonomicsinterface/exceptions.py
Multi-Agent-io/robonomics-interface
139276c93b25e39ff0bf537cf6e5632234dbbc50
[ "Apache-2.0" ]
18
2021-11-10T12:11:26.000Z
2022-03-23T14:17:37.000Z
robonomicsinterface/exceptions.py
Multi-Agent-io/robonomics-interface
139276c93b25e39ff0bf537cf6e5632234dbbc50
[ "Apache-2.0" ]
2
2021-12-29T09:17:16.000Z
2022-03-18T14:06:03.000Z
class NoPrivateKeyException(Exception): """ No private key was provided so unable to perform any operations requiring message signing. """ pass class DigitalTwinMapException(Exception): """ No Digital Twin was created with this index or there is no such topic in Digital Twin map. """ pass
21.733333
94
0.699387
83499540ad2b4e26c25948c04eb624afa5113656
1,731
py
Python
tests/test_causal_frames.py
solalatus/justcause
af6240cbcf33ba42b8e784703fb0d92e1396f937
[ "MIT" ]
114
2019-09-24T07:47:05.000Z
2022-02-19T09:37:12.000Z
tests/test_causal_frames.py
solalatus/justcause
af6240cbcf33ba42b8e784703fb0d92e1396f937
[ "MIT" ]
29
2019-10-22T07:15:49.000Z
2020-11-30T10:13:24.000Z
tests/test_causal_frames.py
solalatus/justcause
af6240cbcf33ba42b8e784703fb0d92e1396f937
[ "MIT" ]
12
2020-01-20T12:56:35.000Z
2022-02-05T17:44:47.000Z
import pytest import numpy as np import pandas as pd from numpy.testing import assert_array_equal from justcause.data.frames import CausalFrame def test_create_causal_frame(dummy_df): CausalFrame(dummy_df, covariates=["a", "b"]) with pytest.raises(AssertionError): CausalFrame(dummy_df) with pytest.raises(AssertionError): CausalFrame(dummy_df, covariates=["a", "b", "c"]) def test_causal_frame_operations(dummy_cf): cf = dummy_cf[dummy_cf["a"] <= 5] assert isinstance(cf, CausalFrame) dummy_cf.drop("b", axis=1) assert isinstance(cf["a"], pd.Series) assert not hasattr(cf["a"], "_names") def test_names_extension(dummy_cf, dummy_df): with pytest.raises(AssertionError): _ = dummy_df.names.covariates covariates = dummy_cf.names.covariates assert covariates == ["a", "b"] others = dummy_cf.names.others assert others == ["rep", "sample_id"] def test_np_extension(dummy_cf, dummy_df): with pytest.raises(AssertionError): _ = dummy_df.np.X X = dummy_cf.np.X assert isinstance(X, np.ndarray) assert_array_equal(dummy_cf[["a", "b"]].to_numpy(), X) y = dummy_cf.np.y assert isinstance(y, np.ndarray) assert_array_equal(dummy_cf["y"].to_numpy(), y) t = dummy_cf.np.t assert isinstance(t, np.ndarray) assert_array_equal(dummy_cf["t"].to_numpy(), t) dummy_cf_no_X = dummy_cf.drop(["a", "b"], axis=1) with pytest.raises(KeyError): _ = dummy_cf_no_X.np.X dummy_cf_no_y = dummy_cf.drop("y", axis=1) with pytest.raises(KeyError): _ = dummy_cf_no_y.np.y dummy_cf_no_t = dummy_cf.drop("t", axis=1) with pytest.raises(KeyError): _ = dummy_cf_no_t.np.t
25.455882
58
0.675332
21bf7a642554503be05c6e86767f11b9aad0c165
3,182
py
Python
src/pyspark_utilities/feature/weights_of_evidence.py
gbisschoff/pyspark-utilities
e234a5de75a6ab975f4feccfbeaf5c9170a74ca4
[ "MIT" ]
null
null
null
src/pyspark_utilities/feature/weights_of_evidence.py
gbisschoff/pyspark-utilities
e234a5de75a6ab975f4feccfbeaf5c9170a74ca4
[ "MIT" ]
null
null
null
src/pyspark_utilities/feature/weights_of_evidence.py
gbisschoff/pyspark-utilities
e234a5de75a6ab975f4feccfbeaf5c9170a74ca4
[ "MIT" ]
null
null
null
from pyspark import keyword_only ## < 2.0 -> pyspark.ml.util.keyword_only from pyspark.ml.param.shared import HasInputCols, HasOutputCols, Param, Params, TypeConverters, HasLabelCol # Available in PySpark >= 2.3.0 from pyspark.ml.util import DefaultParamsReadable, DefaultParamsWritable from pyspark.ml.pipeline import Estimator, Model from pyspark.sql.functions import col, create_map, lit, log, sum, when from pyspark.sql.window import Window from itertools import chain from functools import reduce class WeightsOfEvidence(Estimator, HasInputCols, HasOutputCols, HasLabelCol, DefaultParamsReadable, DefaultParamsWritable): @keyword_only def __init__(self, inputCols=None, outputCols=None, labelCol=None): super(WeightsOfEvidence, self).__init__() kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only def setParams(self, inputCols=None, outputCols=None, labelCol=None): kwargs = self._input_kwargs return self._set(**kwargs) def setLabelCol(self, value): return self._set(labelCol=value) def getLabelCol(self): return self.getOrDefault(self.labelCol) def _fit(self, dataframe): """Fit transformer.""" def get_mapping(c): mapping_df = dataframe\ .groupBy(c)\ .agg( sum(when(col(self.getLabelCol()) == 0, 1).otherwise(0)).alias("good"), sum(when(col(self.getLabelCol()) == 1, 1).otherwise(0)).alias("bad") )\ .withColumn('woe', log((col('good')/sum(col('good')).over(Window.partitionBy()))/(col('bad')/sum(col('bad')).over(Window.partitionBy()))))\ .drop('good', 'bad') return reduce(lambda a, b: dict(a, **b), [{r[c]: r['woe']} for r in mapping_df.collect()]) mappings = {c: get_mapping(c) for c in self.getInputCols()} return WeightsOfEvidenceModel(inputCols=self.getInputCols(), outputCols=self.getOutputCols(), mappings=mappings) class WeightsOfEvidenceModel(Model, HasInputCols, HasOutputCols, DefaultParamsReadable, DefaultParamsWritable,): @keyword_only def __init__(self, inputCols=None, outputCols=None, mappings=None): """Initialize.""" super(WeightsOfEvidenceModel, self).__init__() self.mappings = Param(self, "mappings", "WoE Mapping") self._setDefault(mappings={}) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only def setParams(self, inputCols=None, outputCols=None, mappings=None): """Get params.""" kwargs = self._input_kwargs return self._set(**kwargs) def setMappings(self, value): return self._set(mappings=value) def getMappings(self): return self.getOrDefault(self.mappings) def _transform(self, dataframe): def get_mapping_expr(mapping): return create_map([lit(x) for x in chain(*mapping.items())]) return dataframe.select(['*']+[(get_mapping_expr(self.getMappings()[i]).getItem(col(i))).alias(o) for i, o in zip(self.getInputCols(), self.getOutputCols())])
41.324675
173
0.655248
f537d38b258da626d236b9de56fd54f84fdd290a
477
py
Python
02 - Curso Em Video/Aula 14/E - 061.py
GabrielTrentino/Python_Basico
f13f6448c275c14896337d2018b04cbf5a54efd3
[ "MIT" ]
null
null
null
02 - Curso Em Video/Aula 14/E - 061.py
GabrielTrentino/Python_Basico
f13f6448c275c14896337d2018b04cbf5a54efd3
[ "MIT" ]
null
null
null
02 - Curso Em Video/Aula 14/E - 061.py
GabrielTrentino/Python_Basico
f13f6448c275c14896337d2018b04cbf5a54efd3
[ "MIT" ]
null
null
null
print('Gerador de PA') print('-='*10) termo1 = int(input('Digite o primeiro termo: ')) razao = int(input('Digite a razão da PA: ')) termos = 10 ant = termo1 while termos != 0: prox = ant + razao print('{} -> '.format(ant) if termos > 1 else '{} '.format(ant), end = '') ant = prox termos -= 1 while termos == 0: termos = int(input('Digite a quantidade de termos que devem ser calculados: ')) if termos == 0: break
29.8125
88
0.557652
21e8862cbf811e0df0fa904a0fbe6d06613c14f1
2,810
py
Python
src/main.py
shigarus/NewsParser
b373f7c047b032e761a3a02f6036c8b3c7107761
[ "MIT" ]
null
null
null
src/main.py
shigarus/NewsParser
b373f7c047b032e761a3a02f6036c8b3c7107761
[ "MIT" ]
null
null
null
src/main.py
shigarus/NewsParser
b373f7c047b032e761a3a02f6036c8b3c7107761
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import argparse import codecs import json import logging import os import htmltoreadable import toolkit def write_to_file(url, text): """ Write text to path like default.ru/news/2013/03/dtp/index.html => [CUR_DIR]/default.ru/news/2013/03/dtp/index.txt :param url: basestring :param text: basestring """ if not isinstance(url, basestring): raise TypeError('url has to be basestring instance') if not isinstance(text, basestring): raise TypeError('text has to be basestring instance') url = toolkit.morph_url(url) dir_path = os.path.dirname(url) file_path = url has_extension = True in ( file_path.endswith(ext) for ext in ('.html', '.shtml', '.php') ) if has_extension: point_pos = file_path.rfind('.') file_path = file_path[:point_pos] file_path = u''.join(( file_path, '.txt' )) if not os.path.exists(dir_path): os.makedirs(dir_path) with codecs.open(file_path, 'w', encoding='utf-8') as fh: fh.write(text) def main(): # parse args parser = argparse.ArgumentParser() parser.add_argument('-u', '--url', help='Target page url') parser.add_argument( '-t', '--target', help='Css selector to process text.' ) parser.add_argument( '-e', '--exclude', help='Css selector to exclude text.' ) parser.add_argument('-c', '--config', help='Path to config file') parser.add_argument('-d', '--debug', action='store_true') parser.set_defaults( debug=False, config='config.json', exclude=None ) args = parser.parse_args() # /parse args if args.debug: logging.basicConfig(level=logging.DEBUG) # getting config if os.path.exists(args.config): with codecs.open(args.config, 'r', encoding='utf-8') as fh: config = json.load(fh) else: config = dict( urls=[], rules={} ) # getting rules and urls for processing if args.url: url = args.url site_name = toolkit.get_site_name(url) if args.target: exclude = args.exclude rule = dict( include=[args.target, ], exclude=[exclude, ] if exclude else [] ) rules = { site_name: rule } else: rules = config['rules'] urls = [url, ] else: rules = config['rules'] urls = config['urls'] # process urls text_extractor = htmltoreadable.HtmlTextExtractor(rules) for url in urls: text = text_extractor.get_text(url) write_to_file(url, text) if __name__ == '__main__': main()
24.017094
97
0.569751
143fff24bb199d4e2198279bfb0d474f015a51b3
140
py
Python
search.py
yatharthgeek/wikipedia-search
966d363f1e4ec14cc44b2b420653849f325b1da0
[ "MIT" ]
1
2021-10-03T16:21:18.000Z
2021-10-03T16:21:18.000Z
search.py
yatharthgeek/wikipedia-search
966d363f1e4ec14cc44b2b420653849f325b1da0
[ "MIT" ]
null
null
null
search.py
yatharthgeek/wikipedia-search
966d363f1e4ec14cc44b2b420653849f325b1da0
[ "MIT" ]
null
null
null
import wikipedia bash= input("Ask Question ==>>> ") result = wikipedia.summary(bash, sentences = 2) # printing the result print(result)
14
47
0.707143
f19e3258713dd7b3ccf8f85643cc19156c3d4167
1,242
py
Python
lambda/mynotes/adapter/s3_bucket_adapter.py
scalasm/my-notes
f023baad2908d9fe010490deb1891e409fb498a8
[ "MIT" ]
null
null
null
lambda/mynotes/adapter/s3_bucket_adapter.py
scalasm/my-notes
f023baad2908d9fe010490deb1891e409fb498a8
[ "MIT" ]
10
2022-03-14T22:26:25.000Z
2022-03-25T00:00:31.000Z
lambda/mynotes/adapter/s3_bucket_adapter.py
scalasm/my-notes
f023baad2908d9fe010490deb1891e409fb498a8
[ "MIT" ]
null
null
null
from typing import Any from mynotes.core.architecture import ContentUploadException, ObjectStore class S3BucketAdapter(ObjectStore): """ Adapter implementation for the S3 object store. """ bucket_name: str s3_resource: Any def __init__(self, s3_resource: Any, bucket_name: str) -> None: self.s3_resource = s3_resource self.bucket_name = bucket_name def store(self, object_key: str, content: str) -> None: object = self.s3_resource.Object(self.bucket_name, object_key) result = object.put(Body=content) res = result.get('ResponseMetadata') if not res.get('HTTPStatusCode') == 200: raise ContentUploadException(f"Upload to bucket {self.bucket_name} failed for key {object_key}!") def load(self, object_key: str) -> str: object = self.s3_resource.Object(self.bucket_name, object_key) content = object.get()['Body'].read().decode('utf-8') return content def delete(self, object_key: str) -> None: object = self.s3_resource.Object(self.bucket_name, object_key) # We don't care about the response - either the object was deleted (if present) # or it was not present! object.delete()
34.5
109
0.669887
8487ba2d9d10b4962a9d232b23a42b7d0f26bd73
3,529
py
Python
bindings/python/ensmallen/datasets/string/haloferaxvolcanii.py
AnacletoLAB/ensmallen_graph
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
5
2021-02-17T00:44:45.000Z
2021-08-09T16:41:47.000Z
bindings/python/ensmallen/datasets/string/haloferaxvolcanii.py
AnacletoLAB/ensmallen_graph
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
18
2021-01-07T16:47:39.000Z
2021-08-12T21:51:32.000Z
bindings/python/ensmallen/datasets/string/haloferaxvolcanii.py
AnacletoLAB/ensmallen
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
3
2021-01-14T02:20:59.000Z
2021-08-04T19:09:52.000Z
""" This file offers the methods to automatically retrieve the graph Haloferax volcanii. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def HaloferaxVolcanii( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Haloferax volcanii graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.0 - homology.v11.5 - physical.links.v11.0 - physical.links.v11.5 - links.v11.0 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Haloferax volcanii graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="HaloferaxVolcanii", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
32.675926
223
0.675829
4768ce6134ad73c9a6e6b696623d54969f7c6e15
1,022
py
Python
common/ClassificationMetrics.py
sum-coderepo/HadoopApp
0e8d48c5d541b5935c9054fb1335d829d67d7b59
[ "Apache-2.0" ]
2
2020-05-26T23:58:32.000Z
2020-11-01T20:45:30.000Z
common/ClassificationMetrics.py
sum-coderepo/HadoopApp
0e8d48c5d541b5935c9054fb1335d829d67d7b59
[ "Apache-2.0" ]
null
null
null
common/ClassificationMetrics.py
sum-coderepo/HadoopApp
0e8d48c5d541b5935c9054fb1335d829d67d7b59
[ "Apache-2.0" ]
null
null
null
from sklearn.metrics import * class ClassificationMetrics(object): """description of class""" def __init__(self, yPredict,yActual): self.yPredict = yPredict self.yActual= yActual if(self.yPredict is None or self.yActual is None): raise(Exception('yPredict and yActual cannot be null')) def getAccuracyScore(self): return accuracy_score(self.yActual,self.yPredict) def getPrecisionScore(self): return precision_score(self.yActual,self.yPredict,average='micro') def getRecallScore(self): return recall_score(self.yActual,self.yPredict,average='micro') def getF1Score(self): return f1_score(self.yActual,self.yPredict,average='micro') def getROCAUCScore(self): return roc_auc_score(self.yActual,self.yPredict,average='micro') def getLogLossScore(self): return log_loss(self.yActual,self.yPredict) def getClassificationReport(self): return classification_report(self.yActual,self.yPredict)
34.066667
74
0.709393
5733b355dd94b2bc98c901eef0933a81a8efa490
515
py
Python
src/bdbd_common/messageSingle.py
rkent/bdbd_common
0d6f2cd40f5e83f05d6a2620c00a3b492bbe9ff4
[ "MIT" ]
null
null
null
src/bdbd_common/messageSingle.py
rkent/bdbd_common
0d6f2cd40f5e83f05d6a2620c00a3b492bbe9ff4
[ "MIT" ]
null
null
null
src/bdbd_common/messageSingle.py
rkent/bdbd_common
0d6f2cd40f5e83f05d6a2620c00a3b492bbe9ff4
[ "MIT" ]
null
null
null
try: from Queue import Queue except: from queue import Queue import rospy def messageSingle(topic, type): responseQueue = Queue() sub = rospy.Subscriber(topic, type, lambda msg:responseQueue.put(msg)) result = responseQueue.get() sub.unregister() return result if __name__ == '__main__': from sensor_msgs.msg import CameraInfo rospy.init_node('test') while not rospy.is_shutdown(): print(messageSingle('/bdbd/pantilt_camera/camera_info', CameraInfo)) break
25.75
76
0.700971
a76960a76610a44d5f8f1401e7d3b73fb4660c56
6,185
py
Python
aws-inventory/lambda/inventory-client-vpn.py
dkeppel626/antiope
c8a540e92878cb220be9918c20bb9458d4541d1a
[ "Apache-2.0" ]
210
2019-01-11T20:58:23.000Z
2022-03-16T18:51:17.000Z
aws-inventory/lambda/inventory-client-vpn.py
dkeppel626/antiope
c8a540e92878cb220be9918c20bb9458d4541d1a
[ "Apache-2.0" ]
13
2018-11-23T19:06:05.000Z
2020-08-19T20:05:28.000Z
aws-inventory/lambda/inventory-client-vpn.py
dkeppel626/antiope
c8a540e92878cb220be9918c20bb9458d4541d1a
[ "Apache-2.0" ]
44
2018-11-21T15:51:24.000Z
2022-03-11T01:21:24.000Z
import boto3 from botocore.exceptions import ClientError import json import os import time from datetime import datetime, timezone from dateutil import tz from antiope.aws_account import * from common import * import logging logger = logging.getLogger() logger.setLevel(getattr(logging, os.getenv('LOG_LEVEL', default='INFO'))) logging.getLogger('botocore').setLevel(logging.WARNING) logging.getLogger('boto3').setLevel(logging.WARNING) logging.getLogger('urllib3').setLevel(logging.WARNING) RESOURCE_PATH = "ec2/clientvpn" def lambda_handler(event, context): logger.debug("Received event: " + json.dumps(event, sort_keys=True)) message = json.loads(event['Records'][0]['Sns']['Message']) logger.info("Received message: " + json.dumps(message, sort_keys=True)) try: target_account = AWSAccount(message['account_id']) for r in target_account.get_regions(): try: discover_client_vpn_endpoints(target_account, r) except ClientError as e: # Move onto next region if we get access denied. This is probably SCPs if e.response['Error']['Code'] == 'AccessDeniedException': logger.error(f"AccessDeniedException for region {r} in function {context.function_name} for {target_account.account_name}({target_account.account_id})") continue elif e.response['Error']['Code'] == 'UnauthorizedOperation': logger.error(f"UnauthorizedOperation for region {r} in function {context.function_name} for {target_account.account_name}({target_account.account_id})") continue else: raise # pass on to the next handler except AntiopeAssumeRoleError as e: logger.error("Unable to assume role into account {}({})".format(target_account.account_name, target_account.account_id)) return() except ClientError as e: if e.response['Error']['Code'] == 'UnauthorizedOperation': logger.error("Antiope doesn't have proper permissions to this account") return(event) logger.critical("AWS Error getting info for {}: {}".format(message['account_id'], e)) capture_error(message, context, e, "ClientError for {}: {}".format(message['account_id'], e)) raise except Exception as e: logger.critical("{}\nMessage: {}\nContext: {}".format(e, message, vars(context))) capture_error(message, context, e, "General Exception for {}: {}".format(message['account_id'], e)) raise def discover_client_vpn_endpoints(target_account, region): '''Iterate accross all regions to discover client vpn endpoints''' ec2_client = target_account.get_client('ec2', region=region) response = ec2_client.describe_client_vpn_endpoints() if response['ClientVpnEndpoints']: for cvpn in response['ClientVpnEndpoints']: resource_item = {} resource_item['awsAccountId'] = target_account.account_id resource_item['awsAccountName'] = target_account.account_name resource_item['resourceType'] = "AWS::EC2::ClientVpnEndpoint" resource_item['source'] = "Antiope" resource_item['awsRegion'] = region resource_item['configurationItemCaptureTime'] = str(datetime.datetime.now()) resource_item['configuration'] = cvpn resource_item['supplementaryConfiguration'] = {} resource_item['resourceId'] = cvpn['ClientVpnEndpointId'] resource_item['resourceCreationTime'] = cvpn['CreationTime'] resource_item['errors'] = {} if 'Tags' in cvpn: resource_item['tags'] = parse_tags(cvpn['Tags']) # Get any active VPN connections to the endpoint and add as part of the supplementary configuration. connections = discover_client_vpn_connections(ec2_client, cvpn['ClientVpnEndpointId']) resource_item['supplementaryConfiguration']['Connections'] = connections # Obtain other network configuration associated with the VPN endpoint and add as part of the supplementary configuration. routes = discover_client_vpn_routes(ec2_client, cvpn['ClientVpnEndpointId']) resource_item['supplementaryConfiguration']['Routes'] = routes targets = discover_client_vpn_targets(ec2_client, cvpn['ClientVpnEndpointId']) resource_item['supplementaryConfiguration']['ClientVpnTargetNetworks'] = targets # Save files to S3 save_resource_to_s3(RESOURCE_PATH, cvpn['ClientVpnEndpointId'], resource_item) logger.info("Discovered Client VPN connection ({}) in account {} for region {}".format(cvpn['ClientVpnEndpointId'], target_account.account_id, region)) logger.debug("Data: {}".format(resource_item)) else: logger.debug("No Client VPN connections found for account {} in region {}".format(target_account.account_id, region)) def discover_client_vpn_connections(ec2_client, vpnId): '''Get client VPN endpoint configuration based on the endpointId''' response = ec2_client.describe_client_vpn_connections( ClientVpnEndpointId=vpnId, ) return(response['Connections']) def discover_client_vpn_routes(ec2_client, vpnId): '''Get client VPN routes configuration based on the endpointId''' response = ec2_client.describe_client_vpn_routes( ClientVpnEndpointId=vpnId, ) return(response['Routes']) def discover_client_vpn_targets(ec2_client, vpnId): '''Get client VPN target networks configuration based on the endpointId''' response = ec2_client.describe_client_vpn_target_networks( ClientVpnEndpointId=vpnId, ) return(response['ClientVpnTargetNetworks'])
46.856061
172
0.645918
86b3071fef2f820ebb726caf3bf3b35512c9382b
5,890
py
Python
train.py
chiemenz/nd00333_AZMLND_Optimizing_a_Pipeline_in_Azure-Starter_Files
e33d7321511bc4d39fdc406eacb29305d94bf9a7
[ "MIT" ]
null
null
null
train.py
chiemenz/nd00333_AZMLND_Optimizing_a_Pipeline_in_Azure-Starter_Files
e33d7321511bc4d39fdc406eacb29305d94bf9a7
[ "MIT" ]
null
null
null
train.py
chiemenz/nd00333_AZMLND_Optimizing_a_Pipeline_in_Azure-Starter_Files
e33d7321511bc4d39fdc406eacb29305d94bf9a7
[ "MIT" ]
null
null
null
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.linear_model import LogisticRegression\n", "import argparse\n", "import os\n", "import numpy as np\n", "from sklearn.metrics import mean_squared_error\n", "import joblib\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import OneHotEncoder\n", "import pandas as pd\n", "from azureml.core.run import Run\n", "from azureml.data.dataset_factory import TabularDatasetFactory" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def clean_data(data):\n", " # Dict for cleaning data\n", " months = {\"jan\":1, \"feb\":2, \"mar\":3, \"apr\":4, \"may\":5, \"jun\":6, \"jul\":7, \"aug\":8, \"sep\":9, \"oct\":10, \"nov\":11, \"dec\":12}\n", " weekdays = {\"mon\":1, \"tue\":2, \"wed\":3, \"thu\":4, \"fri\":5, \"sat\":6, \"sun\":7}\n", "\n", " # Clean and one hot encode data\n", " x_df = data.to_pandas_dataframe().dropna()\n", " jobs = pd.get_dummies(x_df.job, prefix=\"job\")\n", " x_df.drop(\"job\", inplace=True, axis=1)\n", " x_df = x_df.join(jobs)\n", " x_df[\"marital\"] = x_df.marital.apply(lambda s: 1 if s == \"married\" else 0)\n", " x_df[\"default\"] = x_df.default.apply(lambda s: 1 if s == \"yes\" else 0)\n", " x_df[\"housing\"] = x_df.housing.apply(lambda s: 1 if s == \"yes\" else 0)\n", " x_df[\"loan\"] = x_df.loan.apply(lambda s: 1 if s == \"yes\" else 0)\n", " contact = pd.get_dummies(x_df.contact, prefix=\"contact\")\n", " x_df.drop(\"contact\", inplace=True, axis=1)\n", " x_df = x_df.join(contact)\n", " education = pd.get_dummies(x_df.education, prefix=\"education\")\n", " x_df.drop(\"education\", inplace=True, axis=1)\n", " x_df = x_df.join(education)\n", " x_df[\"month\"] = x_df.month.map(months)\n", " x_df[\"day_of_week\"] = x_df.day_of_week.map(weekdays)\n", " x_df[\"poutcome\"] = x_df.poutcome.apply(lambda s: 1 if s == \"success\" else 0)\n", "\n", " y_df = x_df.pop(\"y\").apply(lambda s: 1 if s == \"yes\" else 0)\n", " return x_df, y_df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "TODO: Create TabularDataset using TabularDatasetFactory\n", "Data is located at:\n", "\"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/bankmarketing_train.csv\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ds = TabularDatasetFactory.from_delimited_files(path= \"https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/bankmarketing_train.csv\", header=True, validate=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x, y = clean_data(ds)\n", "\n", "x_train, x_test, y_train, y_test = train_test_split(x,y, random_state=42, test_size=0.2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "TODO: Split data into train and test sets." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## YOUR CODE HERE ###a" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "lines_to_next_cell": 1 }, "outputs": [], "source": [ "run = Run.get_context()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def main():\n", " # Add arguments to script\n", " parser = argparse.ArgumentParser(description=\"hyperparameters of the logistic regression model\")\n", "\n", " parser.add_argument('--C', type=float, default=1.0,\n", " help=\"Inverse of regularization strength. Smaller values cause stronger regularization\")\n", " parser.add_argument('--max_iter', type=int,\n", " default=100,\n", " help=\"Maximum number of iterations to converge\")\n", " \n", " args = parser.parse_args()\n", " \n", "# C = 1.0\n", "# max_iter = 100\n", "# run.log(\"Regularization Strength:\", np.float(C))\n", "# run.log(\"Max iterations:\", np.int(max_iter))\n", "# model = LogisticRegression(C=C, max_iter=max_iter, penalty=\"l2\").fit(x_train, y_train)\n", "\n", " run.log(\"Regularization Strength:\", np.float(args.C))\n", " run.log(\"Max iterations:\", np.int(args.max_iter))\n", "\n", " model = LogisticRegression(C=args.C, max_iter=args.max_iter).fit(x_train, y_train)\n", "\n", " accuracy = model.score(x_test, y_test)\n", " run.log(\"Accuracy\", np.float(accuracy))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "if __name__ == '__main__':\n", " main()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "jupytext": { "cell_metadata_filter": "-all", "notebook_metadata_filter": "-all", "text_representation": { "extension": ".py", "format_name": "light" } }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 4 }
30.837696
199
0.550934
bc0397691b57a3a8e2710bc76dd06700f122e002
50,898
py
Python
parlai/tasks/task_list.py
min942773/parlai_wandb
1d9ba1a0df2199d0247cee8c4929a2598ac7e41a
[ "MIT" ]
null
null
null
parlai/tasks/task_list.py
min942773/parlai_wandb
1d9ba1a0df2199d0247cee8c4929a2598ac7e41a
[ "MIT" ]
7
2021-01-12T01:07:03.000Z
2022-03-12T00:50:45.000Z
parlai/tasks/task_list.py
min942773/parlai_wandb
1d9ba1a0df2199d0247cee8c4929a2598ac7e41a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ This file contains a list of all the tasks, their id and task name, description and the tags associated with them. """ task_list = [ { "id": "AmazonQA", "display_name": "AmazonQA", "task": "amazon_qa", "tags": ["All", "QA"], "links": {"website": "http://jmcauley.ucsd.edu/data/amazon/qa/"}, "description": ( "This dataset contains Question and Answer data from Amazon, " "totaling around 1.4 million answered questions." ), }, { "id": "AQuA", "display_name": "AQuA", "task": "aqua", "tags": ["All", "QA"], "links": {"arXiv": "https://arxiv.org/abs/1705.04146"}, "description": ( "Dataset containing algebraic word problems with rationales for " "their answers." ), }, { "id": "bAbI-1k", "display_name": "bAbI 1k", "task": "babi:All1k", "tags": ["All", "QA"], "description": ( "20 synthetic tasks that each test a unique aspect of text and " "reasoning, and hence test different capabilities of learning " "models." ), "links": {"arXiv": "http://arxiv.org/abs/1502.05698"}, "notes": ( "You can access just one of the bAbI tasks with e.g. " "'babi:Task1k:3' for task 3." ), }, { "id": "bAbI-10k", "display_name": "bAbI 10k", "task": "babi:All10k", "tags": ["All", "QA"], "description": ( "20 synthetic tasks that each test a unique aspect of text and " "reasoning, and hence test different capabilities of learning " "models." ), "links": {"arXiv": "http://arxiv.org/abs/1502.05698"}, "notes": ( "You can access just one of the bAbI tasks with e.g. 'babi:Task10k:3' " "for task 3." ), }, { "id": "BlendedSkillTalk", "display_name": "Blended Skill Talk", "task": "blended_skill_talk", "tags": ["All", "ChitChat"], "description": ( "A dataset of 7k conversations explicitly designed to exhibit multiple " "conversation modes: displaying personality, having empathy, and " "demonstrating knowledge." ), }, { "id": "BookTest", "display_name": "BookTest", "task": "booktest", "tags": ["All", "Cloze"], "description": ( "Sentence completion given a few sentences as context from a book. " "A larger version of CBT." ), "links": {"arXiv": "https://arxiv.org/abs/1610.00956"}, }, { "id": "BotAdversarialDialogue", "display_name": "Bot Adversarial Dialogue ", "task": "bot_adversarial_dialogue", "tags": ["All"], "description": ( "Datasets described in the paper Recipes for Safety in Open-domain Chatbots." "Datasets consist of classification tasks in which the goal is to " "determine if the utterance is offensive or not given a dialogue context. " ), "links": {"arXiv": "<placeholder>"}, }, { "id": "CBT", "display_name": "Children's Book Test (CBT)", "task": "cbt", "tags": ["All", "Cloze"], "description": ( "Sentence completion given a few sentences as context from a " "children's book." ), "links": {"arXiv": "https://arxiv.org/abs/1511.02301"}, }, { "id": "CCPE", "display_name": "Coached Conversational Preference Elicitation", "task": "ccpe", "tags": ["All", "Goal"], "description": ( "A dataset consisting of 502 dialogs with 12,000 annotated " "utterances between a user and an assistant discussing movie " "preferences in natural language. It was collected using a " "Wizard-of-Oz methodology between two paid crowd-workers, " "where one worker plays the role of an 'assistant', while " "the other plays the role of a 'user'." ), "links": { "website": "https://ai.google/tools/datasets/coached-conversational-preference-elicitation" }, }, { "id": "COPA", "display_name": "Choice of Plausible Alternatives", "task": "copa", "tags": ["All", "Reasoning"], "description": ( "The Choice Of Plausible Alternatives (COPA) evaluation provides " "researchers with a tool for assessing progress in open-domain " "commonsense causal reasoning. COPA consists of 1000 questions, " "split equally into development and test sets of 500 questions each." ), "links": {"website": "http://people.ict.usc.edu/~gordon/copa.html"}, }, { "id": "COQA", "display_name": "Conversational Question Answering Challenge", "task": "coqa", "tags": ["All", "QA"], "description": ( "CoQA is a large-scale dataset for building Conversational " "Question Answering systems. The goal of the CoQA challenge " "is to measure the ability of machines to understand a text " "passage and answer a series of interconnected questions that " "appear in a conversation. CoQA is pronounced as coca." ), "links": {"arXiv": "https://arxiv.org/abs/1808.07042"}, }, { "id": "CornellMovie", "display_name": "Cornell Movie", "task": "cornell_movie", "tags": ["All", "ChitChat", "Dodeca"], "description": ("Fictional conversations extracted from raw movie scripts."), "links": {"arXiv": "https://arxiv.org/abs/1106.3077"}, }, { "id": "DBLL-bAbI", "display_name": "Dialog Based Language Learning: bAbI Task", "task": "dbll_babi", "tags": ["All", "Goal"], "description": ( "Short dialogs based on the bAbI tasks, but in the form of a " "question from a teacher, the answer from the student, and finally a " "comment on the answer from the teacher. The aim is to find learning " "models that use the comments to improve." ), "links": {"arXiv": "https://arxiv.org/abs/1604.06045"}, "notes": ( "Tasks can be accessed with a " "format like: 'parlai display_data -t " "dbll_babi:task:2_p0.5' which specifies task 2, and policy with 0.5 " "answers correct, see the paper for more details of the tasks." ), }, { "id": "DBLL-Movie", "display_name": "Dialog Based Language Learning: WikiMovies Task", "task": "dbll_movie", "tags": ["All", "Goal"], "description": ( "Short dialogs based on WikiMovies, but in the form of a question " "from a teacher, the answer from the student, and finally a comment " "on the answer from the teacher. The aim is to find learning models " "that use the comments to improve." ), "links": {"arXiv": "https://arxiv.org/abs/1604.06045"}, }, { "id": "dialog-bAbI", "display_name": "Dialog bAbI", "task": "dialog_babi", "tags": ["All", "Goal"], "description": "Simulated dialogs of restaurant booking", "links": {"arXiv": "https://arxiv.org/abs/1605.07683"}, }, { "id": "dialog-bAbI-plus", "display_name": "Dialog bAbI+", "task": "dialog_babi_plus", "tags": ["All", "Goal"], "description": ( "bAbI+ is an extension of the bAbI Task 1 dialogues with everyday " "incremental dialogue phenomena (hesitations, restarts, and " "corrections) which model the disfluencies and communication " "problems in everyday spoken interaction in real-world environments. " ), "links": { "website": ( "https://www.researchgate.net/publication/" "319128941_Challenging_Neural_Dialogue_Models_with_Natural_" "Data_Memory_Networks_Fail_on_Incremental_Phenomena" ), "paper": "http://aclweb.org/anthology/D17-1235", }, }, { "id": "dialogue-nli", "display_name": "Dialogue NLI", "task": "dialogue_nli", "tags": ["All", "ChitChat", "NLI"], "description": ( "Dialogue NLI is a dataset that addresses the issue of consistency in " "dialogue models." ), "links": { "website": "https://wellecks.github.io/dialogue_nli/", "arXiv": "https://arxiv.org/abs/1811.00671", }, }, { "id": "dstc7", "display_name": "DSTC7 subtrack 1 - ubuntu", "task": "dstc7", "tags": ["All", "ChitChat"], "description": ( "DSTC7 is a competition which provided a dataset of dialogs very " "similar to the ubuntu dataset. In particular, the subtrack 1 " "consists in predicting the next utterance." ), "links": {"arXiv": "https://arxiv.org/abs/1901.03461"}, }, { "id": "FVQA", "display_name": "FVQA", "task": "fvqa", "tags": ["All", "Visual"], "description": ( "The FVQA, a VQA dataset which requires, and supports, much deeper " "reasoning. We extend a conventional visual question answering " "dataset, which contains image-question-answer triplets, through " "additional image-question-answer-supporting fact tuples. The " "supporting fact is represented as a structural triplet, such as " "<Cat,CapableOf,ClimbingTrees>." ), "links": {"arXiv": "https://arxiv.org/abs/1606.05433"}, }, { "id": "DealNoDeal", "display_name": "Deal or No Deal", "task": "dealnodeal", "tags": ["All", "Negotiation"], "description": ( "End-to-end negotiation task which requires two agents to agree on " "how to divide a set of items, with each agent assigning different " "values to each item." ), "links": {"arXiv": "https://arxiv.org/abs/1706.05125"}, }, { "id": "HotpotQA", "display_name": "HotpotQA", "task": "hotpotqa", "tags": ["All", "QA"], "description": ( "HotpotQA is a dataset for multi-hop question answering." "The overall setting is that given some context paragraphs" "(e.g., a few paragraphs, or the entire Web) and a question," "a QA system answers the question by extracting a span of text" "from the context. It is necessary to perform multi-hop reasoning" "to correctly answer the question." ), "links": {"arXiv": "https://arxiv.org/abs/1809.09600"}, }, { "id": "LIGHT-Dialogue", "display_name": "LIGHT-Dialogue", "task": "light_dialog", "tags": ["All", "Grounded", "Dodeca"], "description": ( "LIGHT is a text adventure game with actions and dialogue collected." "The source data is collected between crowdworkers playing the game." ), "links": { "website": "http://parl.ai/projects/light", "arXiv": "https://arxiv.org/abs/1903.03094", }, }, { "id": "LIGHT-Dialogue-Wild", "display_name": "LIGHT-Dialogue-Wild", "task": "light_dialog_wild", "tags": ["All", "Grounded", "LIGHT"], "description": ( " LIGHT is a text adventure game with actions and dialogue." "The WILD dataset here features 41,131+ training episodes of dialogue " "collected from deploying a game as described in " ), "links": { "arXiv": "https://arxiv.org/abs/2008.08076", "website": "http://parl.ai/projects/light", }, }, { "id": "MutualFriends", "display_name": "MutualFriends", "task": "mutualfriends", "tags": ["All", "Goal"], "description": ( "Task where two agents must discover which friend of theirs is " "mutual based on the friends's attributes." ), "links": {"website": "https://stanfordnlp.github.io/cocoa/"}, }, { "id": "MCTest", "display_name": "MCTest", "task": "mctest", "tags": ["All", "QA"], "description": ("Questions about short children's stories."), "links": { "website": ( "https://www.microsoft.com/en-us/research/publication/" "mctest-challenge-dataset-open-domain-machine-comprehension-text/" ) }, }, { "id": "MovieDD-QA", "display_name": "Movie Dialog QA", "task": "moviedialog:Task:1", "tags": ["All", "QA", "MovieDD"], "description": ( "Closed-domain QA dataset asking templated questions about movies, " "answerable from Wikipedia, similar to WikiMovies." ), "links": {"arXiv": "https://arxiv.org/abs/1511.06931"}, }, { "id": "MovieDD-QARecs", "display_name": "Movie Dialog QA Recommendations", "task": "moviedialog:Task:3", "tags": ["All", "Goal", "MovieDD"], "description": ( "Dialogs discussing questions about movies as well as recommendations." ), "links": {"arXiv": "https://arxiv.org/abs/1511.06931"}, }, { "id": "MovieDD-Recs", "display_name": "Movie Dialog Recommendations", "task": "moviedialog:Task:2", "tags": ["All", "QA", "MovieDD"], "description": ("Questions asking for movie recommendations."), "links": {"arXiv": "https://arxiv.org/abs/1511.06931"}, }, { "id": "MovieDD-Reddit", "display_name": "Movie Dialog Reddit", "task": "moviedialog:Task:4", "tags": ["All", "ChitChat", "MovieDD"], "description": ( "Dialogs discussing Movies from Reddit (the Movies SubReddit)." ), "links": {"arXiv": "https://arxiv.org/abs/1511.06931"}, }, { "id": "MTurkWikiMovies", "display_name": "MTurk WikiMovies", "task": "mturkwikimovies", "tags": ["All", "QA"], "description": ( "Closed-domain QA dataset asking MTurk-derived questions about " "movies, answerable from Wikipedia." ), "links": {"arXiv": "https://arxiv.org/abs/1611.09823"}, }, { "id": "MultiNLI", "display_name": "MultiNLI", "task": "multinli", "tags": ["All", "Entailment", "decanlp"], "description": ( "A dataset designed for use in the development and evaluation of " "machine learning models for sentence understanding. Each example " "contains a premise and hypothesis. Model has to predict whether " "premise and hypothesis entail, contradict or are neutral to each " "other." ), "links": {"arXiv": "https://arxiv.org/abs/1704.05426"}, }, { "id": "NarrativeQA", "display_name": "NarrativeQA", "task": "narrative_qa", "tags": ["All", "QA"], "description": ( "A dataset and set of tasks in which the reader must answer " "questions about stories by reading entire books or movie scripts. " ), "links": {"arXiv": "https://arxiv.org/abs/1712.07040"}, "notes": ( "You can access summaries only task for NarrativeQA by using task " "'narrative_qa:summaries'. By default, only stories are provided." ), }, { "id": "NaturalQuestions", "display_name": "Natural Questions", "task": "natural_questions", "tags": ["All", "QA"], "description": ( "An open domain question answering dataset. " "Each example contains real questions that people searched " "for in Google and the content of the a Wikipedia article that " "was amongst the top 5 search resutls for that query, " "and its annotations. The annotations have the options of a long " "answer that is seleced from span of major content entities in " "the Wikipedia article (e.g., paragraphs, tables), a short answer" "that is selected from one or more short span of words in the " "article, or 'yes/no'. The existence of any of these answer " "formats depends on whether the main question can be answered, " "given the article; if not they are left empty." ), "links": { "paper": "https://research.google/pubs/pub47761/", "website": "https://ai.google.com/research/NaturalQuestions", }, "notes": ( "Since this task uses ChunkTeacher, it should be used with streaming." ), }, { "id": "OpenSubtitles", "display_name": "Open Subtitles", "task": "opensubtitles", "tags": ["All", "ChitChat"], "description": "Dataset of dialogs from movie scripts.", "links": { "version 2018 website": "http://opus.lingfil.uu.se/OpenSubtitles2018.php", "version 2009 website": "http://opus.lingfil.uu.se/OpenSubtitles.php", "related work (arXiv)": "https://arxiv.org/abs/1506.05869", }, }, { "id": "personalized-dialog-full", "display_name": "Personalized Dialog Full Set", "task": "personalized_dialog:AllFull", "tags": ["All", "Goal", "Personalization"], "description": ( "Simulated dataset of restaurant booking focused on personalization " "based on user profiles." ), "links": {"arXiv": "https://arxiv.org/abs/1706.07503"}, }, { "id": "personalized-dialog-small", "display_name": "Personalized Dialog Small Set", "task": "personalized_dialog:AllSmall", "tags": ["All", "Goal", "Personalization"], "description": ( "Simulated dataset of restaurant booking focused on personalization " "based on user profiles." ), "links": {"arXiv": "https://arxiv.org/abs/1706.07503"}, }, { "id": "QACNN", "display_name": "QA CNN", "task": "qacnn", "tags": ["All", "Cloze"], "description": ( "Cloze dataset based on a missing (anonymized) entity phrase from a " "CNN article" ), "links": {"arXiv": "https://arxiv.org/abs/1506.03340"}, }, { "id": "QADailyMail", "display_name": "QA Daily Mail", "task": "qadailymail", "tags": ["All", "Cloze"], "description": ( "Cloze dataset based on a missing (anonymized) entity phrase from a " "Daily Mail article." ), "links": {"arXiv": "https://arxiv.org/abs/1506.03340"}, }, { "id": "QuAC", "display_name": "Question Answering in Context", "task": "quac", "tags": ["All", "QA"], "description": ( "Question Answering in Context is a dataset for modeling, " "understanding, and participating in information seeking dialog. Data " "instances consist of an interactive dialog between two crowd workers: " "(1) a student who poses a sequence of freeform questions to learn as " "much as possible about a hidden Wikipedia text, and (2) a teacher who " "answers the questions by providing short excerpts (spans) from the text. " "QuAC introduces challenges not found in existing machine comprehension " "datasets: its questions are often more open-ended, unanswerable, " "or only meaningful within the dialog context." ), "links": {"arXiv": "https://arxiv.org/abs/1808.07036"}, }, { "id": "SelfFeedingChatbot", "display_name": "Self-Feeding Chatbot", "task": "self_feeding", "tags": ["diaexp", "diasen", "All"], "description": ( "Learning from Dialogue after Deployment. Leveraging user textual " "feedback to improve the chatbot's abilities." ), "links": {"arXiv": "https://arxiv.org/abs/1901.05415"}, }, { "id": "SimpleQuestions", "display_name": "Simple Questions", "task": "simplequestions", "tags": ["All", "QA"], "description": ("Open-domain QA dataset based on Freebase triples."), "links": {"arXiv": "https://arxiv.org/abs/1506.02075"}, }, { "id": "SNLI", "display_name": "The Stanford Natural Language Inference (SNLI) Corpus", "task": "snli", "tags": ["All", "Entailment"], "description": ( "The SNLI corpus (version 1.0) is a collection of 570k " "human-written English sentence pairs manually labeled for balanced " "classification with the labels entailment, contradiction, and " "neutral, supporting the task of natural language inference (NLI), " "also known as recognizing textual entailment (RTE)" ), "links": {"website": "https://nlp.stanford.edu/projects/snli/"}, }, { "id": "SQuAD2", "display_name": "SQuAD2", "task": "squad2", "tags": ["All", "QA"], "description": ( "Open-domain QA dataset answerable from a given paragraph from " "Wikipedia." ), "links": {"arXiv": "http://arxiv.org/abs/1806.03822"}, }, { "id": "SQuAD", "display_name": "SQuAD", "task": "squad", "tags": ["All", "QA"], "description": ( "Open-domain QA dataset answerable from a given paragraph from " "Wikipedia." ), "links": {"arXiv": "https://arxiv.org/abs/1606.05250"}, }, { "id": "TriviaQA", "display_name": "TriviaQA", "task": "triviaqa", "tags": ["All", "QA"], "description": ( "Open-domain QA dataset with question-answer-evidence triples." ), "links": {"arXiv": "https://arxiv.org/abs/1705.03551"}, }, { "id": "TaskNTalk", "display_name": "Task N' Talk", "task": "taskntalk", "tags": ["All", "Goal"], "description": ( "Dataset of synthetic shapes described by attributes, for agents to " "play a cooperative QA game." ), "links": {"arXiv": "https://arxiv.org/abs/1706.08502"}, }, { "id": "Ubuntu", "display_name": "Ubuntu", "task": "ubuntu", "tags": ["All", "ChitChat", "Dodeca"], "description": ( "Dialogs between an Ubuntu user and an expert trying to fix issue, " "we use the V2 version, which cleaned the data to some extent. " ), "links": {"arXiv": "https://arxiv.org/abs/1506.08909."}, }, { "id": "WebQuestions", "display_name": "Web Questions", "task": "webquestions", "tags": ["All", "QA"], "description": ("Open-domain QA dataset from Web queries."), "links": {"paper": "http://www.aclweb.org/anthology/D13-1160"}, }, { "id": "WikiMovies", "display_name": "WikiMovies", "task": "wikimovies", "tags": ["All", "QA"], "description": ( "Closed-domain QA dataset asking templated questions about movies, " "answerable from Wikipedia." ), "links": {"arXiv": "https://arxiv.org/abs/1606.03126"}, }, { "id": "WikiQA", "display_name": "WikiQA", "task": "wikiqa", "tags": ["All", "QA"], "description": ("Open domain QA from Wikipedia dataset"), "links": { "website": ( "https://www.microsoft.com/en-us/research/publication/wikiqa-a-" "challenge-dataset-for-open-domain-question-answering/" ) }, }, { "id": "VQAv1", "display_name": "VQAv1", "task": "vqa_v1", "tags": ["All", "Visual"], "description": ("Open-ended question answering about visual content."), "links": {"arXiv": "https://arxiv.org/abs/1505.00468"}, }, { "id": "VQAv2", "display_name": "VQAv2", "task": "vqa_v2", "tags": ["All", "Visual"], "description": ("Bigger, more balanced version of the original VQA dataset."), "links": {"arXiv": "https://arxiv.org/abs/1612.00837"}, }, { "id": "VisDial", "display_name": "VisDial", "task": "visdial", "tags": ["All", "Visual"], "description": ( "Task which requires agents to hold a meaningful dialog about " "visual content." ), "links": {"arXiv": "https://arxiv.org/abs/1611.08669"}, }, { "id": "MNIST_QA", "display_name": "MNIST_QA", "task": "mnist_qa", "tags": ["All", "Visual"], "description": ( "Task which requires agents to identify which number they are " "seeing. From the MNIST dataset." ), }, { "id": "InsuranceQA", "display_name": "InsuranceQA", "task": "insuranceqa", "tags": ["All", "QA"], "description": ( "Task which requires agents to identify high quality answers " "composed by professionals with deep domain knowledge." ), "links": {"arXiv": "https://arxiv.org/abs/1508.01585"}, }, { "id": "MS_MARCO", "display_name": "MS_MARCO", "task": "ms_marco", "tags": ["All", "QA"], "description": ( "A large scale Machine Reading Comprehension Dataset with questions " "sampled from real anonymized user queries and contexts from web " "documents." ), "links": {"arXiv": "https://arxiv.org/abs/1611.09268"}, }, { "id": "CLEVR", "display_name": "CLEVR", "task": "clevr", "tags": ["All", "Visual"], "description": ( "A visual reasoning dataset that tests abilities such as attribute " "identification, counting, comparison, spatial relationships, and " "logical operations." ), "links": {"arXiv": "https://arxiv.org/abs/1612.06890"}, }, { "id": "nlvr", "display_name": "nlvr", "task": "nlvr", "tags": ["All", "Visual"], "description": ( "Cornell Natural Language Visual Reasoning (NLVR) is a language " "grounding dataset based on pairs of natural language statements " "grounded in synthetic images." ), "links": {"website": "http://lic.nlp.cornell.edu/nlvr/"}, }, { "id": "WMT", "display_name": "WMT", "task": "wmt", "tags": ["All", "MT"], "description": ( "Workshop on Machine Translation task, currently only includes en_de." ), }, { "id": "IWSLT14", "display_name": "IWSLT14", "task": "iwslt14", "tags": ["All", "MT", "decanlp"], "description": ( "2014 International Workshop on Spoken Language task, currently " "only includes en_de and de_en." ), "links": {"website": "https://wit3.fbk.eu"}, }, { "id": "ConvAI2", "display_name": "ConvAI2", "task": "convai2", "tags": ["All", "ChitChat", "Dodeca"], "description": ( "A chit-chat dataset based on PersonaChat for a NIPS 2018 competition. " ), "links": { "arXiv": "https://arxiv.org/abs/1801.07243", "website": "http://convai.io/", }, }, { "id": "ConvAI_ChitChat", "display_name": "ConvAI_ChitChat", "task": "convai_chitchat", "tags": ["All", "ChitChat", "decanlp"], "description": ( "Human-bot dialogues containing free discussions of randomly chosen " "paragraphs from SQuAD." ), "links": {"website": "http://convai.io/data/"}, }, { "id": "Dialogue_QE", "display_name": "Dialogue_QE", "task": "dialogue_qe", "tags": ["All"], "description": ( "Human-bot dialogues labelled for quality at the level of " "dialogues. Can be used to train dialogue-level metric for dialogue " "systems." ), }, { "id": "QAngaroo", "display_name": "QAngaroo", "task": "qangaroo", "tags": ["All", "QA"], "description": ( "Reading Comprehension with Multiple Hop. Including two datasets: " "WIKIHOP built on on wikipedia, MEDHOP built on paper abstracts from " "PubMed." ), "links": {"website": "http://qangaroo.cs.ucl.ac.uk/"}, }, { "id": "SCAN", "display_name": "SCAN", "task": "scan", "tags": ["Goal", "All"], "description": ( "SCAN is a set of simple language-driven navigation tasks for " "studying compositional learning and zero-shot generalization. The " "SCAN tasks were inspired by the CommAI environment, which is the " "origin of the acronym (Simplified versions of the CommAI Navigation " "tasks)." ), "links": { "arXiv": "https://arxiv.org/abs/1711.00350", "website": "https://github.com/brendenlake/SCAN", }, }, { "id": "Persona-Chat", "display_name": "Persona-Chat", "task": "personachat", "tags": ["ChitChat", "All"], "description": ( "A chit-chat dataset where paired Turkers are given assigned " "personas and chat to try to get to know each other." ), "links": {"arXiv": "https://arxiv.org/abs/1801.07243"}, }, { "id": "TaskMaster", "display_name": "TaskMaster-1-2019", "task": "taskmaster", "tags": ["ChitChat", "All"], "description": ( "A chit-chat dataset by GoogleAI providing high quality goal-oriented conversations" "The dataset hopes to provoke interest in written vs spoken language" "Both the datasets consists of two-person dialogs:" "Spoken: Created using Wizard of Oz methodology." "Written: Created by crowdsourced workers who were asked to write the " "full conversation themselves playing roles of both the user and assistant." ), "links": {"website": "https://ai.google/tools/datasets/taskmaster-1"}, }, { "id": "Twitter", "display_name": "Twitter", "task": "twitter", "tags": ["All", "ChitChat", "Dodeca"], "description": ( "Twitter data found on GitHub. No " "train/valid/test split was provided so 10k for valid and 10k for " "test was chosen at random." ), "links": {"website": "https://github.com/Marsan-Ma/chat_corpus/"}, }, { "id": "Wikipedia", "display_name": "Wikipedia", "task": 'wikipedia', "tags": ["All"], "description": ("Dump of Wikipedia articles from 2/3/18"), "notes": ( "Specify ':full' for the full articles to be returned, otherwise " "defaults to ':summary', which provides the first paragraphs. To put " "the article in the labels and the title in the text, specify " "':key-value' at the end (for a title/content key-value " "association)" ), }, { "id": "Flickr30k", "display_name": "Flickr30k", "task": "flickr30k", "tags": ["All", "Visual"], "description": ("30k captioned images pulled from Flickr compiled by UIUC. "), "links": { "website": "http://web.engr.illinois.edu/~bplumme2/Flickr30kEntities/", "paper1": "https://arxiv.org/abs/1505.04870v2", "paper2": "http://aclweb.org/anthology/Q14-1006", }, }, { "id": "COCO_Captions", "display_name": "COCO_Captions", "task": "coco_caption", "tags": ["All", "Visual"], "description": ( "COCO annotations derived from the 2015 COCO Caption Competition. " ), "links": {"website": "http://cocodataset.org/"}, }, { "id": "integration_tests", "display_name": "Integration Tests", "task": "integration_tests", "tags": ["All", "Debug"], "description": ("Artificial tasks for ensuring models perform as expected"), }, { "id": "ConvAI2_wild_evaluation", "display_name": "ConvAI2_wild_evaluation", "task": "convai2_wild_evaluation", "tags": ["All", "ChitChat"], "description": ( "Dataset collected during the wild evaluation of ConvaAI2 participants " "bots. 60% train, 20% valid and 20% test is chosen at " "random from the whole dataset." ), "links": {"website": "http://convai.io"}, }, { "id": "sst", "display_name": "SST Sentiment Analysis", "task": "sst", "tags": ["All", "decanlp"], "description": ( "Dataset containing sentiment trees of movie reviews. We use the modified " "binary sentence analysis subtask given by the DecaNLP paper here." ), "links": { "website": "https://nlp.stanford.edu/sentiment/index.html", "website2": "https://github.com/openai/generating-reviews-discovering-sentiment/", }, }, { "id": "cnn_dm", "display_name": "CNN/DM Summarisation", "task": "cnn_dm", "tags": ["All", "decanlp"], "description": ( "Dataset collected from CNN and the Daily Mail with summaries as labels, " "Implemented as part of the DecaNLP task." ), "links": {"website": "https://cs.nyu.edu/~kcho/DMQA/"}, }, { "id": "qasrl", "display_name": "QA-SRL Semantic Role Labeling", "task": "qasrl", "tags": ["All", "decanlp"], "description": ("QA dataset implemented as part of the DecaNLP task."), "links": {"website": "https://dada.cs.washington.edu/qasrl/"}, }, { "id": "qazre", "display_name": "QA-ZRE Relation Extraction", "task": "qazre", "tags": ["All", "decanlp"], "description": ( "Zero Shot relation extraction task implemented as part of the DecaNLP " "task." ), "links": {"website": "http://nlp.cs.washington.edu/zeroshot/"}, }, { "id": "woz", "display_name": "WOZ restuarant reservation (Goal-Oriented Dialogue)", "task": "woz", "tags": ["All", "decanlp"], "description": ( "Dataset containing dialogues dengotiating a resturant reservation. " "Implemented as part of the DecaNLP task, focused on the change " "in the dialogue state." ), "links": {"arXiv": "https://arxiv.org/abs/1604.04562"}, }, { "id": "wikisql", "display_name": "WikiSQL semantic parsing task", "task": "wikisql", "tags": ["All", "decanlp"], "description": ( "Dataset for parsing sentences to SQL code, given a table. " "Implemented as part of the DecaNLP task." ), "links": {"website": "https://github.com/salesforce/WikiSQL"}, }, { "id": "mwsc", "display_name": "MWSC pronoun resolution", "task": "mwsc", "tags": ["All", "decanlp"], "description": ( "Resolving possible ambiguous pronouns. " "Implemented as part of the DecaNLP " "task, and can be found on the decaNLP github." ), "links": {"website": "https://github.com/salesforce/decaNLP"}, }, { "id": "decanlp", "display_name": "DecaNLP: The Natural Language Decathlon", "task": "decanlp", "tags": ["All"], "description": ( "A collection of 10 tasks (SQuAD, IWSLT, CNN/DM, MNLI, SST, QA‑SRL," "QA‑ZRE, WOZ, WikiSQL and MWSC) designed to challenge a model with a range " "of different tasks. Note that we use IWSLT 2014 instead of " "2016/2013test/2014test for train/dev/test as given in the DecaNLP paper. " ), "links": { "arXiv": "https://arxiv.org/abs/1806.08730", "github": "https://github.com/salesforce/decaNLP", }, }, { "id": "Personality_Captions", "display_name": "Personality_Captions", "task": "personality_captions", "tags": ["All", "Visual"], "description": ( "200k images from the YFCC100m dataset " "with captions conditioned on one of 215 personalities." ), "links": { "website": "https://multimediacommons.wordpress.com/yfcc100m-core-dataset/", "arXiv": "https://arxiv.org/abs/1810.10665", }, "notes": ( "If you have already downloaded the images, please specify with " "the `--yfcc-path` flag, as the image download script takes a " "very long time to run" ), }, { "id": "Image_Chat", "display_name": "Image_Chat", "task": "image_chat", "tags": ["All", "Visual", "ChitChat"], "description": ( "202k dialogues and 401k utterances over 202k images from " "the YFCC100m dataset " "using 215 possible personality traits" ), "links": { "website": "https://klshuster.github.io/image_chat/", "website2": "https://multimediacommons.wordpress.com/yfcc100m-core-dataset/", }, "notes": ( "If you have already downloaded the images, please specify with " "the `--yfcc-path` flag, as the image download script takes a " "very long time to run" ), }, { "id": "Image_Chat_Generation", "display_name": "Image_Chat_Generation", "task": "image_chat:Generation", "tags": ["All", "Visual", "ChitChat", "Dodeca"], "description": ("Image Chat task to train generative model"), }, { "id": "Wizard_of_Wikipedia", "display_name": "Wizard_of_Wikipedia", "task": "wizard_of_wikipedia", "tags": ["All", "ChitChat"], "description": ( "A dataset with conversations directly grounded with knowledge " "retrieved from Wikipedia. Contains 201k utterances from 22k " "dialogues spanning over 1300 diverse topics, split into train, " "test, and valid sets. The test and valid sets are split " "into two sets each: one with overlapping topics with the train " "set, and one with unseen topics." ), "links": {"arXiv": "https://arxiv.org/abs/1811.01241"}, "notes": ( "To access the different valid/test splits (unseen/seen), specify " "the corresponding split (`random_split` for seen, `topic_split` " "for unseen) after the last colon in the task. " "E.g. `wizard_of_wikipedia:WizardDialogKnowledgeTeacher:random_split`" ), }, { "id": "Wizard_of_Wikipedia_Generator", "display_name": "Wizard_of_Wikipedia_Generator", "task": "wizard_of_wikipedia:Generator", "tags": ["All", "ChitChat", "Dodeca"], "description": ("Wizard of Wikipedia task to train generative models"), }, { "id": "DailyDialog", "display_name": "Daily Dialog", "task": "dailydialog", "tags": ["All", "ChitChat", "Dodeca"], "description": ( "A dataset of chitchat dialogues with strong annotations for " "topic, emotion and utterance act. This version contains both sides " "of every conversation, and uses the official train/valid/test splits " "from the original authors." ), "links": {"arXiv": "https://arxiv.org/abs/1710.03957"}, }, { "id": "EmpatheticDialogues", "display_name": "Empathetic Dialogues", "task": "empathetic_dialogues", "tags": ["All", "ChitChat", "Dodeca"], "description": ( "A dataset of 25k conversations grounded in emotional situations " "to facilitate training and evaluating dialogue systems." "Dataset has been released under the CC BY-NC license." ), "links": {"arXiv": "https://arxiv.org/abs/1811.00207"}, "notes": ( "EmpatheticDialoguesTeacher returns examples like so: \n\n" " - [text]: context line (previous utterance by 'speaker') \n" " - [labels]: label line (current utterance by 'listener') \n\n" "with additional task specific fields: \n\n" " - [situation]: a 1-3 sentence description of the situation that the conversation is \n" " - [emotion]: one of 32 emotion words \n\n" "Other optional fields: \n\n" " - [prepend_ctx]: fasttext prediction on context line - or None \n" " - [prepend_cand]: fasttext prediction on label line (candidate) - or None \n" " - [deepmoji_ctx]: vector encoding from deepmoji penultimate layer - or None \n" " - [deepmoji_cand]: vector encoding from deepmoji penultimate layer for label line (candidate) - or None " ), }, { "id": "DialogueSafety", "display_name": "Dialogue Safety", "task": "dialogue_safety", "tags": ["All"], "description": ( "Several datasets described in the paper Built it Break it Fix it " "for Dialogue Safety: Robustness from Adversarial Human Attack. " "All datasets are classification tasks in which the goal is to " "determine if the text is offensive or 'safe'." ), "links": {"arXiv": "https://arxiv.org/abs/1908.06083"}, }, { "id": "MultiWOZv2.0", "display_name": "MultiWOZ 2.0", "task": "multiwoz_v20", "tags": ["All", "Goal"], "description": ( "A fully labeled collection of human-written conversations spanning" "over multiple domains and topics." ), "links": {"website": "http://dialogue.mi.eng.cam.ac.uk/index.php/corpus/"}, }, { "id": "MultiWOZv2.1", "display_name": "MultiWOZ 2.1", "task": "multiwoz_v21", "tags": ["All", "Goal"], "description": ( "A fully labeled collection of human-written conversations spanning" "over multiple domains and topics." ), "links": {"website": "http://dialogue.mi.eng.cam.ac.uk/index.php/corpus/"}, }, { "id": "SelfChat", "display_name": "SelfChat", "task": "self_chat", "tags": [], "description": "Not a dataset, but a generic world for model self-chats.", }, { "id": "OneCommon", "display_name": "OneCommon", "task": "onecommon", "tags": ["All", "Goal"], "description": ( "A collaborative referring task which requires advanced skills " "of common grounding under continuous and partially-observable context. " "This code also includes reference-resolution annotation." ), "links": {"website": "https://github.com/Alab-NII/onecommon"}, }, { "id": "IGC", "display_name": "Image Grounded Conversations", "task": "igc", "tags": ["All", "Visual", "ChitChat", "Dodeca"], "description": ( "A dataset of (image, context, question, answer) tuples, comprised " "of eventful images taken from Bing, Flickr, and COCO." ), "links": {"arXiv": "https://arxiv.org/abs/1701.08251"}, }, { "id": "ANLI", "display_name": "Adversarial Natural Language Inference (ANLI) Corpus", "task": "anli", "tags": ["All", "Entailment", "NLI"], "description": ( "The ANLI corpus (version 1.0) is a new large-scale NLI benchmark dataset," "collected via an iterative, adversarial human-and-model-in-the-loop procedure" "with the labels entailment, contradiction, and neutral. A total of three rounds " "of data are collected that progressively increase in difficulty and complexity." ), "links": { "github": "https://github.com/facebookresearch/anli", "arXiv": "https://arxiv.org/abs/1910.14599", }, }, { "id": "NLI", "display_name": "Natural Language Inference (NLI) Corpus", "task": "nli", "tags": ["All", "Entailment"], "description": ( "A collection of 3 popular Natural Language Inference(NLI) benchmark tasks: " "ANLI v0.1, MultiNLI 1.0, SNLI 1.0." ), }, { "id": "Funpedia", "display_name": "Funpedia", "task": "funpedia", "tags": ["All"], "description": ( "Task for rephrasing sentences from Wikipedia conditioned on a persona." ), }, { "id": "LIGHTGenderBias", "display_name": "LIGHT Gender Bias", "task": "light_genderation_bias", "tags": ["All"], "description": ("Task for debiasing the LIGHT dataset."), "links": {"arXiv": "https://arxiv.org/abs/1911.03842"}, }, { "id": "AirDialogue", "display_name": "AirDialogue", "task": "airdialogue", "tags": ["All", "Goal"], "description": ( "Task for goal-oriented dialogue using airplane booking conversations " "between agents and customers." ), "links": {"website": "https://github.com/google/airdialogue"}, }, { "id": "HollE", "display_name": "Holl-E", "task": "holl_e", "tags": ["All", "ChitChat"], "description": ( "Sequence of utterances and responses with background knowledge about" "movies. From the Holl-E dataset." ), "links": {"website": "https://github.com/nikitacs16/Holl-E"}, }, { "id": "ELI5", "display_name": "ELI5", "task": "eli5", "tags": ["All", "QA"], "description": ( "This dataset contains Question and Answer data from Reddit " "explainlikeimfive posts and comments." ), "links": {"website": "https://github.com/facebookresearch/ELI5/"}, }, { "id": "ReDial", "display_name": "ReDial", "task": "redial", "tags": ["All", "ChitChat", "Goal"], "description": ( "Annotated dataset of dialogues where users recommend movies to each other." ), "links": {"website": "https://redialdata.github.io/website/"}, }, { "id": "DREAM", "display_name": "DREAM", "task": "dream", "tags": ["All", "QA"], "description": ( "A multiple-choice answering dataset based on multi-turn, multi-party dialogue." ), "links": {"website": "https://dataset.org/dream/"}, }, { "id": "C3", "display_name": "C3", "task": "c3", "tags": ["All", "QA"], "description": ( "A multiple-choice answering dataset in Chinese based on a prior passage." ), "links": {"website": "https://dataset.org/c3/"}, }, { "id": "CommonSenseQA", "display_name": "CommonSenseQA", "task": "commonsenseqa", "tags": ["All", "QA"], "description": ( "CommonSenseQA is a multiple-choice Q-A dataset that relies on commonsense " "knowlegde to predict correct answers." ), "links": {"wesite": "https://www.tau-nlp.org/commonsenseqa"}, }, { "id": "StyleGen", "display_name": "Style-Controlled Generation", "task": "style_gen", "tags": ["All", "ChitChat"], "description": ( "Dialogue datasets (BlendedSkillTalk, ConvAI2, EmpatheticDialogues, and " "Wizard of Wikipedia) labeled with personalities taken from the Image-Chat " "dataset. Used for the style-controlled generation project" ), }, { "id": "GoogleSGD", "display_name": "GoogleSGD", "task": "google_sgd", "tags": ["All", "Goal"], "description": ( "The Schema-Guided Dialogue (SGD) dataset consists of over 20k " "annotated multi-domain, task-oriented conversations between a " "human and a virtual assistant." ), }, { "id": "TaskMaster2", "display_name": "TaskMaster2", "task": "taskmaster2", "tags": ["All", "Goal"], "description": ( "The second version of TaskMaster, containing Wizard-of-Oz dialogues " "for task oriented dialogue in 7 domains." ), }, { "id": "GenderationBiasControlTask", "display_name": "GenderationBiasControlTask", "task": "genderation_bias:controllable_task", "tags": ["All"], "description": ( "A teacher that wraps other ParlAI tasks and appends control tokens to the " "text field indicating the presence of gender words in the label(s)." ), }, { "id": "MDGender", "display_name": "MD Gender", "task": "md_gender", "tags": ["All"], "description": ( "Tasks for the multi-dimensional gender bias classifier training." ), "links": {"arXiv": "https://arxiv.org/abs/2005.00614"}, }, ]
37.842379
120
0.537231
a93e1d69f0379d0e76357f7dcd4fc4d912fff707
2,580
py
Python
netket/nn/__init__.py
inailuig/netket
ab57a6fb019edb9ac298969950724781f2ae2b22
[ "Apache-2.0" ]
null
null
null
netket/nn/__init__.py
inailuig/netket
ab57a6fb019edb9ac298969950724781f2ae2b22
[ "Apache-2.0" ]
2
2022-02-16T10:57:01.000Z
2022-02-16T10:57:10.000Z
netket/nn/__init__.py
inailuig/netket
ab57a6fb019edb9ac298969950724781f2ae2b22
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 The NetKet Authors - All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import flax as _flax from .activation import ( celu, elu, gelu, glu, leaky_relu, log_sigmoid, log_softmax, relu, sigmoid, soft_sign, softmax, softplus, swish, silu, tanh, cosh, sinh, logcosh, logsinh, logtanh, ) from flax.linen import ( MultiHeadDotProductAttention, SelfAttention, dot_product_attention, make_attention_mask, make_causal_mask, combine_masks, ) from .linear import ( Conv, ConvTranspose, Dense, DenseGeneral, DenseSymm, DenseEquivariant, ) from .module import Module from flax.linen.module import compact, enable_named_call, disable_named_call, Variable from .initializers import zeros, ones from flax.linen import Embed from flax.linen import compact def to_array(hilbert, machine, params, normalize=True): import numpy as np from jax import numpy as jnp from netket.utils import get_afun_if_module machine = get_afun_if_module(machine) if hilbert.is_indexable: xs = hilbert.all_states() psi = machine(params, xs) logmax = psi.real.max() psi = jnp.exp(psi - logmax) if normalize: norm = jnp.linalg.norm(psi) psi /= norm return psi else: raise RuntimeError("The hilbert space is not indexable") def to_matrix(hilbert, machine, params, normalize=True): import numpy as np from jax import numpy as jnp from netket.utils import get_afun_if_module machine = get_afun_if_module(machine) if hilbert.is_indexable: xs = hilbert.all_states() psi = machine(params, xs) logmax = psi.real.max() psi = jnp.exp(psi - logmax) L = hilbert.physical.n_states rho = psi.reshape((L, L)) if normalize: trace = jnp.trace(rho) rho /= trace return rho else: raise RuntimeError("The hilbert space is not indexable")
23.669725
86
0.668605
72db496cb4bb2099e0caef9a8a35d09f0babb0ef
4,394
py
Python
src/bq_test_kit/data_literal_transformers/dsv_data_literal_transformer.py
tiboun/python-bigquery-test-kit
8f62bdf21122b615f56088a8e2701e0bb4c71f3b
[ "MIT" ]
31
2021-03-03T21:07:44.000Z
2022-03-20T22:00:45.000Z
src/bq_test_kit/data_literal_transformers/dsv_data_literal_transformer.py
tiboun/python-bq-test-kit
8f62bdf21122b615f56088a8e2701e0bb4c71f3b
[ "MIT" ]
14
2020-11-25T20:45:31.000Z
2021-01-29T13:06:28.000Z
src/bq_test_kit/data_literal_transformers/dsv_data_literal_transformer.py
tiboun/python-bq-test-kit
8f62bdf21122b615f56088a8e2701e0bb4c71f3b
[ "MIT" ]
null
null
null
# Copyright (c) 2020 Bounkong Khamphousone # # This software is released under the MIT License. # https://opensource.org/licenses/MIT # C0114 disabled because this module contains only one class # pylint: disable=C0114 import csv from copy import deepcopy from typing import Callable, List, Optional, Union from google.cloud.bigquery.schema import SchemaField from bq_test_kit.data_literal_transformers.base_data_literal_transformer import \ BaseDataLiteralTransformer from bq_test_kit.resource_loaders.base_resource_loader import \ BaseResourceLoader class DsvDataLiteralTransformer(BaseDataLiteralTransformer): """Loader of Delimiter-Seperated Value data. By default, it's CSV. """ def __init__(self): """ Constructor of DsvDataLiteralTransformer. Config transformer to load CSV file by default. """ super().__init__() self.field_delimiter = "," self.quote_character = "\"" self.escape_character = "\\" self.leading_rows_to_skip = 0 def with_field_delimiter(self, delimiter: str): """The field's separator. Args: delimiter (str): delimiter to use. Returns: DsvDataLiteralTransformer: new instance of DsvDataLiteralTransformer with updated field_delimiter. """ new_ddlt = deepcopy(self) new_ddlt.field_delimiter = delimiter return new_ddlt def with_quote_character(self, char: str): """Character used to quote data sections Args: char (str): a character. Returns: DsvDataLiteralTransformer: new instance of DsvDataLiteralTransformer with updated quote character. """ new_ddlt = deepcopy(self) new_ddlt.quote_character = char return new_ddlt def with_escape_character(self, char: str): """Character used to quote data sections Args: char (str): a character. Returns: DsvDataLiteralTransformer: new instance of DsvDataLiteralTransformer with updated escape character. """ new_ddlt = deepcopy(self) new_ddlt.escape_character = char return new_ddlt def skip_leading_rows(self, nb_lines: int): """Number of rows to skip from the beginning of the file. Args: nb_lines (int): number of lines Returns: DsvDataLiteralTransformer: new instance of DsvDataLiteralTransformer with updated leading rows to skip. """ new_ddlt = deepcopy(self) new_ddlt.leading_rows_to_skip = nb_lines return new_ddlt def _load(self, datum: Union[BaseResourceLoader, str, List[str]], schema_fields: List[SchemaField], transform_field_name: Optional[Callable[[str], str]]) -> str: """ Load a dvs inputs and transform them as data literal, preserving target schema with a fullfilled line. This fullfilled line is, of course, discarded from the literal datum. Extra columns are put in another column named __extra-columns__. Args: datum (Union[BaseResourceLoader, str, List[str], None]): datum in a file or a string containing lines of datum or a list of data. schema List[SchemaField]: schema to match with while transforming data to literal. Raises: DataLiteralTransformException: raised when an input data could not be transformed as data literal with schema match. Returns: str: data literal """ csv_lines = self._load_lines_as_array(datum) data_csv_lines = csv_lines[self.leading_rows_to_skip:] if data_csv_lines: rows = csv.DictReader( data_csv_lines, fieldnames=[f.name for f in schema_fields], delimiter=self.field_delimiter, quotechar=self.quote_character, escapechar=self.escape_character, doublequote=False, skipinitialspace=False, quoting=csv.QUOTE_MINIMAL, strict=True, restkey="__extra-columns__" ) return self._to_data_literal(rows, schema_fields, transform_field_name) return self.load([], schema_fields)
34.328125
115
0.641557
e692bf925ba0352186dcf08de03c0ddd5087542d
137
py
Python
botlistbot/api/config.py
anandpskerala/BotListBot
4ac1b1f7c4f4d251c80a24306542001f40b85216
[ "MIT" ]
66
2017-07-21T07:16:14.000Z
2022-02-13T03:52:52.000Z
botlistbot/api/config.py
anandpskerala/BotListBot
4ac1b1f7c4f4d251c80a24306542001f40b85216
[ "MIT" ]
10
2017-10-20T00:51:43.000Z
2021-06-02T00:07:32.000Z
botlistbot/api/config.py
anandpskerala/BotListBot
4ac1b1f7c4f4d251c80a24306542001f40b85216
[ "MIT" ]
44
2018-01-05T15:01:47.000Z
2022-02-10T20:32:41.000Z
SECURITY_PASSWORD_HASH = 'pbkdf2_sha512' SECURITY_TRACKABLE = True SECURITY_PASSWORD_SALT = 'something_super_secret_change_in_production'
45.666667
70
0.890511
2c74c14c2cba44b6c01bf4a660a27564374d28de
2,195
py
Python
datasette_git_importer/git_utils.py
brandonrobertz/datasette-git-importer
f2b367dba56dcba1355dfd5dc18e237c6320925d
[ "Apache-2.0" ]
null
null
null
datasette_git_importer/git_utils.py
brandonrobertz/datasette-git-importer
f2b367dba56dcba1355dfd5dc18e237c6320925d
[ "Apache-2.0" ]
null
null
null
datasette_git_importer/git_utils.py
brandonrobertz/datasette-git-importer
f2b367dba56dcba1355dfd5dc18e237c6320925d
[ "Apache-2.0" ]
null
null
null
# from datetime import datetime import os from git import Repo def get_repo_remote(repo_owner, repo_name, github_user, github_token): return f"https://{github_user}:{github_token}@github.com/{repo_owner}/{repo_name}" def write_csv_to_repo(filename, data, plugin_config): url = get_repo_remote( plugin_config["repo_owner"], plugin_config["repo_name"], plugin_config["github_user"], plugin_config["github_token"] ) repo_dir = plugin_config.get("repo_dir", "/tmp/nextli-datasette") repo_path = os.path.abspath(repo_dir) print(f"Repo Path: {repo_path}") if not os.path.exists(repo_path): os.makedirs(repo_path, exist_ok=True) repo = Repo.init(repo_path, mkdir=True) if not len(repo.remotes): print(f"Setting up origin => {url}") repo.remotes.append(repo.create_remote("origin", url)) assert not repo.bare print("Fetching origin") repo.remotes.origin.fetch() print("Pulling origin") repo.remotes.origin.pull("main") print("Checking out main") repo.git.checkout("main") print("Hard resetting head") repo.git.reset("origin/main", hard=True) # now = datetime.now().strftime("%Y-%m-%d-%H%M") # branch_name = f"{filename}-{now}" # repo.git.checkout(b=branch_name) # print(f"Checked out new branch: {branch_name}") assert not repo.is_dirty() # newpath = os.path.join(repo_path, "config") # os.makedirs(newpath) print("Writing CSV") newfilepath = os.path.join(repo_path, "csvs", filename) print(f"Writing file {newfilepath}") with open(newfilepath, "w") as f: f.write(data.decode("utf-8")) # if not repo.is_dirty() and not len(repo.untracked_files): # print("No changes! Exiting.") # return print("We have unstaged changes, creating commit") repo.index.add([newfilepath]) commit = repo.index.commit(f"Git importer: {filename}") repo.git.push("origin", "main") print("Commit SHA", commit.hexsha) return commit.hexsha if __name__ == "__main__": head_sha = write_csv_to_repo("test.csv", "name,species\nbrandon,human\nkai,human") print(f"HEAD SHA: {head_sha}")
30.068493
86
0.66287
ad0de2076d5a3964b148c2945cf1ca2f84f52905
16,669
py
Python
indico/modules/events/registration/controllers/display.py
uxmaster/indico
ecd19f17ef6fdc9f5584f59c87ec647319ce5d31
[ "MIT" ]
1
2019-11-03T11:34:16.000Z
2019-11-03T11:34:16.000Z
indico/modules/events/registration/controllers/display.py
NP-compete/indico
80db7ca0ef9d1f3240a16b9ff2d84bf0bf26c549
[ "MIT" ]
null
null
null
indico/modules/events/registration/controllers/display.py
NP-compete/indico
80db7ca0ef9d1f3240a16b9ff2d84bf0bf26c549
[ "MIT" ]
null
null
null
# This file is part of Indico. # Copyright (C) 2002 - 2019 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. from __future__ import unicode_literals from operator import attrgetter from uuid import UUID from flask import flash, jsonify, redirect, request, session from sqlalchemy.orm import contains_eager, subqueryload from werkzeug.exceptions import Forbidden, NotFound from indico.modules.auth.util import redirect_to_login from indico.modules.events.controllers.base import RHDisplayEventBase from indico.modules.events.models.events import EventType from indico.modules.events.payment import payment_event_settings from indico.modules.events.registration import registration_settings from indico.modules.events.registration.controllers import RegistrationEditMixin, RegistrationFormMixin from indico.modules.events.registration.models.forms import RegistrationForm from indico.modules.events.registration.models.invitations import InvitationState, RegistrationInvitation from indico.modules.events.registration.models.items import PersonalDataType from indico.modules.events.registration.models.registrations import Registration, RegistrationState from indico.modules.events.registration.util import (check_registration_email, create_registration, generate_ticket, get_event_regforms, get_event_section_data, get_title_uuid, make_registration_form) from indico.modules.events.registration.views import (WPDisplayRegistrationFormConference, WPDisplayRegistrationFormSimpleEvent, WPDisplayRegistrationParticipantList) from indico.util.fs import secure_filename from indico.util.i18n import _ from indico.web.flask.util import send_file, url_for class RHRegistrationFormDisplayBase(RHDisplayEventBase): @property def view_class(self): return (WPDisplayRegistrationFormConference if self.event.type_ == EventType.conference else WPDisplayRegistrationFormSimpleEvent) class RHRegistrationFormBase(RegistrationFormMixin, RHRegistrationFormDisplayBase): def _process_args(self): RHRegistrationFormDisplayBase._process_args(self) RegistrationFormMixin._process_args(self) class RHRegistrationFormRegistrationBase(RHRegistrationFormBase): """Base for RHs handling individual registrations""" REGISTRATION_REQUIRED = True def _process_args(self): RHRegistrationFormBase._process_args(self) self.token = request.args.get('token') if self.token: self.registration = self.regform.get_registration(uuid=self.token) if not self.registration: raise NotFound else: self.registration = self.regform.get_registration(user=session.user) if session.user else None if self.REGISTRATION_REQUIRED and not self.registration: raise Forbidden class RHRegistrationFormList(RHRegistrationFormDisplayBase): """List of all registration forms in the event""" def _process(self): all_regforms = get_event_regforms(self.event, session.user) scheduled_and_registered_regforms = [regform[0] for regform in all_regforms if regform[0].is_scheduled or regform[1]] user_registrations = [regform[0].id for regform in all_regforms if regform[1]] if len(scheduled_and_registered_regforms) == 1: return redirect(url_for('.display_regform', scheduled_and_registered_regforms[0])) return self.view_class.render_template('display/regform_list.html', self.event, regforms=scheduled_and_registered_regforms, user_registrations=user_registrations) class RHParticipantList(RHRegistrationFormDisplayBase): """List of all public registrations""" view_class = WPDisplayRegistrationParticipantList @staticmethod def _is_checkin_visible(reg): return reg.registration_form.publish_checkin_enabled and reg.checked_in def _merged_participant_list_table(self): def _process_registration(reg, column_names): personal_data = reg.get_personal_data() columns = [{'text': personal_data.get(column_name, '')} for column_name in column_names] return {'checked_in': self._is_checkin_visible(reg), 'columns': columns} def _deduplicate_reg_data(reg_data_iter): used = set() for reg_data in reg_data_iter: reg_data_hash = tuple(tuple(sorted(x.items())) for x in reg_data['columns']) if reg_data_hash not in used: used.add(reg_data_hash) yield reg_data column_names = registration_settings.get(self.event, 'participant_list_columns') headers = [PersonalDataType[column_name].get_title() for column_name in column_names] query = (Registration.query.with_parent(self.event) .filter(Registration.is_publishable, RegistrationForm.publish_registrations_enabled, ~RegistrationForm.is_deleted, ~Registration.is_deleted) .join(Registration.registration_form) .options(subqueryload('data').joinedload('field_data'), contains_eager('registration_form'))) registrations = sorted(_deduplicate_reg_data(_process_registration(reg, column_names) for reg in query), key=lambda reg: tuple(x['text'].lower() for x in reg['columns'])) return {'headers': headers, 'rows': registrations, 'show_checkin': any(registration['checked_in'] for registration in registrations)} def _participant_list_table(self, regform): def _process_registration(reg, column_ids, active_fields): data_by_field = reg.data_by_field def _content(column_id): if column_id in data_by_field: return data_by_field[column_id].get_friendly_data(for_humans=True) elif (column_id in active_fields and active_fields[column_id].personal_data_type is not None and active_fields[column_id].personal_data_type.column is not None): # some legacy registrations have no data in the firstname/lastname/email field # so we need to get it from the registration object itself return getattr(reg, active_fields[column_id].personal_data_type.column) else: # no data available for the field return '' def _sort_key_date(column_id): data = data_by_field.get(column_id) if data and data.field_data.field.input_type == 'date': return data.data else: return None columns = [{'text': _content(column_id), 'sort_key': _sort_key_date(column_id)} for column_id in column_ids] return {'checked_in': self._is_checkin_visible(reg), 'columns': columns} active_fields = {field.id: field for field in regform.active_fields} column_ids = [column_id for column_id in registration_settings.get_participant_list_columns(self.event, regform) if column_id in active_fields] headers = [active_fields[column_id].title.title() for column_id in column_ids] active_registrations = sorted(regform.active_registrations, key=attrgetter('last_name', 'first_name', 'id')) registrations = [_process_registration(reg, column_ids, active_fields) for reg in active_registrations if reg.is_publishable] return {'headers': headers, 'rows': registrations, 'title': regform.title, 'show_checkin': any(registration['checked_in'] for registration in registrations)} def _process(self): regforms = (RegistrationForm.query.with_parent(self.event) .filter(RegistrationForm.publish_registrations_enabled, ~RegistrationForm.is_deleted) .options(subqueryload('registrations').subqueryload('data').joinedload('field_data')) .all()) if registration_settings.get(self.event, 'merge_registration_forms'): tables = [self._merged_participant_list_table()] else: tables = [] regforms_dict = {regform.id: regform for regform in regforms if regform.publish_registrations_enabled} for form_id in registration_settings.get_participant_list_form_ids(self.event): try: regform = regforms_dict.pop(form_id) except KeyError: # The settings might reference forms that are not available # anymore (publishing was disabled, etc.) continue tables.append(self._participant_list_table(regform)) # There might be forms that have not been sorted by the user yet tables += map(self._participant_list_table, regforms_dict.viewvalues()) published = (RegistrationForm.query.with_parent(self.event) .filter(RegistrationForm.publish_registrations_enabled) .has_rows()) num_participants = sum(len(table['rows']) for table in tables) return self.view_class.render_template( 'display/participant_list.html', self.event, regforms=regforms, tables=tables, published=published, num_participants=num_participants ) class InvitationMixin: """Mixin for RHs that accept an invitation token""" def _process_args(self): self.invitation = None try: token = request.args['invitation'] except KeyError: return try: UUID(hex=token) except ValueError: flash(_("Your invitation code is not valid."), 'warning') return self.invitation = RegistrationInvitation.find(uuid=token).with_parent(self.regform).first() if self.invitation is None: flash(_("This invitation does not exist or has been withdrawn."), 'warning') class RHRegistrationFormCheckEmail(RHRegistrationFormBase): """Checks how an email will affect the registration""" def _process(self): email = request.args['email'].lower().strip() update = request.args.get('update') management = request.args.get('management') == '1' if update: existing = self.regform.get_registration(uuid=update) return jsonify(check_registration_email(self.regform, email, existing, management=management)) else: return jsonify(check_registration_email(self.regform, email, management=management)) class RHRegistrationForm(InvitationMixin, RHRegistrationFormRegistrationBase): """Display a registration form and registrations, and process submissions""" REGISTRATION_REQUIRED = False normalize_url_spec = { 'locators': { lambda self: self.regform } } def _check_access(self): RHRegistrationFormRegistrationBase._check_access(self) if self.regform.require_login and not session.user and request.method != 'GET': raise Forbidden(response=redirect_to_login(reason=_('You are trying to register with a form ' 'that requires you to be logged in'))) def _process_args(self): RHRegistrationFormRegistrationBase._process_args(self) InvitationMixin._process_args(self) if self.invitation and self.invitation.state == InvitationState.accepted and self.invitation.registration: return redirect(url_for('.display_regform', self.invitation.registration.locator.registrant)) def _can_register(self): return not self.regform.limit_reached and (self.regform.is_active or self.invitation) def _process(self): form = make_registration_form(self.regform)() if self._can_register() and form.validate_on_submit(): registration = create_registration(self.regform, form.data, self.invitation) return redirect(url_for('.display_regform', registration.locator.registrant)) elif form.is_submitted(): # not very pretty but usually this never happens thanks to client-side validation for error in form.error_list: flash(error, 'error') user_data = {t.name: getattr(session.user, t.name, None) if session.user else '' for t in PersonalDataType} if self.invitation: user_data.update((attr, getattr(self.invitation, attr)) for attr in ('first_name', 'last_name', 'email')) user_data['title'] = get_title_uuid(self.regform, user_data['title']) return self.view_class.render_template('display/regform_display.html', self.event, regform=self.regform, sections=get_event_section_data(self.regform), payment_conditions=payment_event_settings.get(self.event, 'conditions'), payment_enabled=self.event.has_feature('payment'), user_data=user_data, invitation=self.invitation, registration=self.registration, management=False, login_required=self.regform.require_login and not session.user) class RHRegistrationDisplayEdit(RegistrationEditMixin, RHRegistrationFormRegistrationBase): """Submit a registration form""" template_file = 'display/registration_modify.html' management = False REGISTRATION_REQUIRED = False def _process_args(self): RHRegistrationFormRegistrationBase._process_args(self) if self.registration is None: if session.user: flash(_("We could not find a registration for you. If have already registered, please use the " "direct access link from the email you received after registering."), 'warning') else: flash(_("We could not find a registration for you. If have already registered, please use the " "direct access link from the email you received after registering or log in to your Indico " "account."), 'warning') return redirect(url_for('.display_regform', self.regform)) @property def success_url(self): return url_for('.display_regform', self.registration.locator.registrant) class RHRegistrationFormDeclineInvitation(InvitationMixin, RHRegistrationFormBase): """Decline an invitation to register""" def _process_args(self): RHRegistrationFormBase._process_args(self) InvitationMixin._process_args(self) def _process(self): if self.invitation.state == InvitationState.pending: self.invitation.state = InvitationState.declined flash(_("You declined the invitation to register.")) return redirect(self.event.url) class RHTicketDownload(RHRegistrationFormRegistrationBase): """Generate ticket for a given registration""" def _check_access(self): RHRegistrationFormRegistrationBase._check_access(self) if self.registration.state != RegistrationState.complete: raise Forbidden if not self.regform.tickets_enabled: raise Forbidden if (not self.regform.ticket_on_event_page and not self.regform.ticket_on_summary_page and not self.regform.event.can_manage(session.user, 'registration')): raise Forbidden if self.registration.is_ticket_blocked: raise Forbidden def _process(self): filename = secure_filename('{}-Ticket.pdf'.format(self.event.title), 'ticket.pdf') return send_file(filename, generate_ticket(self.registration), 'application/pdf')
48.597668
120
0.655348
b58fbb5c7db7407f9bf00286d00aac34cb085c39
1,748
py
Python
hikari/urls.py
81CuongVn/hikaki
5e4ccffaccf411ea5c13fd64264cadda72d197fb
[ "MIT" ]
2
2021-09-18T18:43:11.000Z
2021-12-30T11:54:26.000Z
hikari/urls.py
81CuongVn/hikaki
5e4ccffaccf411ea5c13fd64264cadda72d197fb
[ "MIT" ]
null
null
null
hikari/urls.py
81CuongVn/hikaki
5e4ccffaccf411ea5c13fd64264cadda72d197fb
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # cython: language_level=3 # Copyright (c) 2020 Nekokatt # Copyright (c) 2021-present davfsa # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """API-wide URLs.""" from __future__ import annotations __all__: typing.List[str] = ["BASE_URL", "REST_API_URL", "OAUTH2_API_URL", "CDN_URL"] import typing BASE_URL: typing.Final[str] = "https://discord.com" """The base URL.""" REST_API_URL: typing.Final[str] = f"{BASE_URL}/api/v8" """The REST API URL.""" OAUTH2_API_URL: typing.Final[str] = f"{REST_API_URL}/oauth2" """The OAUTH2 API URL.""" CDN_URL: typing.Final[str] = "https://cdn.discordapp.com" """The CDN URL.""" MEDIA_PROXY_URL: typing.Final[str] = "https://media.discordapp.net" """The media proxy URL."""
38.844444
85
0.744851
404d5a5e1d824652360c9dda569e73eb7c0b7fb6
1,201
py
Python
pipeline/scripts/ttest.py
SherineAwad/ribofilio
4dea38692e7715f07df3ee074e2adc5380f4d6e9
[ "MIT" ]
null
null
null
pipeline/scripts/ttest.py
SherineAwad/ribofilio
4dea38692e7715f07df3ee074e2adc5380f4d6e9
[ "MIT" ]
null
null
null
pipeline/scripts/ttest.py
SherineAwad/ribofilio
4dea38692e7715f07df3ee074e2adc5380f4d6e9
[ "MIT" ]
null
null
null
#! /usr/bin/env python import sys import argparse import screed import math import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import os.path from scipy.stats import t def getstats(infile1, infile2): sample1 = [] sample2 = [] count = 0 for line in open(infile1): if count == 0: count+=1 continue dr1, _, _, _, SE1, _, _, _, n1 = line.split('\t') count = 0 for line in open(infile2): if count == 0: count+=1 continue dr2, _, _, _, SE2, _, _, _, n2 = line.split('\t') df = ( float(n1) + float(n2) )-4 tscore = (float(dr1) - float(dr2)) / np.sqrt(np.square(float(SE1)) +np.square(float(SE2)) ) pvalue = 2 * (t.sf(abs(tscore),df= df)) pvalue = np.round(pvalue, decimals=4) print(infile1,'\t', infile2) print("tscore",'\t', "pvalue") print(tscore,'\t', pvalue) def main(): parser = argparse.ArgumentParser() parser.add_argument('infile1', default=False) parser.add_argument('infile2', default=False) args = parser.parse_args() getstats(args.infile1, args.infile2) if __name__ == '__main__': main()
25.553191
96
0.586178
306d8a23394d2f1aa4f800e6a39a39a9416308e6
6,816
py
Python
tests/unit/providers/test_dict_py2_py3.py
YelloFam/python-dependency-injector
541131e33858ee1b8b5a7590d2bb9f929740ea1e
[ "BSD-3-Clause" ]
null
null
null
tests/unit/providers/test_dict_py2_py3.py
YelloFam/python-dependency-injector
541131e33858ee1b8b5a7590d2bb9f929740ea1e
[ "BSD-3-Clause" ]
null
null
null
tests/unit/providers/test_dict_py2_py3.py
YelloFam/python-dependency-injector
541131e33858ee1b8b5a7590d2bb9f929740ea1e
[ "BSD-3-Clause" ]
null
null
null
"""Dict provider tests.""" import sys from dependency_injector import providers def test_is_provider(): assert providers.is_provider(providers.Dict()) is True def test_provided_instance_provider(): provider = providers.Dict() assert isinstance(provider.provided, providers.ProvidedInstance) def test_init_with_non_string_keys(): a1 = object() a2 = object() provider = providers.Dict({a1: "i1", a2: "i2"}) dict1 = provider() dict2 = provider() assert dict1 == {a1: "i1", a2: "i2"} assert dict2 == {a1: "i1", a2: "i2"} assert dict1 is not dict2 def test_init_with_string_and_non_string_keys(): a1 = object() provider = providers.Dict({a1: "i1"}, a2="i2") dict1 = provider() dict2 = provider() assert dict1 == {a1: "i1", "a2": "i2"} assert dict2 == {a1: "i1", "a2": "i2"} assert dict1 is not dict2 def test_call_with_init_keyword_args(): provider = providers.Dict(a1="i1", a2="i2") dict1 = provider() dict2 = provider() assert dict1 == {"a1": "i1", "a2": "i2"} assert dict2 == {"a1": "i1", "a2": "i2"} assert dict1 is not dict2 def test_call_with_context_keyword_args(): provider = providers.Dict(a1="i1", a2="i2") assert provider(a3="i3", a4="i4") == {"a1": "i1", "a2": "i2", "a3": "i3", "a4": "i4"} def test_call_with_provider(): provider = providers.Dict( a1=providers.Factory(str, "i1"), a2=providers.Factory(str, "i2"), ) assert provider() == {"a1": "i1", "a2": "i2"} def test_fluent_interface(): provider = providers.Dict() \ .add_kwargs(a1="i1", a2="i2") assert provider() == {"a1": "i1", "a2": "i2"} def test_add_kwargs(): provider = providers.Dict() \ .add_kwargs(a1="i1") \ .add_kwargs(a2="i2") assert provider.kwargs == {"a1": "i1", "a2": "i2"} def test_add_kwargs_non_string_keys(): a1 = object() a2 = object() provider = providers.Dict() \ .add_kwargs({a1: "i1"}) \ .add_kwargs({a2: "i2"}) assert provider.kwargs == {a1: "i1", a2: "i2"} def test_add_kwargs_string_and_non_string_keys(): a2 = object() provider = providers.Dict() \ .add_kwargs(a1="i1") \ .add_kwargs({a2: "i2"}) assert provider.kwargs == {"a1": "i1", a2: "i2"} def test_set_kwargs(): provider = providers.Dict() \ .add_kwargs(a1="i1", a2="i2") \ .set_kwargs(a3="i3", a4="i4") assert provider.kwargs == {"a3": "i3", "a4": "i4"} def test_set_kwargs_non_string_keys(): a3 = object() a4 = object() provider = providers.Dict() \ .add_kwargs(a1="i1", a2="i2") \ .set_kwargs({a3: "i3", a4: "i4"}) assert provider.kwargs == {a3: "i3", a4: "i4"} def test_set_kwargs_string_and_non_string_keys(): a3 = object() provider = providers.Dict() \ .add_kwargs(a1="i1", a2="i2") \ .set_kwargs({a3: "i3"}, a4="i4") assert provider.kwargs == {a3: "i3", "a4": "i4"} def test_clear_kwargs(): provider = providers.Dict() \ .add_kwargs(a1="i1", a2="i2") \ .clear_kwargs() assert provider.kwargs == {} def test_call_overridden(): provider = providers.Dict(a1="i1", a2="i2") overriding_provider1 = providers.Dict(a2="i2", a3="i3") overriding_provider2 = providers.Dict(a3="i3", a4="i4") provider.override(overriding_provider1) provider.override(overriding_provider2) instance1 = provider() instance2 = provider() assert instance1 is not instance2 assert instance1 == {"a3": "i3", "a4": "i4"} assert instance2 == {"a3": "i3", "a4": "i4"} def test_deepcopy(): provider = providers.Dict(a1="i1", a2="i2") provider_copy = providers.deepcopy(provider) assert provider is not provider_copy assert provider.kwargs == provider_copy.kwargs assert isinstance(provider, providers.Dict) def test_deepcopy_from_memo(): provider = providers.Dict(a1="i1", a2="i2") provider_copy_memo = providers.Dict(a1="i1", a2="i2") provider_copy = providers.deepcopy( provider, memo={id(provider): provider_copy_memo}, ) assert provider_copy is provider_copy_memo def test_deepcopy_kwargs(): provider = providers.Dict() dependent_provider1 = providers.Factory(list) dependent_provider2 = providers.Factory(dict) provider.add_kwargs(d1=dependent_provider1, d2=dependent_provider2) provider_copy = providers.deepcopy(provider) dependent_provider_copy1 = provider_copy.kwargs["d1"] dependent_provider_copy2 = provider_copy.kwargs["d2"] assert provider.kwargs != provider_copy.kwargs assert dependent_provider1.cls is dependent_provider_copy1.cls assert dependent_provider1 is not dependent_provider_copy1 assert dependent_provider2.cls is dependent_provider_copy2.cls assert dependent_provider2 is not dependent_provider_copy2 def test_deepcopy_kwargs_non_string_keys(): a1 = object() a2 = object() dependent_provider1 = providers.Factory(list) dependent_provider2 = providers.Factory(dict) provider = providers.Dict({a1: dependent_provider1, a2: dependent_provider2}) provider_copy = providers.deepcopy(provider) dependent_provider_copy1 = provider_copy.kwargs[a1] dependent_provider_copy2 = provider_copy.kwargs[a2] assert provider.kwargs != provider_copy.kwargs assert dependent_provider1.cls is dependent_provider_copy1.cls assert dependent_provider1 is not dependent_provider_copy1 assert dependent_provider2.cls is dependent_provider_copy2.cls assert dependent_provider2 is not dependent_provider_copy2 def test_deepcopy_overridden(): provider = providers.Dict() object_provider = providers.Object(object()) provider.override(object_provider) provider_copy = providers.deepcopy(provider) object_provider_copy = provider_copy.overridden[0] assert provider is not provider_copy assert provider.kwargs == provider_copy.kwargs assert isinstance(provider, providers.Dict) assert object_provider is not object_provider_copy assert isinstance(object_provider_copy, providers.Object) def test_deepcopy_with_sys_streams(): provider = providers.Dict() provider.add_kwargs(stdin=sys.stdin, stdout=sys.stdout, stderr=sys.stderr) provider_copy = providers.deepcopy(provider) assert provider is not provider_copy assert isinstance(provider_copy, providers.Dict) assert provider.kwargs["stdin"] is sys.stdin assert provider.kwargs["stdout"] is sys.stdout assert provider.kwargs["stderr"] is sys.stderr def test_repr(): provider = providers.Dict(a1=1, a2=2) assert repr(provider) == ( "<dependency_injector.providers." "Dict({0}) at {1}>".format(repr(provider.kwargs), hex(id(provider))) )
27.707317
89
0.671215
151f12714aa41019071fa480878554d44bbbb0bb
5,727
py
Python
contrib/seeds/makeseeds.py
PERSHYANCOIN/PERSHYANCOIN
bbadf90495732ecdbf5ab9a27e84e1dbdaff117d
[ "MIT" ]
1
2018-02-21T07:10:01.000Z
2018-02-21T07:10:01.000Z
contrib/seeds/makeseeds.py
pershyancoin/pershyancoin
bbadf90495732ecdbf5ab9a27e84e1dbdaff117d
[ "MIT" ]
2
2018-02-12T22:00:38.000Z
2018-02-12T22:01:03.000Z
contrib/seeds/makeseeds.py
PERSHYANCOIN/PERSHYANCOIN
bbadf90495732ecdbf5ab9a27e84e1dbdaff117d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2013-2017 The Pershyancoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Generate seeds.txt from Pieter's DNS seeder # NSEEDS=512 MAX_SEEDS_PER_ASN=2 MIN_BLOCKS = 337600 # These are hosts that have been observed to be behaving strangely (e.g. # aggressively connecting to every node). SUSPICIOUS_HOSTS = { "130.211.129.106", "178.63.107.226", "83.81.130.26", "88.198.17.7", "148.251.238.178", "176.9.46.6", "54.173.72.127", "54.174.10.182", "54.183.64.54", "54.194.231.211", "54.66.214.167", "54.66.220.137", "54.67.33.14", "54.77.251.214", "54.94.195.96", "54.94.200.247" } import re import sys import dns.resolver import collections PATTERN_IPV4 = re.compile(r"^((\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})):(\d+)$") PATTERN_IPV6 = re.compile(r"^\[([0-9a-z:]+)\]:(\d+)$") PATTERN_ONION = re.compile(r"^([abcdefghijklmnopqrstuvwxyz234567]{16}\.onion):(\d+)$") PATTERN_AGENT = re.compile(r"^(/Satoshi:0.13.(1|2|99)/|/Satoshi:0.14.(0|1|2|99)/)$") def parseline(line): sline = line.split() if len(sline) < 11: return None m = PATTERN_IPV4.match(sline[0]) sortkey = None ip = None if m is None: m = PATTERN_IPV6.match(sline[0]) if m is None: m = PATTERN_ONION.match(sline[0]) if m is None: return None else: net = 'onion' ipstr = sortkey = m.group(1) port = int(m.group(2)) else: net = 'ipv6' if m.group(1) in ['::']: # Not interested in localhost return None ipstr = m.group(1) sortkey = ipstr # XXX parse IPv6 into number, could use name_to_ipv6 from generate-seeds port = int(m.group(2)) else: # Do IPv4 sanity check ip = 0 for i in range(0,4): if int(m.group(i+2)) < 0 or int(m.group(i+2)) > 255: return None ip = ip + (int(m.group(i+2)) << (8*(3-i))) if ip == 0: return None net = 'ipv4' sortkey = ip ipstr = m.group(1) port = int(m.group(6)) # Skip bad results. if sline[1] == 0: return None # Extract uptime %. uptime30 = float(sline[7][:-1]) # Extract Unix timestamp of last success. lastsuccess = int(sline[2]) # Extract protocol version. version = int(sline[10]) # Extract user agent. agent = sline[11][1:-1] # Extract service flags. service = int(sline[9], 16) # Extract blocks. blocks = int(sline[8]) # Construct result. return { 'net': net, 'ip': ipstr, 'port': port, 'ipnum': ip, 'uptime': uptime30, 'lastsuccess': lastsuccess, 'version': version, 'agent': agent, 'service': service, 'blocks': blocks, 'sortkey': sortkey, } def filtermultiport(ips): '''Filter out hosts with more nodes per IP''' hist = collections.defaultdict(list) for ip in ips: hist[ip['sortkey']].append(ip) return [value[0] for (key,value) in list(hist.items()) if len(value)==1] # Based on Greg Maxwell's seed_filter.py def filterbyasn(ips, max_per_asn, max_total): # Sift out ips by type ips_ipv4 = [ip for ip in ips if ip['net'] == 'ipv4'] ips_ipv6 = [ip for ip in ips if ip['net'] == 'ipv6'] ips_onion = [ip for ip in ips if ip['net'] == 'onion'] # Filter IPv4 by ASN result = [] asn_count = {} for ip in ips_ipv4: if len(result) == max_total: break try: asn = int([x.to_text() for x in dns.resolver.query('.'.join(reversed(ip['ip'].split('.'))) + '.origin.asn.cymru.com', 'TXT').response.answer][0].split('\"')[1].split(' ')[0]) if asn not in asn_count: asn_count[asn] = 0 if asn_count[asn] == max_per_asn: continue asn_count[asn] += 1 result.append(ip) except: sys.stderr.write('ERR: Could not resolve ASN for "' + ip['ip'] + '"\n') # TODO: filter IPv6 by ASN # Add back non-IPv4 result.extend(ips_ipv6) result.extend(ips_onion) return result def main(): lines = sys.stdin.readlines() ips = [parseline(line) for line in lines] # Skip entries with valid address. ips = [ip for ip in ips if ip is not None] # Skip entries from suspicious hosts. ips = [ip for ip in ips if ip['ip'] not in SUSPICIOUS_HOSTS] # Enforce minimal number of blocks. ips = [ip for ip in ips if ip['blocks'] >= MIN_BLOCKS] # Require service bit 1. ips = [ip for ip in ips if (ip['service'] & 1) == 1] # Require at least 50% 30-day uptime. ips = [ip for ip in ips if ip['uptime'] > 50] # Require a known and recent user agent. ips = [ip for ip in ips if PATTERN_AGENT.match(ip['agent'])] # Sort by availability (and use last success as tie breaker) ips.sort(key=lambda x: (x['uptime'], x['lastsuccess'], x['ip']), reverse=True) # Filter out hosts with multiple pershyancoin ports, these are likely abusive ips = filtermultiport(ips) # Look up ASNs and limit results, both per ASN and globally. ips = filterbyasn(ips, MAX_SEEDS_PER_ASN, NSEEDS) # Sort the results by IP address (for deterministic output). ips.sort(key=lambda x: (x['net'], x['sortkey'])) for ip in ips: if ip['net'] == 'ipv6': print('[%s]:%i' % (ip['ip'], ip['port'])) else: print('%s:%i' % (ip['ip'], ip['port'])) if __name__ == '__main__': main()
33.104046
186
0.570107
5ea0345f63bc57baa0d0dcc554ff3fbf143ca5f2
7,914
py
Python
storage/emulated/0/qpython/lib/python3.2/site-packages/aip/base.py
wangkaibiao/SettlersFinancialData3
498249e14f24bfa3186f07e8f66ee624d08c6ff1
[ "MIT" ]
null
null
null
storage/emulated/0/qpython/lib/python3.2/site-packages/aip/base.py
wangkaibiao/SettlersFinancialData3
498249e14f24bfa3186f07e8f66ee624d08c6ff1
[ "MIT" ]
null
null
null
storage/emulated/0/qpython/lib/python3.2/site-packages/aip/base.py
wangkaibiao/SettlersFinancialData3
498249e14f24bfa3186f07e8f66ee624d08c6ff1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ AipBase """ import hmac import json import hashlib import datetime import base64 import time import sys import requests requests.packages.urllib3.disable_warnings() if sys.version_info.major == 2: from urllib import urlencode from urllib import quote from urlparse import urlparse else: from urllib.parse import urlencode from urllib.parse import quote from urllib.parse import urlparse class AipBase(object): """ AipBase """ __accessTokenUrl = 'https://aip.baidubce.com/oauth/2.0/token' __reportUrl = 'https://aip.baidubce.com/rpc/2.0/feedback/v1/report' __scope = 'brain_all_scope' def __init__(self, appId, apiKey, secretKey): """ AipBase(appId, apiKey, secretKey) """ self._appId = appId.strip() self._apiKey = apiKey.strip() self._secretKey = secretKey.strip() self._authObj = {} self._isCloudUser = None self.__client = requests self.__connectTimeout = 60.0 self.__socketTimeout = 60.0 self._proxies = {} self.__version = '2_2_10' def getVersion(self): """ version """ return self.__version def setConnectionTimeoutInMillis(self, ms): """ setConnectionTimeoutInMillis """ self.__connectTimeout = ms / 1000.0 def setSocketTimeoutInMillis(self, ms): """ setSocketTimeoutInMillis """ self.__socketTimeout = ms / 1000.0 def setProxies(self, proxies): """ proxies """ self._proxies = proxies def _request(self, url, data, headers=None): """ self._request('', {}) """ try: result = self._validate(url, data) if result != True: return result authObj = self._auth() params = self._getParams(authObj) data = self._proccessRequest(url, params, data, headers) headers = self._getAuthHeaders('POST', url, params, headers) response = self.__client.post(url, data=data, params=params, headers=headers, verify=False, timeout=( self.__connectTimeout, self.__socketTimeout, ), proxies=self._proxies ) obj = self._proccessResult(response.content) if not self._isCloudUser and obj.get('error_code', '') == 110: authObj = self._auth(True) params = self._getParams(authObj) response = self.__client.post(url, data=data, params=params, headers=headers, verify=False, timeout=( self.__connectTimeout, self.__socketTimeout, ), proxies=self._proxies ) obj = self._proccessResult(response.content) except (requests.exceptions.ReadTimeout, requests.exceptions.ConnectTimeout) as e: return { 'error_code': 'SDK108', 'error_msg': 'connection or read data timeout', } return obj def _validate(self, url, data): """ validate """ return True def _proccessRequest(self, url, params, data, headers): """ 参数处理 """ params['aipSdk'] = 'python' params['aipVersion'] = self.__version return data def _proccessResult(self, content): """ formate result """ if sys.version_info.major == 2: return json.loads(content) or {} else: return json.loads(content.decode()) or {} def _auth(self, refresh=False): """ api access auth """ #未过期 if not refresh: tm = self._authObj.get('time', 0) + int(self._authObj.get('expires_in', 0)) - 30 if tm > int(time.time()): return self._authObj obj = self.__client.get(self.__accessTokenUrl, verify=False, params={ 'grant_type': 'client_credentials', 'client_id': self._apiKey, 'client_secret': self._secretKey, }, timeout=( self.__connectTimeout, self.__socketTimeout, ), proxies=self._proxies).json() self._isCloudUser = not self._isPermission(obj) obj['time'] = int(time.time()) self._authObj = obj return obj def _isPermission(self, authObj): """ check whether permission """ scopes = authObj.get('scope', '') return self.__scope in scopes.split(' ') def _getParams(self, authObj): """ api request http url params """ params = {} if self._isCloudUser == False: params['access_token'] = authObj['access_token'] return params def _getAuthHeaders(self, method, url, params=None, headers=None): """ api request http headers """ headers = headers or {} params = params or {} if self._isCloudUser == False: return headers urlResult = urlparse(url) for kv in urlResult.query.strip().split('&'): if kv: k, v = kv.split('=') params[k] = v # UTC timestamp timestamp = datetime.datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ') headers['Host'] = urlResult.hostname headers['x-bce-date'] = timestamp version, expire = '1', '1800' # 1 Generate SigningKey val = "bce-auth-v%s/%s/%s/%s" % (version, self._apiKey, timestamp, expire) signingKey = hmac.new(self._secretKey.encode('utf-8'), val.encode('utf-8'), hashlib.sha256 ).hexdigest() # 2 Generate CanonicalRequest # 2.1 Genrate CanonicalURI canonicalUri = quote(urlResult.path) # 2.2 Generate CanonicalURI: not used here # 2.3 Generate CanonicalHeaders: only include host here canonicalHeaders = [] for header, val in headers.items(): canonicalHeaders.append( '%s:%s' % ( quote(header.strip(), '').lower(), quote(val.strip(), '') ) ) canonicalHeaders = '\n'.join(sorted(canonicalHeaders)) # 2.4 Generate CanonicalRequest canonicalRequest = '%s\n%s\n%s\n%s' % ( method.upper(), canonicalUri, '&'.join(sorted(urlencode(params).split('&'))), canonicalHeaders ) # 3 Generate Final Signature signature = hmac.new(signingKey.encode('utf-8'), canonicalRequest.encode('utf-8'), hashlib.sha256 ).hexdigest() headers['authorization'] = 'bce-auth-v%s/%s/%s/%s/%s/%s' % ( version, self._apiKey, timestamp, expire, ';'.join(headers.keys()).lower(), signature ) return headers def report(self, feedback): """ 数据反馈 """ data = {} data['feedback'] = feedback return self._request(self.__reportUrl, data) def post(self, url, data, headers=None): """ self.post('', {}) """ return self._request(url, data, headers)
28.365591
93
0.504296
810fd1bdc346c4399f18d1edbe0c8ed683392e38
16,418
py
Python
contrastive/models/contrastive_learner_with_labels.py
neurospin-projects/2022_jchavas_cingulate_inhibitory_control
30e63f0af62fa83abd3858720ce3f3a15a3fbaea
[ "MIT" ]
null
null
null
contrastive/models/contrastive_learner_with_labels.py
neurospin-projects/2022_jchavas_cingulate_inhibitory_control
30e63f0af62fa83abd3858720ce3f3a15a3fbaea
[ "MIT" ]
null
null
null
contrastive/models/contrastive_learner_with_labels.py
neurospin-projects/2022_jchavas_cingulate_inhibitory_control
30e63f0af62fa83abd3858720ce3f3a15a3fbaea
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # This software and supporting documentation are distributed by # Institut Federatif de Recherche 49 # CEA/NeuroSpin, Batiment 145, # 91191 Gif-sur-Yvette cedex # France # # This software is governed by the CeCILL license version 2 under # French law and abiding by the rules of distribution of free software. # You can use, modify and/or redistribute the software under the # terms of the CeCILL license version 2 as circulated by CEA, CNRS # and INRIA at the following URL "http://www.cecill.info". # # As a counterpart to the access to the source code and rights to copy, # modify and redistribute granted by the license, users are provided only # with a limited warranty and the software's author, the holder of the # economic rights, and the successive licensors have only limited # liability. # # In this respect, the user's attention is drawn to the risks associated # with loading, using, modifying and/or developing or reproducing the # software by the user in light of its specific status of free software, # that may mean that it is complicated to manipulate, and that also # therefore means that it is reserved for developers and experienced # professionals having in-depth computer knowledge. Users are therefore # encouraged to load and test the software's suitability as regards their # requirements in conditions enabling the security of their systems and/or # data to be ensured and, more generally, to use and operate it in the # same conditions as regards security. # # The fact that you are presently reading this means that you have had # knowledge of the CeCILL license version 2 and that you accept its terms. """ Some helper functions are taken from: https://learnopencv.com/tensorboard-with-pytorch-lightning """ import numpy as np import torch from sklearn.manifold import TSNE from toolz.itertoolz import first from contrastive.models.contrastive_learner import ContrastiveLearner from contrastive.losses import GeneralizedSupervisedNTXenLoss from contrastive.utils.plots.visualize_images \ import plot_scatter_matrix_with_labels from contrastive.utils.plots.visualize_tsne import plot_tsne class SaveOutput: def __init__(self): self.outputs = {} def __call__(self, module, module_in, module_out): self.outputs[module] = module_out.cpu() def clear(self): self.outputs = {} class ContrastiveLearner_WithLabels(ContrastiveLearner): def __init__(self, config, sample_data): super(ContrastiveLearner_WithLabels, self).__init__( config=config, sample_data=sample_data) def plot_scatter_matrices_with_labels(self): """Plots scatter matrices with label values.""" # Makes scatter matrix of output space r = self.compute_outputs_skeletons( self.sample_data.train_dataloader()) X = r[0] # First element of tuple labels = r[1] # Second element of tuple # Makes scatter matrix of output space with label values scatter_matrix_outputs_with_labels = \ plot_scatter_matrix_with_labels(X, labels, buffer=True) self.logger.experiment.add_image( 'scatter_matrix_outputs_with_labels', scatter_matrix_outputs_with_labels, self.current_epoch) # Makes scatter matrix of representation space with label values r = self.compute_representations( self.sample_data.train_dataloader()) X = r[0] # First element of tuple labels = r[1] # Second element of tuple scatter_matrix_representations_with_labels = \ plot_scatter_matrix_with_labels(X, labels, buffer=True) self.logger.experiment.add_image( 'scatter_matrix_representations_with_labels', scatter_matrix_representations_with_labels, self.current_epoch) def generalized_supervised_nt_xen_loss(self, z_i, z_j, labels): """Loss function for contrastive""" temperature = max(self.config.temperature, self.config.temperature_initial - self.current_epoch/50. * (self.config.temperature_initial - self.config.temperature)) loss = GeneralizedSupervisedNTXenLoss( temperature=temperature, sigma=self.config.sigma_labels, proportion_pure_contrastive=self.config.proportion_pure_contrastive, return_logits=True) return loss.forward(z_i, z_j, labels) def training_step(self, train_batch, batch_idx): """Training step. """ (inputs, labels, filenames) = train_batch input_i = inputs[:, 0, :] input_j = inputs[:, 1, :] z_i = self.forward(input_i) z_j = self.forward(input_j) if self.config.mode == "decoder": sample = inputs[:, 2, :] batch_loss = self.cross_entropy_loss(sample, z_i, z_j) else: batch_loss, sim_zij, sim_zii, sim_zjj, correct_pair, weights = \ self.generalized_supervised_nt_xen_loss(z_i, z_j, labels) self.log('train_loss', float(batch_loss)) # Only computes graph on first step if self.global_step == 1: self.logger.experiment.add_graph(self, inputs[:, 0, :]) # Records sample for first batch of each epoch if batch_idx == 0: self.sample_i = inputs[:, 0, :].cpu() self.sample_j = inputs[:, 1, :].cpu() if self.config.mode != "decoder": self.sim_zij = sim_zij * self.config.temperature self.sim_zii = sim_zii * self.config.temperature self.sim_zjj = sim_zjj * self.config.temperature self.weights = weights # logs - a dictionary logs = {"train_loss": float(batch_loss)} batch_dictionary = { # REQUIRED: It is required for us to return "loss" "loss": batch_loss, # optional for batch logging purposes "log": logs, } return batch_dictionary def compute_outputs_skeletons(self, loader): """Computes the outputs of the model for each crop. This includes the projection head""" # Initialization X = torch.zeros([0, self.config.num_outputs]).cpu() labels_all = torch.zeros([0, 1]).cpu() filenames_list = [] # Computes embeddings without computing gradient with torch.no_grad(): for (inputs, labels, filenames) in loader: # First views of the whole batch inputs = inputs.cuda() model = self.cuda() X_i = model.forward(inputs[:, 0, :]) # Second views of the whole batch X_j = model.forward(inputs[:, 1, :]) # We now concatenate the embeddings # First views and second views are put side by side X_reordered = torch.cat([X_i, X_j], dim=-1) # X_i and X_j elements are put in successin by index # X_i[0], X_j[0], X_i[1], X_j[1],... X_i[N], X_j[N] # N being the number of samples in the batch X_reordered = X_reordered.view(-1, X_i.shape[-1]) # At the end, it is concataneted with previous X X = torch.cat((X, X_reordered.cpu()), dim=0) # We now concatenate the labels labels_reordered = torch.cat([labels, labels], dim=-1) labels_reordered = labels_reordered.view(-1, labels.shape[-1]) # At the end, labels are concatenated labels_all = torch.cat((labels_all, labels_reordered.cpu()), dim=0) filenames_duplicate = [ item for item in filenames for repetitions in range(2)] filenames_list = filenames_list + filenames_duplicate del inputs return X, labels_all, filenames_list def compute_decoder_outputs_skeletons(self, loader): """Computes the outputs of the model for each crop. This includes the projection head""" # Initialization X = torch.zeros([0, 2, 20, 40, 40]).cpu() filenames_list = [] # Computes embeddings without computing gradient with torch.no_grad(): for (inputs, labels, filenames) in loader: # First views of the whole batch inputs = inputs.cuda() model = self.cuda() X_i = model.forward(inputs[:, 0, :]) # First views re put side by side X = torch.cat((X, X_i.cpu()), dim=0) filenames_duplicate = [item for item in filenames] filenames_list = filenames_list + filenames_duplicate del inputs return X, filenames_list def compute_representations(self, loader): """Computes representations for each crop. Representation are before the projection head""" # Initialization X = torch.zeros([0, self.config.num_representation_features]).cpu() labels_all = torch.zeros([0, 1]).cpu() filenames_list = [] # Computes representation (without gradient computation) with torch.no_grad(): for (inputs, labels, filenames) in loader: # We first compute the embeddings # for the first views of the whole batch inputs = inputs.cuda() model = self.cuda() model.forward(inputs[:, 0, :]) X_i = first(self.save_output.outputs.values()) # We then compute the embeddings for the second views # of the whole batch model.forward(inputs[:, 1, :]) X_j = first(self.save_output.outputs.values()) # We now concatenate the embeddings # First views and second views are put side by side X_reordered = torch.cat([X_i, X_j], dim=-1) # X_i and X_j elements are put in successin by index # X_i[0], X_j[0], X_i[1], X_j[1],... X_i[N], X_j[N] # N being the number of samples in the batch X_reordered = X_reordered.view(-1, X_i.shape[-1]) # At the end, it is concataneted with previous X X = torch.cat((X, X_reordered.cpu()), dim=0) # We now concatenate the labels labels_reordered = torch.cat([labels, labels], dim=-1) labels_reordered = labels_reordered.view(-1, labels.shape[-1]) # At the end, labels are concatenated labels_all = torch.cat((labels_all, labels_reordered.cpu()), dim=0) filenames_duplicate = [ item for item in filenames for repetitions in range(2)] filenames_list = filenames_list + filenames_duplicate del inputs return X, labels_all, filenames_list def compute_tsne(self, loader, register): """Computes t-SNE. It is computed either in the representation or in the output space""" if register == "output": X, _, _ = self.compute_outputs_skeletons(loader) elif register == "representation": X, _, _ = self.compute_representations(loader) else: raise ValueError( "Argument register must be either output or representation") tsne = TSNE(n_components=2, perplexity=25, init='pca', random_state=50) Y = X.detach().numpy() # Makes the t-SNE fit X_tsne = tsne.fit_transform(Y) # Returns tsne embeddings return X_tsne def training_epoch_end(self, outputs): """Computation done at the end of the epoch""" if self.config.mode == "encoder": # Computes t-SNE both in representation and output space if self.current_epoch % self.config.nb_epochs_per_tSNE == 0 \ or self.current_epoch >= self.config.max_epochs: X_tsne = self.compute_tsne( self.sample_data.train_dataloader(), "output") image_TSNE = plot_tsne(X_tsne, buffer=True) self.logger.experiment.add_image( 'TSNE output image', image_TSNE, self.current_epoch) X_tsne = self.compute_tsne( self.sample_data.train_dataloader(), "representation") image_TSNE = plot_tsne(X_tsne, buffer=True) self.logger.experiment.add_image( 'TSNE representation image', image_TSNE, self.current_epoch) # Plots zxx and weights histograms self.plot_histograms() # Plots scatter matrices self.plot_scatter_matrices() # Plots scatter matrices with label values self.plot_scatter_matrices_with_labels() # Plots views self.plot_views() # calculates average loss avg_loss = torch.stack([x['loss'] for x in outputs]).mean() # logs histograms # self.custom_histogram_adder() # logging using tensorboard logger self.logger.experiment.add_scalar( "Loss/Train", avg_loss, self.current_epoch) def validation_step(self, val_batch, batch_idx): """Validation step""" (inputs, labels, filenames) = val_batch input_i = inputs[:, 0, :] input_j = inputs[:, 1, :] z_i = self.forward(input_i) z_j = self.forward(input_j) if self.config.mode == "decoder": sample = inputs[:, 2, :] batch_loss = self.cross_entropy_loss(sample, z_i, z_j) else: batch_loss, sim_zij, sim_sii, sim_sjj, correct_pairs, weights = \ self.generalized_supervised_nt_xen_loss(z_i, z_j, labels) self.log('val_loss', float(batch_loss)) # logs- a dictionary logs = {"val_loss": float(batch_loss)} batch_dictionary = { # REQUIRED: It is required for us to return "loss" "loss": batch_loss, # optional for batch logging purposes "log": logs, } return batch_dictionary def validation_epoch_end(self, outputs): """Computaion done at the end of each validation epoch""" # Computes t-SNE if self.config.mode == "encoder": if self.current_epoch % self.config.nb_epochs_per_tSNE == 0 \ or self.current_epoch >= self.config.max_epochs: X_tsne = self.compute_tsne( self.sample_data.val_dataloader(), "output") image_TSNE = plot_tsne(X_tsne, buffer=True) self.logger.experiment.add_image( 'TSNE output validation image', image_TSNE, self.current_epoch) X_tsne = self.compute_tsne( self.sample_data.val_dataloader(), "representation") image_TSNE = plot_tsne(X_tsne, buffer=True) self.logger.experiment.add_image( 'TSNE representation validation image', image_TSNE, self.current_epoch) # Makes scatter matrix of representation space X, labels, _ = self.compute_representations( self.sample_data.val_dataloader()) # Makes scatter matrix of representation space with label values scatter_matrix_representations_with_labels = \ plot_scatter_matrix_with_labels(X, labels, buffer=True) self.logger.experiment.add_image( 'scatter_matrix_representations_with_labels_validation', scatter_matrix_representations_with_labels, self.current_epoch) # calculates average loss avg_loss = torch.stack([x['loss'] for x in outputs]).mean() # logs losses using tensorboard logger self.logger.experiment.add_scalar( "Loss/Validation", avg_loss, self.current_epoch)
39.561446
86
0.604459
e0a56d468f9b6270babbef3a1eafcd01d629ed1a
1,945
py
Python
cauldron/test/cli/commands/test_reload.py
JohnnyPeng18/cauldron
09120c2a4cef65df46f8c0c94f5d79395b3298cd
[ "MIT" ]
90
2016-09-02T15:11:10.000Z
2022-01-02T11:37:57.000Z
cauldron/test/cli/commands/test_reload.py
JohnnyPeng18/cauldron
09120c2a4cef65df46f8c0c94f5d79395b3298cd
[ "MIT" ]
86
2016-09-23T16:52:22.000Z
2022-03-31T21:39:56.000Z
cauldron/test/cli/commands/test_reload.py
JohnnyPeng18/cauldron
09120c2a4cef65df46f8c0c94f5d79395b3298cd
[ "MIT" ]
261
2016-12-22T05:36:48.000Z
2021-11-26T12:40:42.000Z
from unittest.mock import patch from cauldron.test import support from cauldron.test.support import scaffolds class TestReload(scaffolds.ResultsTest): """...""" def test_reload(self): """Should reload the currently opened project.""" support.run_command('open @examples:hello_cauldron --forget') r = support.run_command('reload') self.assertFalse(r.failed, 'should not have failed') def test_no_open_project(self): """Should fail when no project is open.""" r = support.run_command('reload') self.assertTrue(r.failed, 'should have failed') self.assertEqual(r.errors[0].code, 'NO_PROJECT_FOUND') @patch('time.sleep') def test_missing_project_path(self, *args): """Should fail if the project directory does not exist.""" support.run_command('open @examples:hello_cauldron --forget') with patch('os.path.exists') as path_exists: path_exists.return_value = False r = support.run_command('reload') self.assertTrue(r.failed, 'should have failed') self.assertEqual(r.errors[0].code, 'MISSING_PROJECT_PATH') @patch('time.sleep') def test_initialize_failure(self, *args): """Should fail if cannot initialize project.""" support.run_command('open @examples:hello_cauldron --forget') with patch('cauldron.runner.initialize') as runner_initialize: runner_initialize.side_effect = FileNotFoundError('Fake Error') r = support.run_command('reload') self.assertTrue(r.failed, 'should have failed') self.assertEqual(r.errors[0].code, 'PROJECT_INIT_FAILURE') def test_reload_remote(self): """Should reload the currently opened project.""" support.run_command('open @examples:hello_cauldron --forget') r = support.run_remote_command('reload') self.assertFalse(r.failed, 'should not have failed')
38.137255
75
0.672494
105ea140070ba362676f80d83f3968a9d3e05a21
491
py
Python
vilya/views/api/v1/projects/commits.py
mubashshirjamal/code
d9c7adf7efed8e9c1ab3ff8cdeb94e7eb1a45382
[ "BSD-3-Clause" ]
1,582
2015-01-05T02:41:44.000Z
2022-03-30T20:03:22.000Z
vilya/views/api/v1/projects/commits.py
mubashshirjamal/code
d9c7adf7efed8e9c1ab3ff8cdeb94e7eb1a45382
[ "BSD-3-Clause" ]
66
2015-01-23T07:58:04.000Z
2021-11-12T02:23:27.000Z
vilya/views/api/v1/projects/commits.py
mubashshirjamal/code
d9c7adf7efed8e9c1ab3ff8cdeb94e7eb1a45382
[ "BSD-3-Clause" ]
347
2015-01-05T07:47:07.000Z
2021-09-20T21:22:32.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import from vilya.views.api.utils import RestAPIUI class CommitsUI(RestAPIUI): _q_exports = [] _q_methods = ['get'] def __init__(self, project): self.project = project def get(self, request): repo = self.project.repo commits = repo.get_commits('HEAD', 'HEAD~5') if not commits: return {'commits':[]} return dict(commits=[commit.as_dict() for commit in commits])
24.55
69
0.627291
4fe8cc91954aaeb34bbe8aaed64c6a646d649096
3,926
py
Python
datadog_checks_dev/datadog_checks/dev/tooling/commands/env/test.py
jessehub/integrations-core
76955b6e55beae7bc5c2fd25867955d2a3c8d5ef
[ "BSD-3-Clause" ]
null
null
null
datadog_checks_dev/datadog_checks/dev/tooling/commands/env/test.py
jessehub/integrations-core
76955b6e55beae7bc5c2fd25867955d2a3c8d5ef
[ "BSD-3-Clause" ]
null
null
null
datadog_checks_dev/datadog_checks/dev/tooling/commands/env/test.py
jessehub/integrations-core
76955b6e55beae7bc5c2fd25867955d2a3c8d5ef
[ "BSD-3-Clause" ]
null
null
null
# (C) Datadog, Inc. 2019 # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import click from .... import EnvVars from ...e2e import create_interface, get_configured_envs from ...e2e.agent import DEFAULT_PYTHON_VERSION from ...testing import get_tox_envs from ..console import CONTEXT_SETTINGS, echo_info, echo_warning from ..test import test as test_command from .start import start from .stop import stop @click.command(context_settings=CONTEXT_SETTINGS, short_help='Test an environment') @click.argument('checks', nargs=-1) @click.option( '--agent', '-a', default='6', help=( 'The agent build to use e.g. a Docker image like `datadog/agent:6.5.2`. For ' 'Docker environments you can use an integer corresponding to fields in the ' 'config (agent5, agent6, etc.)' ), ) @click.option( '--python', '-py', type=click.INT, help='The version of Python to use. Defaults to {} if no tox Python is specified.'.format(DEFAULT_PYTHON_VERSION), ) @click.option('--dev/--prod', default=None, help='Whether to use the latest version of a check or what is shipped') @click.option('--base', is_flag=True, help='Whether to use the latest version of the base check or what is shipped') @click.option( '--env-vars', '-e', multiple=True, help=( 'ENV Variable that should be passed to the Agent container. ' 'Ex: -e DD_URL=app.datadoghq.com -e DD_API_KEY=123456' ), ) @click.option('--new-env', '-ne', is_flag=True, help='Execute setup and tear down actions') @click.option('--profile-memory', '-pm', is_flag=True, help='Whether to collect metrics about memory usage') @click.pass_context def test(ctx, checks, agent, python, dev, base, env_vars, new_env, profile_memory): """Test an environment.""" check_envs = get_tox_envs(checks, e2e_tests_only=True) tests_ran = False # If no checks are specified it means we're testing what has changed compared # to master, probably on CI rather than during local development. In this case, # ensure environments and Agents are spun up and down. if not checks: new_env = True # Default to testing the local development version. if dev is None: dev = True if profile_memory and not new_env: echo_warning('Ignoring --profile-memory, to utilize that you must also select --new-env') for check, envs in check_envs: if not envs: echo_warning('No end-to-end environments found for `{}`'.format(check)) continue config_envs = get_configured_envs(check) # For performance reasons we're generating what to test on the fly and therefore # need a way to tell if anything ran since we don't know anything upfront. tests_ran = True for env in envs: if new_env: ctx.invoke( start, check=check, env=env, agent=agent, python=python, dev=dev, base=base, env_vars=env_vars, profile_memory=profile_memory, ) elif env not in config_envs: continue environment = create_interface(check, env) persisted_env_vars = environment.metadata.get('env_vars', {}) try: with EnvVars(persisted_env_vars): ctx.invoke( test_command, checks=['{}:{}'.format(check, env)], e2e=True, passenv=' '.join(persisted_env_vars) if persisted_env_vars else None, ) finally: if new_env: ctx.invoke(stop, check=check, env=env) if not tests_ran: echo_info('Nothing to test!')
35.690909
118
0.611055
4ea25bea64693efbd67e1d8d1323dd7e269f115f
4,472
py
Python
advent_of_code/year2019/day7/intcode.py
Tenebrar/codebase
59c9a35289fb29afedad0e3edd0519b67372ef9f
[ "Unlicense" ]
1
2020-04-21T11:39:25.000Z
2020-04-21T11:39:25.000Z
advent_of_code/year2019/day7/intcode.py
Tenebrar/codebase
59c9a35289fb29afedad0e3edd0519b67372ef9f
[ "Unlicense" ]
7
2020-02-12T01:08:01.000Z
2022-02-10T11:56:56.000Z
advent_of_code/year2019/day7/intcode.py
Tenebrar/codebase
59c9a35289fb29afedad0e3edd0519b67372ef9f
[ "Unlicense" ]
null
null
null
from abc import ABC, abstractmethod from typing import List, Dict, Callable class Operation(ABC): @abstractmethod def execute(self, computer: 'IntcodeComputer', parameter_modes: str): ... class ReadReadWriteOperation(Operation, ABC): def execute(self, computer: 'IntcodeComputer', parameter_modes: str): parameter1 = computer._get_parameter(parameter_modes, 1) parameter2 = computer._get_parameter(parameter_modes, 2) computer._set_parameter(3, self.get_value(parameter1, parameter2)) computer.index += 4 @abstractmethod def get_value(self, parameter1: int, parameter2: int): ... class AddOperation(ReadReadWriteOperation): def get_value(self, parameter1: int, parameter2: int): return parameter1 + parameter2 class MultiplyOperation(ReadReadWriteOperation): def get_value(self, parameter1: int, parameter2: int): return parameter1 * parameter2 class InputOperation(Operation): def execute(self, computer: 'IntcodeComputer', parameter_modes: str): if not computer.inputs: raise StopIteration() # Stop execution until input is added computer._set_parameter(1, computer.inputs.pop(0)) computer.index += 2 class OutputOperation(Operation): def execute(self, computer: 'IntcodeComputer', parameter_modes: str): parameter1 = computer._get_parameter(parameter_modes, 1) computer.outputs.append(parameter1) computer.index += 2 class ConditionalJumpOperation(Operation, ABC): def execute(self, computer: 'IntcodeComputer', parameter_modes: str): parameter1 = computer._get_parameter(parameter_modes, 1) parameter2 = computer._get_parameter(parameter_modes, 2) if self.condition(parameter1): computer.index = parameter2 else: computer.index += 3 @abstractmethod def condition(self, parameter1: int) -> bool: ... class JumpIfNonZeroOperation(ConditionalJumpOperation): def condition(self, parameter1: int) -> bool: return parameter1 != 0 class JumpIfZeroOperation(ConditionalJumpOperation): def condition(self, parameter1: int) -> bool: return parameter1 == 0 class LessThanOperation(ReadReadWriteOperation): def get_value(self, parameter1: int, parameter2: int): return 1 if parameter1 < parameter2 else 0 class EqualsOperation(ReadReadWriteOperation): def get_value(self, parameter1: int, parameter2: int): return 1 if parameter1 == parameter2 else 0 class StopOperation(Operation): def execute(self, computer: 'IntcodeComputer', parameter_modes: str): computer.done = True raise StopIteration() class IntcodeComputer: @classmethod def from_string(cls, program: str): return IntcodeComputer([int(value) for value in program.split(',')]) def __init__(self, program: List[int]): self.program: List[int] = program self.inputs: List[int] = [] self.outputs: List[int] = [] self.index: int = 0 self.done = False self.parameter_modes: Dict[str, Callable[[int], int]] = { '0': lambda value: self.program[value], '1': lambda value: value } self.operations: Dict[int, Operation] = { 1: AddOperation(), 2: MultiplyOperation(), 3: InputOperation(), 4: OutputOperation(), 5: JumpIfNonZeroOperation(), 6: JumpIfZeroOperation(), 7: LessThanOperation(), 8: EqualsOperation(), 99: StopOperation() } def add_input(self, value: int) -> None: self.inputs.append(value) def get_output(self) -> int: return self.outputs.pop(0) def _get_parameter(self, parameter_modes, parameter_number): value = self.program[self.index + parameter_number] return self.parameter_modes[parameter_modes[parameter_number - 1]](value) def _set_parameter(self, parameter_number, value): self.program[self.program[self.index + parameter_number]] = value def run(self): try: while True: op_code = self.program[self.index] % 100 parameter_modes = f'000{self.program[self.index] // 100}'[::-1] # Zero-padded for convenience self.operations[op_code].execute(self, parameter_modes) except StopIteration: pass
30.841379
110
0.658318
df0b2e4277553e0202d0deafaca1109e8d615173
328
py
Python
davidgoliath/project/modelling/21_geometric.py
spideynolove/Other-repo
34066f177994415d031183ab9dd219d787e6e13a
[ "MIT" ]
null
null
null
davidgoliath/project/modelling/21_geometric.py
spideynolove/Other-repo
34066f177994415d031183ab9dd219d787e6e13a
[ "MIT" ]
null
null
null
davidgoliath/project/modelling/21_geometric.py
spideynolove/Other-repo
34066f177994415d031183ab9dd219d787e6e13a
[ "MIT" ]
null
null
null
# Geometric distribution python # https://www.google.com/search?q=Geometric+distribution+python&oq=Geometric+distribution+python&aqs=chrome..69i57j0l2j0i22i30l7.2540j0j4&sourceid=chrome&ie=UTF-8 ''' Discrete distributions # https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.geom.html#scipy.stats.geom '''
46.857143
162
0.801829
4a291b8e70dede11468340319d091a45004a5d19
849
py
Python
FPLManager/caching.py
twhi/fpl_price_change_predictor
0cf0de11af7637d6cd83fdadf9ff381fc6d172f5
[ "MIT" ]
1
2019-02-15T13:48:48.000Z
2019-02-15T13:48:48.000Z
FPLManager/caching.py
twhi/fpl_price_change_predictor
0cf0de11af7637d6cd83fdadf9ff381fc6d172f5
[ "MIT" ]
1
2021-06-01T23:15:32.000Z
2021-06-01T23:15:32.000Z
FPLManager/caching.py
twhi/FPLManager
0cf0de11af7637d6cd83fdadf9ff381fc6d172f5
[ "MIT" ]
null
null
null
import pickle def save_to_pickle(variable, filename): with open(filename, 'wb') as handle: pickle.dump(variable, handle) def open_pickle(path_to_file): with open(path_to_file, 'rb') as handle: f = pickle.load(handle) return f class Caching: def __init__(self): self.access_list = [ 'account_data', 'master_table', 'team_list', 'team_info', 'player_price_data', 'player_stats_data', 'player_top_50_data', 'team_ids', 'username_hash', ] @staticmethod def get_cached_data(fname): return open_pickle('./data/' + fname + '.pickle') def cache_data(self, fname): out = {} for d in self.access_list: out[d] = getattr(self, d) save_to_pickle(out, './data/' + fname + '.pickle')
24.970588
58
0.580683
7cdba495eeabbf8e4018da3efd9849838949ee9e
2,231
py
Python
tools/copy_partitions.py
yuzi40277738/openHASP
e5332a3aad19a399194bcf31add3bcacf3e2c130
[ "MIT" ]
191
2021-04-02T18:20:34.000Z
2022-03-27T23:37:22.000Z
tools/copy_partitions.py
yuzi40277738/openHASP
e5332a3aad19a399194bcf31add3bcacf3e2c130
[ "MIT" ]
82
2021-04-02T14:37:32.000Z
2022-03-31T23:33:37.000Z
tools/copy_partitions.py
yuzi40277738/openHASP
e5332a3aad19a399194bcf31add3bcacf3e2c130
[ "MIT" ]
72
2021-04-11T14:46:02.000Z
2022-03-31T14:33:15.000Z
#This script is based on the Tasmota rename-firmware.py script. https://github.com/arendst/Tasmota Import('env') import os import shutil buildFlags = env.ParseFlags(env['BUILD_FLAGS']) OUTPUT_DIR = "build_output{}".format(os.path.sep) platform = env.PioPlatform() FRAMEWORK_DIR = platform.get_package_dir("framework-arduinoespressif32") FRAMEWORK_DIR = "{}{}".format(FRAMEWORK_DIR, os.path.sep) def copy_boot_partitions(source, target, env): # check if output directories exist and create if necessary if not os.path.isdir(OUTPUT_DIR): os.mkdir(OUTPUT_DIR) for d in ['firmware', 'map']: if not os.path.isdir("{}{}".format(OUTPUT_DIR, d)): os.mkdir("{}{}".format(OUTPUT_DIR, d)) # create string with location and file names based on variant src = str(target[0]) dst = "{}firmware{}{}".format(OUTPUT_DIR, os.path.sep, "partitions.bin") print(src) print(dst) # check if new target files exist and remove if necessary for f in [dst]: if os.path.isfile(f): os.remove(f) # copy firmware.bin to firmware/<variant>.bin shutil.copy(src,dst) # create string with location and file names based on variant src = "{}tools{}partitions{}boot_app0.bin".format(FRAMEWORK_DIR, os.path.sep, os.path.sep, os.path.sep) dst = "{}firmware{}{}".format(OUTPUT_DIR, os.path.sep, "boot_app0.bin") print(src) print(dst) # check if new target files exist and remove if necessary for f in [dst]: if os.path.isfile(f): os.remove(f) # copy firmware.bin to firmware/<variant>.bin shutil.copy(src,dst) # create string with location and file names based on variant src = "{}tools{}sdk{}bin{}bootloader_dio_40m.bin".format(FRAMEWORK_DIR, os.path.sep, os.path.sep, os.path.sep, os.path.sep) dst = "{}firmware{}{}".format(OUTPUT_DIR, os.path.sep, "bootloader_dio_40m.bin") print(src) print(dst) # check if new target files exist and remove if necessary for f in [dst]: if os.path.isfile(f): os.remove(f) # copy firmware.bin to firmware/<variant>.bin shutil.copy(src,dst) env.AddPostAction("$BUILD_DIR/partitions.bin", [copy_boot_partitions])
31.871429
127
0.66831
f75b3271013111802187c197e90c5479823898ca
8,262
py
Python
pymagnitude/third_party/allennlp/semparse/worlds/atis_world.py
tpeng/magnitude
aec98628b5547773ca8c4114ec6d1ad51e21b230
[ "MIT" ]
1,520
2018-03-01T13:37:49.000Z
2022-03-25T11:40:20.000Z
pymagnitude/third_party/allennlp/semparse/worlds/atis_world.py
tpeng/magnitude
aec98628b5547773ca8c4114ec6d1ad51e21b230
[ "MIT" ]
87
2018-03-03T15:12:50.000Z
2022-02-21T15:24:12.000Z
pymagnitude/third_party/allennlp/semparse/worlds/atis_world.py
tpeng/magnitude
aec98628b5547773ca8c4114ec6d1ad51e21b230
[ "MIT" ]
121
2018-03-03T08:40:53.000Z
2022-03-16T05:19:38.000Z
from __future__ import absolute_import from copy import deepcopy #typing import numpy from parsimonious.grammar import Grammar from allennlp.semparse.contexts.atis_tables import * # pylint: disable=wildcard-import,unused-wildcard-import from allennlp.semparse.contexts.sql_table_context import\ SqlTableContext, SqlVisitor, generate_one_of_string, format_action from allennlp.data.tokenizers import Token, WordTokenizer try: from itertools import izip except: izip = zip def get_strings_from_utterance(tokenized_utterance ) : u""" Based on the current utterance, return a dictionary where the keys are the strings in the utterance that map to lists of the token indices that they are linked to. """ string_linking_scores = defaultdict(list) for index, (first_token, second_token) in enumerate(izip(tokenized_utterance, tokenized_utterance[1:])): for string in ATIS_TRIGGER_DICT.get(first_token.text.lower(), []): string_linking_scores[string].append(index) bigram = "{first_token.text} {second_token.text}".lower() for string in ATIS_TRIGGER_DICT.get(bigram, []): string_linking_scores[string].extend([index, index + 1]) if tokenized_utterance[-1].text.lower() in ATIS_TRIGGER_DICT: for string in ATIS_TRIGGER_DICT[tokenized_utterance[-1].text.lower()]: string_linking_scores[string].append(len(tokenized_utterance)-1) date = get_date_from_utterance(tokenized_utterance) if date: for day in DAY_OF_WEEK_INDEX[date.weekday()]: string_linking_scores[day] = [] return string_linking_scores class AtisWorld(object): u""" World representation for the Atis SQL domain. This class has a ``SqlTableContext`` which holds the base grammars, it then augments this grammar with the entities that are detected from utterances. Parameters ---------- utterances: ``List[str]`` A list of utterances in the interaction, the last element in this list is the current utterance that we are interested in. """ sql_table_context = SqlTableContext(TABLES) def __init__(self, utterances , tokenizer=None) : self.utterances = utterances self.tokenizer = tokenizer if tokenizer else WordTokenizer() self.tokenized_utterances = [self.tokenizer.tokenize(utterance) for utterance in self.utterances] valid_actions, linking_scores = self.init_all_valid_actions() self.valid_actions = valid_actions # This has shape (num_entities, num_utterance_tokens). self.linking_scores: numpy.ndarray = linking_scores self.grammar_str: unicode = self.get_grammar_str() self.grammar_with_context: Grammar = Grammar(self.grammar_str) def get_valid_actions(self) : return self.valid_actions def init_all_valid_actions(self) : u""" We initialize the valid actions with the global actions. We then iterate through the utterances up to and including the current utterance and add the valid strings. """ valid_actions = deepcopy(self.sql_table_context.valid_actions) linking_scores = [] current_tokenized_utterance = [] if not self.tokenized_utterances\ else self.tokenized_utterances[-1] strings = set() for tokenized_utterance in self.tokenized_utterances: string_linking_dict = get_strings_from_utterance(tokenized_utterance) strings.update(list(string_linking_dict.keys())) # We want to sort things in reverse here to be consistent with the grammar. # The parser is greedy which means that if we have a rule that has # multiple options for the right hand side, the first one that succeeds is # the one that is used. For example, if ``1400`` appears in the query, and # both ``1400`` and ``1`` are valid numbers, then we want to try to match # ``1400`` first. Otherwise, ``1`` will succeed but nothing will match ``400``. # The same applies for strings here. strings_list = sorted(strings, reverse=True) # We construct the linking scores for strings from the ``string_linking_dict`` here. string_linking_scores = [] for string in strings_list: entity_linking = [0 for token in current_tokenized_utterance] # string_linking_dict has the strings and linking scores from the last utterance. # If the string is not in the last utterance, then the linking scores will be all 0. for token_index in string_linking_dict.get(string, []): entity_linking[token_index] = 1 string_linking_scores.append(entity_linking) linking_scores.extend(string_linking_scores) for string in strings_list: action = format_action(u'string', string) if action not in valid_actions[u'string']: valid_actions[u'string'].append(action) numbers = set([u'0', u'1']) number_linking_dict = {} for utterance, tokenized_utterance in izip(self.utterances, self.tokenized_utterances): number_linking_dict = get_numbers_from_utterance(utterance, tokenized_utterance) numbers.update(list(number_linking_dict.keys())) numbers_list = sorted(numbers, reverse=True) # We construct the linking scores for numbers from the ``number_linking_dict`` here. number_linking_scores = [] for number in numbers_list: entity_linking = [0 for token in current_tokenized_utterance] # number_linking_scores has the numbers and linking scores from the last utterance. # If the number is not in the last utterance, then the linking scores will be all 0. for token_index in number_linking_dict.get(number, []): entity_linking[token_index] = 1 number_linking_scores.append(entity_linking) linking_scores.extend(number_linking_scores) for number in list(numbers_list): action = format_action(u'number', number) valid_actions[u'number'].append(action) return valid_actions, numpy.array(linking_scores) def get_grammar_str(self) : u""" Generate a string that can be used to instantiate a ``Grammar`` object. The string is a sequence of rules that define the grammar. """ grammar_str_with_context = self.sql_table_context.grammar_str numbers = [number.split(u" -> ")[1].lstrip(u'["').rstrip(u'"]') for\ number in sorted(self.valid_actions[u'number'], reverse=True)] strings = [string .split(u" -> ")[1].lstrip(u'["').rstrip(u'"]') for\ string in sorted(self.valid_actions[u'string'], reverse=True)] grammar_str_with_context += generate_one_of_string(u"number", numbers) grammar_str_with_context += generate_one_of_string(u"string", strings) return grammar_str_with_context def get_action_sequence(self, query ) : sql_visitor = SqlVisitor(self.grammar_with_context) if query: action_sequence = sql_visitor.parse(query) return action_sequence return [] def all_possible_actions(self) : u""" Return a sorted list of strings representing all possible actions of the form: nonterminal -> [right_hand_side] """ all_actions = set() for _, action_list in list(self.valid_actions.items()): for action in action_list: all_actions.add(action) return sorted(all_actions) def __eq__(self, other): if isinstance(self, other.__class__): return all([self.valid_actions == other.valid_actions, numpy.array_equal(self.linking_scores, other.linking_scores), self.utterances == other.utterances, self.grammar_str == other.grammar_str]) return False
46.156425
109
0.659647
03ab7df3acb6025094fae83201ad97007d831665
5,900
py
Python
notebooks/forrester2007/function_defs.py
sjvrijn/multi-level-co-surrogates
04a071eb4360bed6f1a517531690beec7857e3e5
[ "MIT" ]
null
null
null
notebooks/forrester2007/function_defs.py
sjvrijn/multi-level-co-surrogates
04a071eb4360bed6f1a517531690beec7857e3e5
[ "MIT" ]
2
2021-02-25T14:07:50.000Z
2021-02-25T14:12:35.000Z
notebooks/forrester2007/function_defs.py
sjvrijn/multi-level-co-surrogates
04a071eb4360bed6f1a517531690beec7857e3e5
[ "MIT" ]
null
null
null
import sys from itertools import product import matplotlib.pyplot as plt import numpy as np from IPython.core.display import clear_output from matplotlib import colors from mpl_toolkits.axes_grid1 import make_axes_locatable from pyDOE import lhs from pyprojroot import here module_path = str(here()) if module_path not in sys.path: sys.path.append(module_path) import multiLevelCoSurrogates as mlcs def low_random_sample(ndim, nlow): return np.random.rand(nlow, ndim) def low_lhs_sample(ndim, nlow): if ndim == 1: return np.linspace(0,1,nlow).reshape(-1,1) elif ndim > 1: return lhs(ndim, nlow) def create_mse_tracking(func, sample_generator, max_high=40, max_low=100, num_reps=30, min_high=2, min_low=3): ndim = func.ndim mse_tracking = np.empty((max_high+1, max_low+1, num_reps, 3)) mse_tracking[:] = np.nan cases = list(product(range(min_high, max_high+1), range(min_low, max_low+1), range(num_reps))) for idx, case in enumerate(cases): num_high, num_low, rep = case if num_high >= num_low: continue if idx % 100 == 0: clear_output() print(f'{idx}/{len(cases)}') low_x = sample_generator(ndim, num_low) high_x = low_x[np.random.choice(num_low, num_high, replace=False)] archive = mlcs.CandidateArchive(ndim=ndim, fidelities=['high', 'low', 'high-low']) archive.addcandidates(low_x, func.low(low_x), fidelity='low') archive.addcandidates(high_x, func.high(high_x), fidelity='high') mfbo = mlcs.MultiFidelityBO(func, archive) mse_tracking[num_high, num_low, rep] = mfbo.getMSE() clear_output() print(f'{len(cases)}/{len(cases)}') return mse_tracking def plot_high_vs_low_num_samples(data, title, vmin=.5, vmax=100, save_as=None): norm = colors.LogNorm(vmin=vmin, vmax=vmax, clip=True) fig, ax = plt.subplots(figsize=(9,3.5)) ax.set_aspect(1.) data = data.median(dim='rep') plt.title(f'Median MSE for high (hierarchical) model - {title}') img = ax.imshow(data.sel(model='high_hier'), cmap='viridis_r', norm=norm, origin='lower') divider = make_axes_locatable(ax) axx = divider.append_axes("bottom", size=.2, pad=0.05, sharex=ax) axy = divider.append_axes("left", size=.2, pad=0.05, sharey=ax) ax.xaxis.set_tick_params(labelbottom=False) ax.yaxis.set_tick_params(labelleft=False) axy.xaxis.set_tick_params(labelbottom=False) axx.yaxis.set_tick_params(labelleft=False) img = axy.imshow(data.sel(model='high').mean(dim='n_low').values.reshape(-1,1), cmap='viridis_r', norm=norm, origin='lower') img = axx.imshow(data.sel(model='low').mean(dim='n_high').values.reshape(1,-1), cmap='viridis_r', norm=norm, origin='lower') fig.colorbar(img, ax=ax, orientation='vertical') axy.set_ylabel('#High-fid samples') axx.set_xlabel('#Low-fid samples') plt.tight_layout() if save_as: plt.savefig(save_as) plt.show() def plot_high_vs_low_num_samples_diff(data, title, max_diff=None, save_as=None): paired_diffs = data.sel(model='high') - data.sel(model='high_hier') to_plot = paired_diffs.median(dim='rep') if max_diff is None: max_diff = 2*min(abs(np.nanmin(to_plot)), np.nanmax(to_plot)) norm = colors.SymLogNorm(linthresh=.01, vmin=-max_diff, vmax=max_diff, clip=True) long_title = f'Median of paired (high (hierarchical) - high (direct)) MSE - {title}' plot_high_v_low(long_title, norm, save_as, to_plot) def plot_inter_method_diff(data_A, data_B, name, max_diff=None, save_as=None): to_plot = np.nanmedian(data_A.sel(model='high_hier') - data_B.sel(model='high_hier'), axis=2) if max_diff is None: max_diff = 2*min(abs(np.nanmin(to_plot)), np.nanmax(to_plot)) norm = colors.Normalize(vmin=-max_diff, vmax=max_diff, clip=True) long_title = f'high (hierarchical) MSE: {name}' plot_high_v_low(long_title, norm, save_as, to_plot) def plot_high_v_low(long_title, norm, save_as, to_plot): fig, ax = plt.subplots(figsize=(9, 3.5)) img = ax.imshow(to_plot, cmap='RdYlGn', norm=norm, origin='lower') fig.colorbar(img, ax=ax, orientation='vertical') ax.set_ylabel('#High-fid samples') ax.set_xlabel('#Low-fid samples') plt.title(long_title) plt.tight_layout() if save_as: plt.savefig(save_as) plt.show() # defining some point styles red_dot = {'marker': '.', 'color': 'red'} blue_circle = {'marker': 'o', 'facecolors': 'none', 'color': 'blue'} def create_models_and_compare(func, low, high, steps=None, save_as=None): archive = mlcs.CandidateArchive(ndim=2, fidelities=['high', 'low', 'high-low']) archive.addcandidates(low, func.low(low), fidelity='low') archive.addcandidates(high, func.high(high), fidelity='high') mfbo = mlcs.MultiFidelityBO(func, archive, schema=[1,1]) surf_high = mlcs.createsurface(func.high, u_bound=func.u_bound, l_bound=func.l_bound, step=steps) surf_low = mlcs.createsurface(func.low, u_bound=func.u_bound, l_bound=func.l_bound, step=steps) surf_high_model = mlcs.createsurface(mfbo.models['high'].predict, u_bound=func.u_bound, l_bound=func.l_bound, step=steps) surf_low_model = mlcs.createsurface(mfbo.models['low'].predict, u_bound=func.u_bound, l_bound=func.l_bound, step=steps) points_high = [mlcs.ScatterPoints(*archive.getcandidates(fidelity='high'), red_dot)] points_low = [mlcs.ScatterPoints(*archive.getcandidates(fidelity='low'), blue_circle)] points = [ points_high, points_low, points_high, points_low, ] mlcs.plotsurfaces([surf_high, surf_low, surf_high_model, surf_low_model], shape=(2,2), titles=['high', 'low', 'high (hierarchical model)', 'low (model)'], all_points=points, save_as=save_as)
35.97561
128
0.682373
79d9b1d5bd657c57090e7baddbc06970988e428d
661
py
Python
setup.py
apparentlymart/python-tfplugin
9f1e5c463df9368928bb79188058bc474386b5ba
[ "MIT" ]
2
2019-09-08T23:33:56.000Z
2022-01-19T01:29:20.000Z
setup.py
apparentlymart/python-tfplugin
9f1e5c463df9368928bb79188058bc474386b5ba
[ "MIT" ]
null
null
null
setup.py
apparentlymart/python-tfplugin
9f1e5c463df9368928bb79188058bc474386b5ba
[ "MIT" ]
null
null
null
try: from setuptools import setup except ImportError: from distutils.core import setup setup( name="tfplugin", version="dev", author="Martin Atkins", author_email="[email protected]", description="Implement Terraform plugins in Python", packages=['tfplugin'], install_requires=[ 'protobuf>=3.6.1', ], setup_requires=[ 'nose>=1.0', ], tests_require=[ 'nose>=1.0', 'coverage', 'mock', 'pep8', ], test_suite='nose.collector', classifiers=[ "License :: OSI Approved :: MIT License", "Intended Audience :: Developers", ], )
19.441176
56
0.574887
5e4217ecb1548dfbf5f3509dd6285b89e9baada5
3,457
py
Python
main_pretraining.py
cypressd1999/FYP_2021
d836a355b1513bbca1f1429650ddf670f7b13994
[ "Apache-2.0" ]
null
null
null
main_pretraining.py
cypressd1999/FYP_2021
d836a355b1513bbca1f1429650ddf670f7b13994
[ "Apache-2.0" ]
null
null
null
main_pretraining.py
cypressd1999/FYP_2021
d836a355b1513bbca1f1429650ddf670f7b13994
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Nov 27 11:16:26 2019 @author: weetee """ from src.preprocessing_funcs import load_dataloaders from src.trainer import train_and_fit import logging from argparse import ArgumentParser ''' This trains the BERT model on matching the blanks ''' logging.basicConfig(format='%(asctime)s [%(levelname)s]: %(message)s', \ datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO) logger = logging.getLogger('__file__') if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--pretrain_data", type=str, default="./original_data/cnn.txt", \ help="pre-training data .txt file path") parser.add_argument("--batch_size", type=int, default=32, help="Training batch size") parser.add_argument("--freeze", type=int, default=0, help='''1: Freeze most layers until classifier layers\ \n0: Don\'t freeze \ (Probably best not to freeze if GPU memory is sufficient)''') parser.add_argument("--gradient_acc_steps", type=int, default=2, help="No. of steps of gradient accumulation") parser.add_argument("--max_norm", type=float, default=1.0, help="Clipped gradient norm") parser.add_argument("--fp16", type=int, default=0, help="1: use mixed precision ; 0: use floating point 32") # mixed precision doesn't seem to train well parser.add_argument("--num_epochs", type=int, default=18, help="No of epochs") parser.add_argument("--lr", type=float, default=0.0001, help="learning rate") parser.add_argument("--model_no", type=int, default=0, help='''Model ID: 0 - BERT\n 1 - ALBERT\n 2 - BioBERT''') parser.add_argument("--model_size", type=str, default='bert-base-uncased', help="For BERT: 'bert-base-uncased', \ 'bert-large-uncased',\ For ALBERT: 'albert-base-v2',\ 'albert-large-v2',\ For BioBERT: 'bert-base-uncased' (biobert_v1.1_pubmed)") args = parser.parse_args() output = train_and_fit(args) ''' # For testing additional models from src.model.BERT.modeling_bert import BertModel, BertConfig from src.model.BERT.tokenization_bert import BertTokenizer as Tokenizer config = BertConfig.from_pretrained('./additional_models/biobert_v1.1_pubmed/bert_config.json') model = BertModel.from_pretrained(pretrained_model_name_or_path='./additional_models/biobert_v1.1_pubmed.bin', config=config, force_download=False, \ model_size='bert-base-uncased', task='classification',\ n_classes_=12) tokenizer = Tokenizer(vocab_file='./additional_models/biobert_v1.1_pubmed/vocab.txt', do_lower_case=False) '''
56.672131
157
0.534278
dc63cd77835e1c34e3162b25c11d58ac3fa88ed4
2,847
py
Python
Halloween_Countdown_Matrix/code.py
albinger/Adafruit_Learning_System_Guides
4fe2da261fe5d1ca282b86bd3b93ee1466346fa7
[ "MIT" ]
null
null
null
Halloween_Countdown_Matrix/code.py
albinger/Adafruit_Learning_System_Guides
4fe2da261fe5d1ca282b86bd3b93ee1466346fa7
[ "MIT" ]
null
null
null
Halloween_Countdown_Matrix/code.py
albinger/Adafruit_Learning_System_Guides
4fe2da261fe5d1ca282b86bd3b93ee1466346fa7
[ "MIT" ]
null
null
null
# SPDX-FileCopyrightText: 2020 John Park for Adafruit Industries # # SPDX-License-Identifier: MIT import time import board from adafruit_matrixportal.matrixportal import MatrixPortal EVENT_YEAR = 2021 EVENT_MONTH = 10 EVENT_DAY = 31 EVENT_HOUR = 17 EVENT_MINUTE = 0 FRAME_DURATION = 3 FRAMES = ( "bmps/jack.bmp", "DAYS", "bmps/ghost.bmp", "HOURS", "bmps/bats.bmp", "MINUTES", "bmps/skull.bmp", "bmps/halloween.bmp", ) EVENT_DAY_IMAGE = "bmps/happy_halloween.bmp" SYNCHRONIZE_CLOCK = True # --- Display setup --- matrixportal = MatrixPortal(status_neopixel=board.NEOPIXEL, debug=True) current_frame = None # Create a new label with the color and text selected matrixportal.add_text( text_font="fonts/Arial-12.bdf", text_position=(4, (matrixportal.graphics.display.height // 2) - 1), text_color=0xEF7F31, ) def set_time_until(unit=None): event_time = time.struct_time( ( EVENT_YEAR, EVENT_MONTH, EVENT_DAY, EVENT_HOUR, EVENT_MINUTE, 0, # we don't track seconds -1, -1, False, ) ) remaining = time.mktime(event_time) - time.mktime(time.localtime()) if remaining <= 0: # oh, its event time! matrixportal.set_background(EVENT_DAY_IMAGE) return remaining //= 60 mins_remaining = remaining % 60 remaining //= 60 hours_remaining = remaining % 24 remaining //= 24 days_remaining = remaining if unit == "DAYS": text = "{} day".format(days_remaining) if days_remaining != 1: text += "s" if unit == "HOURS": text = "{} hour".format(hours_remaining) if hours_remaining != 1: text += "s" if unit == "MINUTES": text = "{} min".format(mins_remaining) if mins_remaining != 1: text += "s" matrixportal.set_text(text) matrixportal.set_background(0) def set_next_frame(): # pylint: disable=global-statement global current_frame # Advance to next frame if we already have one if current_frame is not None: current_frame += 1 # Loop back or set initial frame if current_frame is None or current_frame >= len(FRAMES): current_frame = 0 # Check if Picture or Text print(FRAMES[current_frame]) if FRAMES[current_frame][-4:] == ".bmp": matrixportal.set_background(FRAMES[current_frame]) matrixportal.set_text("") else: set_time_until(FRAMES[current_frame]) # Simulate the delay in case fetching time is fast set_next_frame() start_time = time.monotonic() if SYNCHRONIZE_CLOCK: matrixportal.get_local_time() while time.monotonic() < start_time + FRAME_DURATION: pass while True: set_next_frame() time.sleep(FRAME_DURATION)
24.333333
71
0.638918
6adaf398cefef7ea1034a99b20566fee93459175
1,298
py
Python
modelzoo/DIEN/data/script/history_behavior_list.py
aalbersk/DeepRec
f673a950780959b44dcda99398880a1d883ab338
[ "Apache-2.0" ]
292
2021-12-24T03:24:33.000Z
2022-03-31T15:41:05.000Z
modelzoo/DIEN/data/script/history_behavior_list.py
aalbersk/DeepRec
f673a950780959b44dcda99398880a1d883ab338
[ "Apache-2.0" ]
54
2021-12-24T06:40:09.000Z
2022-03-30T07:57:24.000Z
modelzoo/DIEN/data/script/history_behavior_list.py
aalbersk/DeepRec
f673a950780959b44dcda99398880a1d883ab338
[ "Apache-2.0" ]
75
2021-12-24T04:48:21.000Z
2022-03-29T10:13:39.000Z
item_to_cate_map = {} with open('item2catmap.txt', 'r') as f: for line in f: linelist = line.strip().split('\t') item = linelist[0] cate = linelist[1] item_to_cate_map[item] = cate user_history_behavior = {} with open('reviews-info', 'r') as f: for line in f: linelist = line.strip().split('\t') uid = linelist[0] item = linelist[1] if uid not in user_history_behavior: user_history_behavior[uid] = [item] else: if item not in user_history_behavior[uid]: user_history_behavior[uid].append(item) FirstLine = True with open('user_history_behavior.txt', 'w') as f: for uid, items in user_history_behavior.items(): itemstr = '' catestr = '' for i in items: if i in item_to_cate_map: c = item_to_cate_map[i] else: c = 'Unknown' if not itemstr: itemstr += i catestr += c else: itemstr += ('' + i) catestr += ('' + c) if FirstLine: f.write(uid + '\t' + itemstr + '\t' + catestr) FirstLine = False else: f.write('\n' + uid + '\t' + itemstr + '\t' + catestr)
30.904762
65
0.501541
d5d9223ed0e9922501535057cea298170d33ec43
33,184
py
Python
tests/test_secretsmanager/test_server.py
thomassross/moto
407d5c853dbee9b9e132d97b41414b7dca475765
[ "Apache-2.0" ]
null
null
null
tests/test_secretsmanager/test_server.py
thomassross/moto
407d5c853dbee9b9e132d97b41414b7dca475765
[ "Apache-2.0" ]
4
2017-09-30T07:52:52.000Z
2021-12-13T06:56:55.000Z
tests/test_secretsmanager/test_server.py
thomassross/moto
407d5c853dbee9b9e132d97b41414b7dca475765
[ "Apache-2.0" ]
2
2021-11-24T08:05:43.000Z
2021-11-25T16:18:48.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals import json import boto3 import pytest import sure # noqa import moto.server as server from moto import mock_secretsmanager, mock_lambda, mock_iam, mock_logs, settings from tests.test_awslambda.test_lambda import get_test_zip_file1 """ Test the different server responses for secretsmanager """ DEFAULT_SECRET_NAME = "test-secret" @mock_secretsmanager def test_get_secret_value(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() create_secret = test_client.post( "/", data={"Name": DEFAULT_SECRET_NAME, "SecretString": "foo-secret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) get_secret = test_client.post( "/", data={"SecretId": DEFAULT_SECRET_NAME, "VersionStage": "AWSCURRENT"}, headers={"X-Amz-Target": "secretsmanager.GetSecretValue"}, ) json_data = json.loads(get_secret.data.decode("utf-8")) assert json_data["SecretString"] == "foo-secret" @mock_secretsmanager def test_get_secret_that_does_not_exist(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() get_secret = test_client.post( "/", data={"SecretId": "i-dont-exist", "VersionStage": "AWSCURRENT"}, headers={"X-Amz-Target": "secretsmanager.GetSecretValue"}, ) json_data = json.loads(get_secret.data.decode("utf-8")) assert json_data["message"] == "Secrets Manager can't find the specified secret." assert json_data["__type"] == "ResourceNotFoundException" @mock_secretsmanager def test_get_secret_that_does_not_match(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() create_secret = test_client.post( "/", data={"Name": DEFAULT_SECRET_NAME, "SecretString": "foo-secret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) get_secret = test_client.post( "/", data={"SecretId": "i-dont-match", "VersionStage": "AWSCURRENT"}, headers={"X-Amz-Target": "secretsmanager.GetSecretValue"}, ) json_data = json.loads(get_secret.data.decode("utf-8")) assert json_data["message"] == "Secrets Manager can't find the specified secret." assert json_data["__type"] == "ResourceNotFoundException" @mock_secretsmanager def test_get_secret_that_has_no_value(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() create_secret = test_client.post( "/", data={"Name": DEFAULT_SECRET_NAME}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) get_secret = test_client.post( "/", data={"SecretId": DEFAULT_SECRET_NAME}, headers={"X-Amz-Target": "secretsmanager.GetSecretValue"}, ) json_data = json.loads(get_secret.data.decode("utf-8")) assert ( json_data["message"] == "Secrets Manager can't find the specified secret value for staging label: AWSCURRENT" ) assert json_data["__type"] == "ResourceNotFoundException" @mock_secretsmanager def test_create_secret(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() res = test_client.post( "/", data={"Name": "test-secret", "SecretString": "foo-secret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) res_2 = test_client.post( "/", data={"Name": "test-secret-2", "SecretString": "bar-secret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) json_data = json.loads(res.data.decode("utf-8")) assert json_data["ARN"] != "" assert json_data["Name"] == "test-secret" json_data_2 = json.loads(res_2.data.decode("utf-8")) assert json_data_2["ARN"] != "" assert json_data_2["Name"] == "test-secret-2" @mock_secretsmanager def test_describe_secret(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() create_secret = test_client.post( "/", data={"Name": "test-secret", "SecretString": "foosecret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) describe_secret = test_client.post( "/", data={"SecretId": "test-secret"}, headers={"X-Amz-Target": "secretsmanager.DescribeSecret"}, ) create_secret_2 = test_client.post( "/", data={"Name": "test-secret-2", "SecretString": "barsecret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) describe_secret_2 = test_client.post( "/", data={"SecretId": "test-secret-2"}, headers={"X-Amz-Target": "secretsmanager.DescribeSecret"}, ) json_data = json.loads(describe_secret.data.decode("utf-8")) assert json_data # Returned dict is not empty assert json_data["ARN"] != "" assert json_data["Name"] == "test-secret" json_data_2 = json.loads(describe_secret_2.data.decode("utf-8")) assert json_data_2 # Returned dict is not empty assert json_data_2["ARN"] != "" assert json_data_2["Name"] == "test-secret-2" @mock_secretsmanager def test_describe_secret_that_does_not_exist(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() describe_secret = test_client.post( "/", data={"SecretId": "i-dont-exist"}, headers={"X-Amz-Target": "secretsmanager.DescribeSecret"}, ) json_data = json.loads(describe_secret.data.decode("utf-8")) assert json_data["message"] == "Secrets Manager can't find the specified secret." assert json_data["__type"] == "ResourceNotFoundException" @mock_secretsmanager def test_describe_secret_that_does_not_match(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() create_secret = test_client.post( "/", data={"Name": DEFAULT_SECRET_NAME, "SecretString": "foosecret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) describe_secret = test_client.post( "/", data={"SecretId": "i-dont-match"}, headers={"X-Amz-Target": "secretsmanager.DescribeSecret"}, ) json_data = json.loads(describe_secret.data.decode("utf-8")) assert json_data["message"] == "Secrets Manager can't find the specified secret." assert json_data["__type"] == "ResourceNotFoundException" @mock_secretsmanager def test_rotate_secret(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() create_secret = test_client.post( "/", data={"Name": DEFAULT_SECRET_NAME, "SecretString": "foosecret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) client_request_token = "EXAMPLE2-90ab-cdef-fedc-ba987SECRET2" rotate_secret = test_client.post( "/", data={ "SecretId": DEFAULT_SECRET_NAME, "ClientRequestToken": client_request_token, }, headers={"X-Amz-Target": "secretsmanager.RotateSecret"}, ) json_data = json.loads(rotate_secret.data.decode("utf-8")) assert json_data # Returned dict is not empty assert json_data["ARN"] != "" assert json_data["Name"] == DEFAULT_SECRET_NAME assert json_data["VersionId"] == client_request_token # @mock_secretsmanager # def test_rotate_secret_enable_rotation(): # backend = server.create_backend_app('secretsmanager') # test_client = backend.test_client() # create_secret = test_client.post( # '/', # data={ # "Name": "test-secret", # "SecretString": "foosecret" # }, # headers={ # "X-Amz-Target": "secretsmanager.CreateSecret" # }, # ) # initial_description = test_client.post( # '/', # data={ # "SecretId": "test-secret" # }, # headers={ # "X-Amz-Target": "secretsmanager.DescribeSecret" # }, # ) # json_data = json.loads(initial_description.data.decode("utf-8")) # assert json_data # Returned dict is not empty # assert json_data['RotationEnabled'] is False # assert json_data['RotationRules']['AutomaticallyAfterDays'] == 0 # rotate_secret = test_client.post( # '/', # data={ # "SecretId": "test-secret", # "RotationRules": {"AutomaticallyAfterDays": 42} # }, # headers={ # "X-Amz-Target": "secretsmanager.RotateSecret" # }, # ) # rotated_description = test_client.post( # '/', # data={ # "SecretId": "test-secret" # }, # headers={ # "X-Amz-Target": "secretsmanager.DescribeSecret" # }, # ) # json_data = json.loads(rotated_description.data.decode("utf-8")) # assert json_data # Returned dict is not empty # assert json_data['RotationEnabled'] is True # assert json_data['RotationRules']['AutomaticallyAfterDays'] == 42 @mock_secretsmanager def test_rotate_secret_that_does_not_exist(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() rotate_secret = test_client.post( "/", data={"SecretId": "i-dont-exist"}, headers={"X-Amz-Target": "secretsmanager.RotateSecret"}, ) json_data = json.loads(rotate_secret.data.decode("utf-8")) assert json_data["message"] == "Secrets Manager can't find the specified secret." assert json_data["__type"] == "ResourceNotFoundException" @mock_secretsmanager def test_rotate_secret_that_does_not_match(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() create_secret = test_client.post( "/", data={"Name": DEFAULT_SECRET_NAME, "SecretString": "foosecret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) rotate_secret = test_client.post( "/", data={"SecretId": "i-dont-match"}, headers={"X-Amz-Target": "secretsmanager.RotateSecret"}, ) json_data = json.loads(rotate_secret.data.decode("utf-8")) assert json_data["message"] == "Secrets Manager can't find the specified secret." assert json_data["__type"] == "ResourceNotFoundException" @mock_secretsmanager def test_rotate_secret_that_is_still_rotating(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() create_secret = test_client.post( "/", data={ "Name": DEFAULT_SECRET_NAME, "SecretString": "foosecret", # "VersionStages": ["AWSPENDING"], }, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) create_secret = json.loads(create_secret.data.decode("utf-8")) # Get the secret into a broken state. version_id = create_secret["VersionId"] test_client.post( "/", data={ "SecretId": "test-secret", "VersionStage": "AWSPENDING", "MoveToVersionId": version_id, }, headers={"X-Amz-Target": "secretsmanager.UpdateSecretVersionStage"}, ) describe_secret = test_client.post( "/", data={"SecretId": DEFAULT_SECRET_NAME}, headers={"X-Amz-Target": "secretsmanager.DescribeSecret"}, ) metadata = json.loads(describe_secret.data.decode("utf-8")) assert metadata["SecretVersionsToStages"][version_id] == [ "AWSCURRENT", "AWSPENDING", ] # Then attempt to rotate it rotate_secret = test_client.post( "/", data={"SecretId": DEFAULT_SECRET_NAME}, headers={"X-Amz-Target": "secretsmanager.RotateSecret"}, ) assert rotate_secret.status_code == 400 @mock_secretsmanager def test_rotate_secret_client_request_token_too_short(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() create_secret = test_client.post( "/", data={"Name": DEFAULT_SECRET_NAME, "SecretString": "foosecret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) client_request_token = "ED9F8B6C-85B7-B7E4-38F2A3BEB13C" rotate_secret = test_client.post( "/", data={ "SecretId": DEFAULT_SECRET_NAME, "ClientRequestToken": client_request_token, }, headers={"X-Amz-Target": "secretsmanager.RotateSecret"}, ) json_data = json.loads(rotate_secret.data.decode("utf-8")) assert json_data["message"] == "ClientRequestToken must be 32-64 characters long." assert json_data["__type"] == "InvalidParameterException" @mock_secretsmanager def test_rotate_secret_client_request_token_too_long(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() create_secret = test_client.post( "/", data={"Name": DEFAULT_SECRET_NAME, "SecretString": "foosecret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) client_request_token = ( "ED9F8B6C-85B7-446A-B7E4-38F2A3BEB13C-" "ED9F8B6C-85B7-446A-B7E4-38F2A3BEB13C" ) rotate_secret = test_client.post( "/", data={ "SecretId": DEFAULT_SECRET_NAME, "ClientRequestToken": client_request_token, }, headers={"X-Amz-Target": "secretsmanager.RotateSecret"}, ) json_data = json.loads(rotate_secret.data.decode("utf-8")) assert json_data["message"] == "ClientRequestToken must be 32-64 characters long." assert json_data["__type"] == "InvalidParameterException" @mock_secretsmanager def test_rotate_secret_rotation_lambda_arn_too_long(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() create_secret = test_client.post( "/", data={"Name": DEFAULT_SECRET_NAME, "SecretString": "foosecret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) rotation_lambda_arn = "85B7-446A-B7E4" * 147 # == 2058 characters rotate_secret = test_client.post( "/", data={ "SecretId": DEFAULT_SECRET_NAME, "RotationLambdaARN": rotation_lambda_arn, }, headers={"X-Amz-Target": "secretsmanager.RotateSecret"}, ) json_data = json.loads(rotate_secret.data.decode("utf-8")) assert json_data["message"] == "RotationLambdaARN must <= 2048 characters long." assert json_data["__type"] == "InvalidParameterException" if not settings.TEST_SERVER_MODE: @mock_iam @mock_lambda @mock_logs @mock_secretsmanager def test_rotate_secret_lambda_invocations(): conn = boto3.client("iam", region_name="us-east-1") logs_conn = boto3.client("logs", region_name="us-east-1") role = conn.create_role( RoleName="role", AssumeRolePolicyDocument="some policy", Path="/my-path/", ) conn = boto3.client("lambda", region_name="us-east-1") func = conn.create_function( FunctionName="testFunction", Code=dict(ZipFile=get_test_zip_file1()), Handler="lambda_function.lambda_handler", Runtime="python2.7", Role=role["Role"]["Arn"], ) secretsmanager_backend = server.create_backend_app("secretsmanager") secretsmanager_client = secretsmanager_backend.test_client() secretsmanager_client.post( "/", data={"Name": DEFAULT_SECRET_NAME, "SecretString": "foosecret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) with pytest.raises(logs_conn.exceptions.ResourceNotFoundException): # The log group doesn't exist yet logs_conn.describe_log_streams(logGroupName="/aws/lambda/testFunction") secretsmanager_client.post( "/", data={ "SecretId": DEFAULT_SECRET_NAME, "RotationLambdaARN": func["FunctionArn"], }, headers={"X-Amz-Target": "secretsmanager.RotateSecret"}, ) # The log group now exists and has been logged to 4 times (for each invocation) logs = logs_conn.describe_log_streams(logGroupName="/aws/lambda/testFunction") assert len(logs["logStreams"]) == 4 @mock_iam @mock_lambda @mock_logs @mock_secretsmanager def test_rotate_secret_with_incorrect_lambda_arn(): secretsmanager_backend = server.create_backend_app("secretsmanager") secretsmanager_client = secretsmanager_backend.test_client() secretsmanager_client.post( "/", data={"Name": DEFAULT_SECRET_NAME, "SecretString": "foosecret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) resp = secretsmanager_client.post( "/", data={"SecretId": DEFAULT_SECRET_NAME, "RotationLambdaARN": "notarealarn",}, headers={"X-Amz-Target": "secretsmanager.RotateSecret"}, ) json_data = json.loads(resp.data.decode("utf-8")) assert json_data["message"] == "Resource not found for ARN 'notarealarn'." assert json_data["__type"] == "ResourceNotFoundException" assert resp.status_code == 404 @mock_secretsmanager def test_put_secret_value_puts_new_secret(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() test_client.post( "/", data={"Name": DEFAULT_SECRET_NAME, "SecretString": "foosecret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) test_client.post( "/", data={ "SecretId": DEFAULT_SECRET_NAME, "SecretString": "foosecret", "VersionStages": ["AWSCURRENT"], }, headers={"X-Amz-Target": "secretsmanager.PutSecretValue"}, ) put_second_secret_value_json = test_client.post( "/", data={ "SecretId": DEFAULT_SECRET_NAME, "SecretString": "foosecret", "VersionStages": ["AWSCURRENT"], }, headers={"X-Amz-Target": "secretsmanager.PutSecretValue"}, ) second_secret_json_data = json.loads( put_second_secret_value_json.data.decode("utf-8") ) version_id = second_secret_json_data["VersionId"] secret_value_json = test_client.post( "/", data={ "SecretId": DEFAULT_SECRET_NAME, "VersionId": version_id, "VersionStage": "AWSCURRENT", }, headers={"X-Amz-Target": "secretsmanager.GetSecretValue"}, ) second_secret_json_data = json.loads(secret_value_json.data.decode("utf-8")) assert second_secret_json_data assert second_secret_json_data["SecretString"] == "foosecret" @mock_secretsmanager def test_put_secret_value_can_get_first_version_if_put_twice(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() first_secret_string = "first_secret" second_secret_string = "second_secret" test_client.post( "/", data={"Name": DEFAULT_SECRET_NAME, "SecretString": "foosecret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) put_first_secret_value_json = test_client.post( "/", data={ "SecretId": DEFAULT_SECRET_NAME, "SecretString": first_secret_string, "VersionStages": ["AWSCURRENT"], }, headers={"X-Amz-Target": "secretsmanager.PutSecretValue"}, ) first_secret_json_data = json.loads( put_first_secret_value_json.data.decode("utf-8") ) first_secret_version_id = first_secret_json_data["VersionId"] test_client.post( "/", data={ "SecretId": DEFAULT_SECRET_NAME, "SecretString": second_secret_string, "VersionStages": ["AWSCURRENT"], }, headers={"X-Amz-Target": "secretsmanager.PutSecretValue"}, ) get_first_secret_value_json = test_client.post( "/", data={ "SecretId": DEFAULT_SECRET_NAME, "VersionId": first_secret_version_id, "VersionStage": "AWSCURRENT", }, headers={"X-Amz-Target": "secretsmanager.GetSecretValue"}, ) get_first_secret_json_data = json.loads( get_first_secret_value_json.data.decode("utf-8") ) assert get_first_secret_json_data assert get_first_secret_json_data["SecretString"] == first_secret_string @mock_secretsmanager def test_put_secret_value_versions_differ_if_same_secret_put_twice(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() test_client.post( "/", data={"Name": DEFAULT_SECRET_NAME, "SecretString": "foosecret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) put_first_secret_value_json = test_client.post( "/", data={ "SecretId": DEFAULT_SECRET_NAME, "SecretString": "secret", "VersionStages": ["AWSCURRENT"], }, headers={"X-Amz-Target": "secretsmanager.PutSecretValue"}, ) first_secret_json_data = json.loads( put_first_secret_value_json.data.decode("utf-8") ) first_secret_version_id = first_secret_json_data["VersionId"] put_second_secret_value_json = test_client.post( "/", data={ "SecretId": DEFAULT_SECRET_NAME, "SecretString": "secret", "VersionStages": ["AWSCURRENT"], }, headers={"X-Amz-Target": "secretsmanager.PutSecretValue"}, ) second_secret_json_data = json.loads( put_second_secret_value_json.data.decode("utf-8") ) second_secret_version_id = second_secret_json_data["VersionId"] assert first_secret_version_id != second_secret_version_id @mock_secretsmanager def test_can_list_secret_version_ids(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() test_client.post( "/", data={"Name": DEFAULT_SECRET_NAME, "SecretString": "foosecret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) put_first_secret_value_json = test_client.post( "/", data={ "SecretId": DEFAULT_SECRET_NAME, "SecretString": "secret", "VersionStages": ["AWSCURRENT"], }, headers={"X-Amz-Target": "secretsmanager.PutSecretValue"}, ) first_secret_json_data = json.loads( put_first_secret_value_json.data.decode("utf-8") ) first_secret_version_id = first_secret_json_data["VersionId"] put_second_secret_value_json = test_client.post( "/", data={ "SecretId": DEFAULT_SECRET_NAME, "SecretString": "secret", "VersionStages": ["AWSCURRENT"], }, headers={"X-Amz-Target": "secretsmanager.PutSecretValue"}, ) second_secret_json_data = json.loads( put_second_secret_value_json.data.decode("utf-8") ) second_secret_version_id = second_secret_json_data["VersionId"] list_secret_versions_json = test_client.post( "/", data={"SecretId": DEFAULT_SECRET_NAME}, headers={"X-Amz-Target": "secretsmanager.ListSecretVersionIds"}, ) versions_list = json.loads(list_secret_versions_json.data.decode("utf-8")) returned_version_ids = [v["VersionId"] for v in versions_list["Versions"]] assert [ first_secret_version_id, second_secret_version_id, ].sort() == returned_version_ids.sort() @mock_secretsmanager def test_get_resource_policy_secret(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() create_secret = test_client.post( "/", data={"Name": "test-secret", "SecretString": "foosecret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) describe_secret = test_client.post( "/", data={"SecretId": "test-secret"}, headers={"X-Amz-Target": "secretsmanager.GetResourcePolicy"}, ) json_data = json.loads(describe_secret.data.decode("utf-8")) assert json_data # Returned dict is not empty assert json_data["ARN"] != "" assert json_data["Name"] == "test-secret" @mock_secretsmanager def test_update_secret_version_stage(): custom_stage = "CUSTOM_STAGE" backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() create_secret = test_client.post( "/", data={"Name": "test-secret", "SecretString": "secret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) create_secret = json.loads(create_secret.data.decode("utf-8")) initial_version = create_secret["VersionId"] # Create a new version put_secret = test_client.post( "/", data={ "SecretId": DEFAULT_SECRET_NAME, "SecretString": "secret", "VersionStages": [custom_stage], }, headers={"X-Amz-Target": "secretsmanager.PutSecretValue"}, ) put_secret = json.loads(put_secret.data.decode("utf-8")) new_version = put_secret["VersionId"] describe_secret = test_client.post( "/", data={"SecretId": "test-secret"}, headers={"X-Amz-Target": "secretsmanager.DescribeSecret"}, ) json_data = json.loads(describe_secret.data.decode("utf-8")) stages = json_data["SecretVersionsToStages"] assert len(stages) == 2 assert stages[initial_version] == ["AWSPREVIOUS"] assert stages[new_version] == [custom_stage] test_client.post( "/", data={ "SecretId": "test-secret", "VersionStage": custom_stage, "RemoveFromVersionId": new_version, "MoveToVersionId": initial_version, }, headers={"X-Amz-Target": "secretsmanager.UpdateSecretVersionStage"}, ) describe_secret = test_client.post( "/", data={"SecretId": "test-secret"}, headers={"X-Amz-Target": "secretsmanager.DescribeSecret"}, ) json_data = json.loads(describe_secret.data.decode("utf-8")) stages = json_data["SecretVersionsToStages"] assert len(stages) == 2 assert stages[initial_version] == ["AWSPREVIOUS", custom_stage] assert stages[new_version] == [] @mock_secretsmanager def test_update_secret_version_stage_currentversion_handling(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() create_secret = test_client.post( "/", data={"Name": "test-secret", "SecretString": "secret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) create_secret = json.loads(create_secret.data.decode("utf-8")) initial_version = create_secret["VersionId"] # Create a new version put_secret = test_client.post( "/", data={"SecretId": DEFAULT_SECRET_NAME, "SecretString": "secret",}, headers={"X-Amz-Target": "secretsmanager.PutSecretValue"}, ) put_secret = json.loads(put_secret.data.decode("utf-8")) new_version = put_secret["VersionId"] describe_secret = test_client.post( "/", data={"SecretId": "test-secret"}, headers={"X-Amz-Target": "secretsmanager.DescribeSecret"}, ) json_data = json.loads(describe_secret.data.decode("utf-8")) stages = json_data["SecretVersionsToStages"] assert len(stages) == 2 assert stages[initial_version] == ["AWSPREVIOUS"] assert stages[new_version] == ["AWSCURRENT"] test_client.post( "/", data={ "SecretId": "test-secret", "VersionStage": "AWSCURRENT", "RemoveFromVersionId": new_version, "MoveToVersionId": initial_version, }, headers={"X-Amz-Target": "secretsmanager.UpdateSecretVersionStage"}, ) describe_secret = test_client.post( "/", data={"SecretId": "test-secret"}, headers={"X-Amz-Target": "secretsmanager.DescribeSecret"}, ) json_data = json.loads(describe_secret.data.decode("utf-8")) stages = json_data["SecretVersionsToStages"] assert len(stages) == 2 assert stages[initial_version] == ["AWSCURRENT"] assert stages[new_version] == ["AWSPREVIOUS"] @mock_secretsmanager def test_update_secret_version_stage_validation(): backend = server.create_backend_app("secretsmanager") test_client = backend.test_client() # Secret ID that doesn't exist resp = test_client.post( "/", data={"SecretId": "nonexistent"}, headers={"X-Amz-Target": "secretsmanager.UpdateSecretVersionStage"}, ) assert resp.status_code == 404 # Add a secret so we can run further checks secret = test_client.post( "/", data={"Name": DEFAULT_SECRET_NAME, "SecretString": "secret"}, headers={"X-Amz-Target": "secretsmanager.CreateSecret"}, ) secret = json.loads(secret.data.decode("utf-8")) # "Remove from" version ID that doesn't exist resp = test_client.post( "/", data={"SecretId": DEFAULT_SECRET_NAME, "RemoveFromVersionId": "nonexistent"}, headers={"X-Amz-Target": "secretsmanager.UpdateSecretVersionStage"}, ) assert resp.status_code == 400 # "Remove from" stage name which isn't attached to the given version resp = test_client.post( "/", data={ "SecretId": DEFAULT_SECRET_NAME, "RemoveFromVersionId": secret["VersionId"], "VersionStage": "nonexistent", }, headers={"X-Amz-Target": "secretsmanager.UpdateSecretVersionStage"}, ) assert resp.status_code == 400 # "Move to" version ID that doesn't exist resp = test_client.post( "/", data={"SecretId": DEFAULT_SECRET_NAME, "MoveToVersionId": "nonexistent",}, headers={"X-Amz-Target": "secretsmanager.UpdateSecretVersionStage"}, ) assert resp.status_code == 400 # # The following tests should work, but fail on the embedded dict in # RotationRules. The error message suggests a problem deeper in the code, which # needs further investigation. # # @mock_secretsmanager # def test_rotate_secret_rotation_period_zero(): # backend = server.create_backend_app('secretsmanager') # test_client = backend.test_client() # create_secret = test_client.post('/', # data={"Name": "test-secret", # "SecretString": "foosecret"}, # headers={ # "X-Amz-Target": "secretsmanager.CreateSecret" # }, # ) # rotate_secret = test_client.post('/', # data={"SecretId": "test-secret", # "RotationRules": {"AutomaticallyAfterDays": 0}}, # headers={ # "X-Amz-Target": "secretsmanager.RotateSecret" # }, # ) # json_data = json.loads(rotate_secret.data.decode("utf-8")) # assert json_data['message'] == "RotationRules.AutomaticallyAfterDays must be within 1-1000." # assert json_data['__type'] == 'InvalidParameterException' # @mock_secretsmanager # def test_rotate_secret_rotation_period_too_long(): # backend = server.create_backend_app('secretsmanager') # test_client = backend.test_client() # create_secret = test_client.post('/', # data={"Name": "test-secret", # "SecretString": "foosecret"}, # headers={ # "X-Amz-Target": "secretsmanager.CreateSecret" # }, # ) # rotate_secret = test_client.post('/', # data={"SecretId": "test-secret", # "RotationRules": {"AutomaticallyAfterDays": 1001}}, # headers={ # "X-Amz-Target": "secretsmanager.RotateSecret" # }, # ) # json_data = json.loads(rotate_secret.data.decode("utf-8")) # assert json_data['message'] == "RotationRules.AutomaticallyAfterDays must be within 1-1000." # assert json_data['__type'] == 'InvalidParameterException'
33.826707
98
0.62271
169ba1a32e401a532b258c5965c12379f6f58bbe
3,359
py
Python
douglas/tests/test_entries.py
willkg/douglas
7e46919d0baefecba414f41980cbe9c0529a884e
[ "MIT" ]
1
2016-02-12T15:26:24.000Z
2016-02-12T15:26:24.000Z
douglas/tests/test_entries.py
willkg/douglas
7e46919d0baefecba414f41980cbe9c0529a884e
[ "MIT" ]
1
2015-04-20T13:33:39.000Z
2015-04-20T13:33:39.000Z
douglas/tests/test_entries.py
willkg/douglas
7e46919d0baefecba414f41980cbe9c0529a884e
[ "MIT" ]
null
null
null
import time from os import environ from nose.tools import eq_, raises from douglas.entries.base import EntryBase, generate_entry from douglas.tests import req_, UnitTestBase TIME1 = (2008, 7, 21, 12, 51, 47, 0, 203, 1) class TestEntryBase(UnitTestBase): def force_tz(self): """ Force time zone to 'US/Eastern'. Some of the above tests are time zone dependent. """ self.__tz = environ.get('TZ') environ['TZ'] = 'US/Eastern' time.tzset() def restore_tz(self): """ Restore time zone to what it was before __force_tz() call. """ if self.__tz: environ['TZ'] = self.__tz self.__tz = None else: del environ['TZ'] time.tzset() def test_time(self): e = EntryBase(req_()) # set_time takes local time, and results depend on time zone. self.force_tz() e.set_time(TIME1) self.restore_tz() tests = [ ('timetuple', TIME1), ('mtime', 1216659107.0), ('ti', '12:51'), ('mo', 'Jul'), ('mo_num', '07'), ('da', '21'), ('dw', 'Monday'), ('yr', '2008'), ('fulltime', '20080721125147'), ('date', 'Mon, 21 Jul 2008'), ('w3cdate', '2008-07-21T16:51:47Z'), ('rfc822date', 'Mon, 21 Jul 2008 16:51 GMT') ] for key, expected in tests: eq_(e[key], expected) def test_dictlike(self): e = EntryBase(req_()) e['foo'] = 'bar' e['body'] = 'entry body' eq_(sorted(e.keys()), ['body', 'foo']) eq_(e['foo'], 'bar') eq_(e.get('foo'), 'bar') eq_(e.get('foo', 'fickle'), 'bar') eq_(e['body'], 'entry body', 'e[\'body\']') eq_(e.get('body'), 'entry body', 'e.get(\'body\')') eq_(e.get('missing_key', 'default'), 'default') eq_(e.get('missing_key'), None) eq_('foo' in e, True) eq_('foo2' in e, False) eq_('foo2' not in e, True) eq_('body' in e, True) e.update({'foo': 'bah', 'faux': 'pearls'}) eq_(e['foo'], 'bah') eq_(e['faux'], 'pearls') e.update({'body': 'new body data'}) eq_(e['body'], 'new body data') del e['foo'] eq_(e.get('foo'), None) @raises(KeyError) def test_delitem_keyerror(self): e = EntryBase(req_()) del e['missing_key'] @raises(KeyError) def test_delitem_valueerror(self): e = EntryBase(req_()) del e['body'] def test_generate_entry(self): # generate_entry takes local time, and we test the resulting # rfc822date which is UTC. Result depends on time zone. self.force_tz() e = generate_entry(req_(), {'foo': 'bar'}, 'entry body', TIME1) self.restore_tz() eq_(e['foo'], 'bar') eq_(e['body'], 'entry body') eq_(e['rfc822date'], 'Mon, 21 Jul 2008 16:51 GMT') e = generate_entry(req_(), {'foo': 'bar'}, 'entry body') def test_repr(self): # it doesn't really matter what __repr__ sends back--it's only used # for logging/debugging. so this test adds coverage for that line to # make sure it doesn't error out. e = EntryBase(req_()) repr(e)
27.760331
77
0.51682
c3ed367f89be0160137704dcb23dc7d1906f9ed0
6,382
py
Python
pymodbus/events.py
vmacari/pymodbus
ec97e2f2b50c6db0a932f44e550a5dee60bf0970
[ "BSD-3-Clause" ]
1,125
2017-05-11T06:11:36.000Z
2022-03-31T02:59:45.000Z
pymodbus/events.py
vmacari/pymodbus
ec97e2f2b50c6db0a932f44e550a5dee60bf0970
[ "BSD-3-Clause" ]
575
2017-05-12T02:46:55.000Z
2022-03-31T16:00:33.000Z
pymodbus/events.py
vmacari/pymodbus
ec97e2f2b50c6db0a932f44e550a5dee60bf0970
[ "BSD-3-Clause" ]
516
2017-05-19T14:06:06.000Z
2022-03-31T06:10:13.000Z
''' Modbus Remote Events ------------------------------------------------------------ An event byte returned by the Get Communications Event Log function can be any one of four types. The type is defined by bit 7 (the high-order bit) in each byte. It may be further defined by bit 6. ''' from pymodbus.exceptions import NotImplementedException from pymodbus.exceptions import ParameterException from pymodbus.utilities import pack_bitstring, unpack_bitstring class ModbusEvent(object): def encode(self): ''' Encodes the status bits to an event message :returns: The encoded event message ''' raise NotImplementedException() def decode(self, event): ''' Decodes the event message to its status bits :param event: The event to decode ''' raise NotImplementedException() class RemoteReceiveEvent(ModbusEvent): ''' Remote device MODBUS Receive Event The remote device stores this type of event byte when a query message is received. It is stored before the remote device processes the message. This event is defined by bit 7 set to logic '1'. The other bits will be set to a logic '1' if the corresponding condition is TRUE. The bit layout is:: Bit Contents ---------------------------------- 0 Not Used 2 Not Used 3 Not Used 4 Character Overrun 5 Currently in Listen Only Mode 6 Broadcast Receive 7 1 ''' def __init__(self, **kwargs): ''' Initialize a new event instance ''' self.overrun = kwargs.get('overrun', False) self.listen = kwargs.get('listen', False) self.broadcast = kwargs.get('broadcast', False) def encode(self): ''' Encodes the status bits to an event message :returns: The encoded event message ''' bits = [False] * 3 bits += [self.overrun, self.listen, self.broadcast, True] packet = pack_bitstring(bits) return packet def decode(self, event): ''' Decodes the event message to its status bits :param event: The event to decode ''' bits = unpack_bitstring(event) self.overrun = bits[4] self.listen = bits[5] self.broadcast = bits[6] class RemoteSendEvent(ModbusEvent): ''' Remote device MODBUS Send Event The remote device stores this type of event byte when it finishes processing a request message. It is stored if the remote device returned a normal or exception response, or no response. This event is defined by bit 7 set to a logic '0', with bit 6 set to a '1'. The other bits will be set to a logic '1' if the corresponding condition is TRUE. The bit layout is:: Bit Contents ----------------------------------------------------------- 0 Read Exception Sent (Exception Codes 1-3) 1 Slave Abort Exception Sent (Exception Code 4) 2 Slave Busy Exception Sent (Exception Codes 5-6) 3 Slave Program NAK Exception Sent (Exception Code 7) 4 Write Timeout Error Occurred 5 Currently in Listen Only Mode 6 1 7 0 ''' def __init__(self, **kwargs): ''' Initialize a new event instance ''' self.read = kwargs.get('read', False) self.slave_abort = kwargs.get('slave_abort', False) self.slave_busy = kwargs.get('slave_busy', False) self.slave_nak = kwargs.get('slave_nak', False) self.write_timeout = kwargs.get('write_timeout', False) self.listen = kwargs.get('listen', False) def encode(self): ''' Encodes the status bits to an event message :returns: The encoded event message ''' bits = [self.read, self.slave_abort, self.slave_busy, self.slave_nak, self.write_timeout, self.listen] bits += [True, False] packet = pack_bitstring(bits) return packet def decode(self, event): ''' Decodes the event message to its status bits :param event: The event to decode ''' # todo fix the start byte count bits = unpack_bitstring(event) self.read = bits[0] self.slave_abort = bits[1] self.slave_busy = bits[2] self.slave_nak = bits[3] self.write_timeout = bits[4] self.listen = bits[5] class EnteredListenModeEvent(ModbusEvent): ''' Remote device Entered Listen Only Mode The remote device stores this type of event byte when it enters the Listen Only Mode. The event is defined by a content of 04 hex. ''' value = 0x04 __encoded = b'\x04' def encode(self): ''' Encodes the status bits to an event message :returns: The encoded event message ''' return self.__encoded def decode(self, event): ''' Decodes the event message to its status bits :param event: The event to decode ''' if event != self.__encoded: raise ParameterException('Invalid decoded value') class CommunicationRestartEvent(ModbusEvent): ''' Remote device Initiated Communication Restart The remote device stores this type of event byte when its communications port is restarted. The remote device can be restarted by the Diagnostics function (code 08), with sub-function Restart Communications Option (code 00 01). That function also places the remote device into a 'Continue on Error' or 'Stop on Error' mode. If the remote device is placed into 'Continue on Error' mode, the event byte is added to the existing event log. If the remote device is placed into 'Stop on Error' mode, the byte is added to the log and the rest of the log is cleared to zeros. The event is defined by a content of zero. ''' value = 0x00 __encoded = b'\x00' def encode(self): ''' Encodes the status bits to an event message :returns: The encoded event message ''' return self.__encoded def decode(self, event): ''' Decodes the event message to its status bits :param event: The event to decode ''' if event != self.__encoded: raise ParameterException('Invalid decoded value')
32.232323
79
0.618145
a2a577a0753f7554ca86ee32be2a9a735fe0d983
25,151
py
Python
pandas/tests/io/formats/test_to_html.py
sofiane87/pandas
0de99558b497c5611cbe5d35d504763bd7692275
[ "BSD-3-Clause" ]
2
2019-11-13T18:20:29.000Z
2020-04-18T02:58:39.000Z
pandas/tests/io/formats/test_to_html.py
ivan-vasilev/pandas
4071dde86e33434e1bee8304fa62074949f813cc
[ "BSD-3-Clause" ]
null
null
null
pandas/tests/io/formats/test_to_html.py
ivan-vasilev/pandas
4071dde86e33434e1bee8304fa62074949f813cc
[ "BSD-3-Clause" ]
2
2019-12-21T21:17:43.000Z
2019-12-26T10:34:36.000Z
from datetime import datetime from io import StringIO import re import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, MultiIndex, option_context import pandas.util.testing as tm import pandas.io.formats.format as fmt lorem_ipsum = ( "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod" " tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim" " veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex" " ea commodo consequat. Duis aute irure dolor in reprehenderit in" " voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur" " sint occaecat cupidatat non proident, sunt in culpa qui officia" " deserunt mollit anim id est laborum." ) def expected_html(datapath, name): """ Read HTML file from formats data directory. Parameters ---------- datapath : pytest fixture The datapath fixture injected into a test by pytest. name : str The name of the HTML file without the suffix. Returns ------- str : contents of HTML file. """ filename = ".".join([name, "html"]) filepath = datapath("io", "formats", "data", "html", filename) with open(filepath, encoding="utf-8") as f: html = f.read() return html.rstrip() @pytest.fixture(params=["mixed", "empty"]) def biggie_df_fixture(request): """Fixture for a big mixed Dataframe and an empty Dataframe""" if request.param == "mixed": df = DataFrame( {"A": np.random.randn(200), "B": tm.makeStringIndex(200)}, index=np.arange(200), ) df.loc[:20, "A"] = np.nan df.loc[:20, "B"] = np.nan return df elif request.param == "empty": df = DataFrame(index=np.arange(200)) return df @pytest.fixture(params=fmt._VALID_JUSTIFY_PARAMETERS) def justify(request): return request.param @pytest.mark.parametrize("col_space", [30, 50]) def test_to_html_with_col_space(col_space): df = DataFrame(np.random.random(size=(1, 3))) # check that col_space affects HTML generation # and be very brittle about it. result = df.to_html(col_space=col_space) hdrs = [x for x in result.split(r"\n") if re.search(r"<th[>\s]", x)] assert len(hdrs) > 0 for h in hdrs: assert "min-width" in h assert str(col_space) in h def test_to_html_with_empty_string_label(): # GH 3547, to_html regards empty string labels as repeated labels data = {"c1": ["a", "b"], "c2": ["a", ""], "data": [1, 2]} df = DataFrame(data).set_index(["c1", "c2"]) result = df.to_html() assert "rowspan" not in result @pytest.mark.parametrize( "df,expected", [ (DataFrame({"\u03c3": np.arange(10.0)}), "unicode_1"), (DataFrame({"A": ["\u03c3"]}), "unicode_2"), ], ) def test_to_html_unicode(df, expected, datapath): expected = expected_html(datapath, expected) result = df.to_html() assert result == expected def test_to_html_encoding(float_frame, tmp_path): # GH 28663 path = tmp_path / "test.html" float_frame.to_html(path, encoding="gbk") with open(str(path), "r", encoding="gbk") as f: assert float_frame.to_html() == f.read() def test_to_html_decimal(datapath): # GH 12031 df = DataFrame({"A": [6.0, 3.1, 2.2]}) result = df.to_html(decimal=",") expected = expected_html(datapath, "gh12031_expected_output") assert result == expected @pytest.mark.parametrize( "kwargs,string,expected", [ (dict(), "<type 'str'>", "escaped"), (dict(escape=False), "<b>bold</b>", "escape_disabled"), ], ) def test_to_html_escaped(kwargs, string, expected, datapath): a = "str<ing1 &amp;" b = "stri>ng2 &amp;" test_dict = {"co<l1": {a: string, b: string}, "co>l2": {a: string, b: string}} result = DataFrame(test_dict).to_html(**kwargs) expected = expected_html(datapath, expected) assert result == expected @pytest.mark.parametrize("index_is_named", [True, False]) def test_to_html_multiindex_index_false(index_is_named, datapath): # GH 8452 df = DataFrame( {"a": range(2), "b": range(3, 5), "c": range(5, 7), "d": range(3, 5)} ) df.columns = MultiIndex.from_product([["a", "b"], ["c", "d"]]) if index_is_named: df.index = Index(df.index.values, name="idx") result = df.to_html(index=False) expected = expected_html(datapath, "gh8452_expected_output") assert result == expected @pytest.mark.parametrize( "multi_sparse,expected", [ (False, "multiindex_sparsify_false_multi_sparse_1"), (False, "multiindex_sparsify_false_multi_sparse_2"), (True, "multiindex_sparsify_1"), (True, "multiindex_sparsify_2"), ], ) def test_to_html_multiindex_sparsify(multi_sparse, expected, datapath): index = MultiIndex.from_arrays([[0, 0, 1, 1], [0, 1, 0, 1]], names=["foo", None]) df = DataFrame([[0, 1], [2, 3], [4, 5], [6, 7]], index=index) if expected.endswith("2"): df.columns = index[::2] with option_context("display.multi_sparse", multi_sparse): result = df.to_html() expected = expected_html(datapath, expected) assert result == expected @pytest.mark.parametrize( "max_rows,expected", [ (60, "gh14882_expected_output_1"), # Test that ... appears in a middle level (56, "gh14882_expected_output_2"), ], ) def test_to_html_multiindex_odd_even_truncate(max_rows, expected, datapath): # GH 14882 - Issue on truncation with odd length DataFrame index = MultiIndex.from_product( [[100, 200, 300], [10, 20, 30], [1, 2, 3, 4, 5, 6, 7]], names=["a", "b", "c"] ) df = DataFrame({"n": range(len(index))}, index=index) result = df.to_html(max_rows=max_rows) expected = expected_html(datapath, expected) assert result == expected @pytest.mark.parametrize( "df,formatters,expected", [ ( DataFrame( [[0, 1], [2, 3], [4, 5], [6, 7]], columns=["foo", None], index=np.arange(4), ), {"__index__": lambda x: "abcd"[x]}, "index_formatter", ), ( DataFrame({"months": [datetime(2016, 1, 1), datetime(2016, 2, 2)]}), {"months": lambda x: x.strftime("%Y-%m")}, "datetime64_monthformatter", ), ( DataFrame( { "hod": pd.to_datetime( ["10:10:10.100", "12:12:12.120"], format="%H:%M:%S.%f" ) } ), {"hod": lambda x: x.strftime("%H:%M")}, "datetime64_hourformatter", ), ], ) def test_to_html_formatters(df, formatters, expected, datapath): expected = expected_html(datapath, expected) result = df.to_html(formatters=formatters) assert result == expected def test_to_html_regression_GH6098(): df = DataFrame( { "clé1": ["a", "a", "b", "b", "a"], "clé2": ["1er", "2ème", "1er", "2ème", "1er"], "données1": np.random.randn(5), "données2": np.random.randn(5), } ) # it works df.pivot_table(index=["clé1"], columns=["clé2"])._repr_html_() def test_to_html_truncate(datapath): index = pd.date_range(start="20010101", freq="D", periods=20) df = DataFrame(index=index, columns=range(20)) result = df.to_html(max_rows=8, max_cols=4) expected = expected_html(datapath, "truncate") assert result == expected @pytest.mark.parametrize("size", [1, 5]) def test_html_invalid_formatters_arg_raises(size): # issue-28469 df = DataFrame(columns=["a", "b", "c"]) msg = "Formatters length({}) should match DataFrame number of columns(3)" with pytest.raises(ValueError, match=re.escape(msg.format(size))): df.to_html(formatters=["{}".format] * size) def test_to_html_truncate_formatter(datapath): # issue-25955 data = [ {"A": 1, "B": 2, "C": 3, "D": 4}, {"A": 5, "B": 6, "C": 7, "D": 8}, {"A": 9, "B": 10, "C": 11, "D": 12}, {"A": 13, "B": 14, "C": 15, "D": 16}, ] df = DataFrame(data) fmt = lambda x: str(x) + "_mod" formatters = [fmt, fmt, None, None] result = df.to_html(formatters=formatters, max_cols=3) expected = expected_html(datapath, "truncate_formatter") assert result == expected @pytest.mark.parametrize( "sparsify,expected", [(True, "truncate_multi_index"), (False, "truncate_multi_index_sparse_off")], ) def test_to_html_truncate_multi_index(sparsify, expected, datapath): arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] df = DataFrame(index=arrays, columns=arrays) result = df.to_html(max_rows=7, max_cols=7, sparsify=sparsify) expected = expected_html(datapath, expected) assert result == expected @pytest.mark.parametrize( "option,result,expected", [ (None, lambda df: df.to_html(), "1"), (None, lambda df: df.to_html(border=0), "0"), (0, lambda df: df.to_html(), "0"), (0, lambda df: df._repr_html_(), "0"), ], ) def test_to_html_border(option, result, expected): df = DataFrame({"A": [1, 2]}) if option is None: result = result(df) else: with option_context("display.html.border", option): result = result(df) expected = 'border="{}"'.format(expected) assert expected in result @pytest.mark.parametrize("biggie_df_fixture", ["mixed"], indirect=True) def test_to_html(biggie_df_fixture): # TODO: split this test df = biggie_df_fixture s = df.to_html() buf = StringIO() retval = df.to_html(buf=buf) assert retval is None assert buf.getvalue() == s assert isinstance(s, str) df.to_html(columns=["B", "A"], col_space=17) df.to_html(columns=["B", "A"], formatters={"A": lambda x: "{x:.1f}".format(x=x)}) df.to_html(columns=["B", "A"], float_format=str) df.to_html(columns=["B", "A"], col_space=12, float_format=str) @pytest.mark.parametrize("biggie_df_fixture", ["empty"], indirect=True) def test_to_html_empty_dataframe(biggie_df_fixture): df = biggie_df_fixture df.to_html() def test_to_html_filename(biggie_df_fixture, tmpdir): df = biggie_df_fixture expected = df.to_html() path = tmpdir.join("test.html") df.to_html(path) result = path.read() assert result == expected def test_to_html_with_no_bold(): df = DataFrame({"x": np.random.randn(5)}) html = df.to_html(bold_rows=False) result = html[html.find("</thead>")] assert "<strong" not in result def test_to_html_columns_arg(float_frame): result = float_frame.to_html(columns=["A"]) assert "<th>B</th>" not in result @pytest.mark.parametrize( "columns,justify,expected", [ ( MultiIndex.from_tuples( list(zip(np.arange(2).repeat(2), np.mod(range(4), 2))), names=["CL0", "CL1"], ), "left", "multiindex_1", ), ( MultiIndex.from_tuples(list(zip(range(4), np.mod(range(4), 2)))), "right", "multiindex_2", ), ], ) def test_to_html_multiindex(columns, justify, expected, datapath): df = DataFrame([list("abcd"), list("efgh")], columns=columns) result = df.to_html(justify=justify) expected = expected_html(datapath, expected) assert result == expected def test_to_html_justify(justify, datapath): df = DataFrame( {"A": [6, 30000, 2], "B": [1, 2, 70000], "C": [223442, 0, 1]}, columns=["A", "B", "C"], ) result = df.to_html(justify=justify) expected = expected_html(datapath, "justify").format(justify=justify) assert result == expected @pytest.mark.parametrize( "justify", ["super-right", "small-left", "noinherit", "tiny", "pandas"] ) def test_to_html_invalid_justify(justify): # GH 17527 df = DataFrame() msg = "Invalid value for justify parameter" with pytest.raises(ValueError, match=msg): df.to_html(justify=justify) def test_to_html_index(datapath): # TODO: split this test index = ["foo", "bar", "baz"] df = DataFrame( {"A": [1, 2, 3], "B": [1.2, 3.4, 5.6], "C": ["one", "two", np.nan]}, columns=["A", "B", "C"], index=index, ) expected_with_index = expected_html(datapath, "index_1") assert df.to_html() == expected_with_index expected_without_index = expected_html(datapath, "index_2") result = df.to_html(index=False) for i in index: assert i not in result assert result == expected_without_index df.index = Index(["foo", "bar", "baz"], name="idx") expected_with_index = expected_html(datapath, "index_3") assert df.to_html() == expected_with_index assert df.to_html(index=False) == expected_without_index tuples = [("foo", "car"), ("foo", "bike"), ("bar", "car")] df.index = MultiIndex.from_tuples(tuples) expected_with_index = expected_html(datapath, "index_4") assert df.to_html() == expected_with_index result = df.to_html(index=False) for i in ["foo", "bar", "car", "bike"]: assert i not in result # must be the same result as normal index assert result == expected_without_index df.index = MultiIndex.from_tuples(tuples, names=["idx1", "idx2"]) expected_with_index = expected_html(datapath, "index_5") assert df.to_html() == expected_with_index assert df.to_html(index=False) == expected_without_index @pytest.mark.parametrize("classes", ["sortable draggable", ["sortable", "draggable"]]) def test_to_html_with_classes(classes, datapath): df = DataFrame() expected = expected_html(datapath, "with_classes") result = df.to_html(classes=classes) assert result == expected def test_to_html_no_index_max_rows(datapath): # GH 14998 df = DataFrame({"A": [1, 2, 3, 4]}) result = df.to_html(index=False, max_rows=1) expected = expected_html(datapath, "gh14998_expected_output") assert result == expected def test_to_html_multiindex_max_cols(datapath): # GH 6131 index = MultiIndex( levels=[["ba", "bb", "bc"], ["ca", "cb", "cc"]], codes=[[0, 1, 2], [0, 1, 2]], names=["b", "c"], ) columns = MultiIndex( levels=[["d"], ["aa", "ab", "ac"]], codes=[[0, 0, 0], [0, 1, 2]], names=[None, "a"], ) data = np.array( [[1.0, np.nan, np.nan], [np.nan, 2.0, np.nan], [np.nan, np.nan, 3.0]] ) df = DataFrame(data, index, columns) result = df.to_html(max_cols=2) expected = expected_html(datapath, "gh6131_expected_output") assert result == expected def test_to_html_multi_indexes_index_false(datapath): # GH 22579 df = DataFrame( {"a": range(10), "b": range(10, 20), "c": range(10, 20), "d": range(10, 20)} ) df.columns = MultiIndex.from_product([["a", "b"], ["c", "d"]]) df.index = MultiIndex.from_product([["a", "b"], ["c", "d", "e", "f", "g"]]) result = df.to_html(index=False) expected = expected_html(datapath, "gh22579_expected_output") assert result == expected @pytest.mark.parametrize("index_names", [True, False]) @pytest.mark.parametrize("header", [True, False]) @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize( "column_index, column_type", [ (Index([0, 1]), "unnamed_standard"), (Index([0, 1], name="columns.name"), "named_standard"), (MultiIndex.from_product([["a"], ["b", "c"]]), "unnamed_multi"), ( MultiIndex.from_product( [["a"], ["b", "c"]], names=["columns.name.0", "columns.name.1"] ), "named_multi", ), ], ) @pytest.mark.parametrize( "row_index, row_type", [ (Index([0, 1]), "unnamed_standard"), (Index([0, 1], name="index.name"), "named_standard"), (MultiIndex.from_product([["a"], ["b", "c"]]), "unnamed_multi"), ( MultiIndex.from_product( [["a"], ["b", "c"]], names=["index.name.0", "index.name.1"] ), "named_multi", ), ], ) def test_to_html_basic_alignment( datapath, row_index, row_type, column_index, column_type, index, header, index_names ): # GH 22747, GH 22579 df = DataFrame(np.zeros((2, 2), dtype=int), index=row_index, columns=column_index) result = df.to_html(index=index, header=header, index_names=index_names) if not index: row_type = "none" elif not index_names and row_type.startswith("named"): row_type = "un" + row_type if not header: column_type = "none" elif not index_names and column_type.startswith("named"): column_type = "un" + column_type filename = "index_" + row_type + "_columns_" + column_type expected = expected_html(datapath, filename) assert result == expected @pytest.mark.parametrize("index_names", [True, False]) @pytest.mark.parametrize("header", [True, False]) @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize( "column_index, column_type", [ (Index(np.arange(8)), "unnamed_standard"), (Index(np.arange(8), name="columns.name"), "named_standard"), ( MultiIndex.from_product([["a", "b"], ["c", "d"], ["e", "f"]]), "unnamed_multi", ), ( MultiIndex.from_product( [["a", "b"], ["c", "d"], ["e", "f"]], names=["foo", None, "baz"] ), "named_multi", ), ], ) @pytest.mark.parametrize( "row_index, row_type", [ (Index(np.arange(8)), "unnamed_standard"), (Index(np.arange(8), name="index.name"), "named_standard"), ( MultiIndex.from_product([["a", "b"], ["c", "d"], ["e", "f"]]), "unnamed_multi", ), ( MultiIndex.from_product( [["a", "b"], ["c", "d"], ["e", "f"]], names=["foo", None, "baz"] ), "named_multi", ), ], ) def test_to_html_alignment_with_truncation( datapath, row_index, row_type, column_index, column_type, index, header, index_names ): # GH 22747, GH 22579 df = DataFrame(np.arange(64).reshape(8, 8), index=row_index, columns=column_index) result = df.to_html( max_rows=4, max_cols=4, index=index, header=header, index_names=index_names ) if not index: row_type = "none" elif not index_names and row_type.startswith("named"): row_type = "un" + row_type if not header: column_type = "none" elif not index_names and column_type.startswith("named"): column_type = "un" + column_type filename = "trunc_df_index_" + row_type + "_columns_" + column_type expected = expected_html(datapath, filename) assert result == expected @pytest.mark.parametrize("index", [False, 0]) def test_to_html_truncation_index_false_max_rows(datapath, index): # GH 15019 data = [ [1.764052, 0.400157], [0.978738, 2.240893], [1.867558, -0.977278], [0.950088, -0.151357], [-0.103219, 0.410599], ] df = DataFrame(data) result = df.to_html(max_rows=4, index=index) expected = expected_html(datapath, "gh15019_expected_output") assert result == expected @pytest.mark.parametrize("index", [False, 0]) @pytest.mark.parametrize( "col_index_named, expected_output", [(False, "gh22783_expected_output"), (True, "gh22783_named_columns_index")], ) def test_to_html_truncation_index_false_max_cols( datapath, index, col_index_named, expected_output ): # GH 22783 data = [ [1.764052, 0.400157, 0.978738, 2.240893, 1.867558], [-0.977278, 0.950088, -0.151357, -0.103219, 0.410599], ] df = DataFrame(data) if col_index_named: df.columns.rename("columns.name", inplace=True) result = df.to_html(max_cols=4, index=index) expected = expected_html(datapath, expected_output) assert result == expected @pytest.mark.parametrize("notebook", [True, False]) def test_to_html_notebook_has_style(notebook): df = DataFrame({"A": [1, 2, 3]}) result = df.to_html(notebook=notebook) if notebook: assert "tbody tr th:only-of-type" in result assert "vertical-align: middle;" in result assert "thead th" in result else: assert "tbody tr th:only-of-type" not in result assert "vertical-align: middle;" not in result assert "thead th" not in result def test_to_html_with_index_names_false(): # GH 16493 df = DataFrame({"A": [1, 2]}, index=Index(["a", "b"], name="myindexname")) result = df.to_html(index_names=False) assert "myindexname" not in result def test_to_html_with_id(): # GH 8496 df = DataFrame({"A": [1, 2]}, index=Index(["a", "b"], name="myindexname")) result = df.to_html(index_names=False, table_id="TEST_ID") assert ' id="TEST_ID"' in result @pytest.mark.parametrize( "value,float_format,expected", [ (0.19999, "%.3f", "gh21625_expected_output"), (100.0, "%.0f", "gh22270_expected_output"), ], ) def test_to_html_float_format_no_fixed_width(value, float_format, expected, datapath): # GH 21625, GH 22270 df = DataFrame({"x": [value]}) expected = expected_html(datapath, expected) result = df.to_html(float_format=float_format) assert result == expected @pytest.mark.parametrize( "render_links,expected", [(True, "render_links_true"), (False, "render_links_false")], ) def test_to_html_render_links(render_links, expected, datapath): # GH 2679 data = [ [0, "http://pandas.pydata.org/?q1=a&q2=b", "pydata.org"], [0, "www.pydata.org", "pydata.org"], ] df = DataFrame(data, columns=["foo", "bar", None]) result = df.to_html(render_links=render_links) expected = expected_html(datapath, expected) assert result == expected @pytest.mark.parametrize( "method,expected", [ ("to_html", lambda x: lorem_ipsum), ("_repr_html_", lambda x: lorem_ipsum[: x - 4] + "..."), # regression case ], ) @pytest.mark.parametrize("max_colwidth", [10, 20, 50, 100]) def test_ignore_display_max_colwidth(method, expected, max_colwidth): # see gh-17004 df = DataFrame([lorem_ipsum]) with pd.option_context("display.max_colwidth", max_colwidth): result = getattr(df, method)() expected = expected(max_colwidth) assert expected in result @pytest.mark.parametrize("classes", [True, 0]) def test_to_html_invalid_classes_type(classes): # GH 25608 df = DataFrame() msg = "classes must be a string, list, or tuple" with pytest.raises(TypeError, match=msg): df.to_html(classes=classes) def test_to_html_round_column_headers(): # GH 17280 df = DataFrame([1], columns=[0.55555]) with pd.option_context("display.precision", 3): html = df.to_html(notebook=False) notebook = df.to_html(notebook=True) assert "0.55555" in html assert "0.556" in notebook @pytest.mark.parametrize("unit", ["100px", "10%", "5em", 150]) def test_to_html_with_col_space_units(unit): # GH 25941 df = DataFrame(np.random.random(size=(1, 3))) result = df.to_html(col_space=unit) result = result.split("tbody")[0] hdrs = [x for x in result.split("\n") if re.search(r"<th[>\s]", x)] if isinstance(unit, int): unit = str(unit) + "px" for h in hdrs: expected = '<th style="min-width: {unit};">'.format(unit=unit) assert expected in h def test_html_repr_min_rows_default(datapath): # gh-27991 # default setting no truncation even if above min_rows df = pd.DataFrame({"a": range(20)}) result = df._repr_html_() expected = expected_html(datapath, "html_repr_min_rows_default_no_truncation") assert result == expected # default of max_rows 60 triggers truncation if above df = pd.DataFrame({"a": range(61)}) result = df._repr_html_() expected = expected_html(datapath, "html_repr_min_rows_default_truncated") assert result == expected @pytest.mark.parametrize( "max_rows,min_rows,expected", [ # truncated after first two rows (10, 4, "html_repr_max_rows_10_min_rows_4"), # when set to None, follow value of max_rows (12, None, "html_repr_max_rows_12_min_rows_None"), # when set value higher as max_rows, use the minimum (10, 12, "html_repr_max_rows_10_min_rows_12"), # max_rows of None -> never truncate (None, 12, "html_repr_max_rows_None_min_rows_12"), ], ) def test_html_repr_min_rows(datapath, max_rows, min_rows, expected): # gh-27991 df = pd.DataFrame({"a": range(61)}) expected = expected_html(datapath, expected) with option_context("display.max_rows", max_rows, "display.min_rows", min_rows): result = df._repr_html_() assert result == expected
31.87706
88
0.615522
d527f4372310ee4c76af52e21eca48e6eabf354d
6,417
py
Python
src/python/pants/backend/python/tasks/checkstyle/import_order.py
qma/pants
604f58a366b66bc5cfa83e7250cb8af8130832cf
[ "Apache-2.0" ]
null
null
null
src/python/pants/backend/python/tasks/checkstyle/import_order.py
qma/pants
604f58a366b66bc5cfa83e7250cb8af8130832cf
[ "Apache-2.0" ]
null
null
null
src/python/pants/backend/python/tasks/checkstyle/import_order.py
qma/pants
604f58a366b66bc5cfa83e7250cb8af8130832cf
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import ast import os from distutils import sysconfig from pants.backend.python.tasks.checkstyle.common import CheckstylePlugin class ImportType(object): """Enforce a consistent import order. Imports are currently grouped into five separate groups: stdlib twitter gen package-local third-party Imports should be in this order and separated by a single space. """ STDLIB = 1 TWITTER = 2 GEN = 3 PACKAGE = 4 THIRD_PARTY = 5 UNKNOWN = 0 NAMES = { UNKNOWN: 'unknown', STDLIB: 'stdlib', TWITTER: 'twitter', GEN: 'gen', PACKAGE: 'package', THIRD_PARTY: '3rdparty' } @classmethod def order_names(cls, import_order): return ' '.join(cls.NAMES.get(import_id, 'unknown') for import_id in import_order) class ImportOrder(CheckstylePlugin): # TODO(wickman) # - Warn if a package is marked as a 3rdparty but it's actually a package # in the current working directory that should be a package-absolute # import (i.e. from __future__ import absolute_imports) STANDARD_LIB_PATH = os.path.realpath(sysconfig.get_python_lib(standard_lib=1)) @classmethod def extract_import_modules(cls, node): if isinstance(node, ast.Import): return [alias.name for alias in node.names] elif isinstance(node, ast.ImportFrom): return [node.module] return [] @classmethod def classify_import(cls, node, name): if name == '' or (isinstance(node, ast.ImportFrom) and node.level > 0): return ImportType.PACKAGE if name.startswith('twitter.'): return ImportType.TWITTER if name.startswith('gen.'): return ImportType.GEN try: module = __import__(name) except ImportError: return ImportType.THIRD_PARTY if (not hasattr(module, '__file__') or os.path.realpath(module.__file__).startswith(cls.STANDARD_LIB_PATH)): return ImportType.STDLIB # Assume anything we can't classify is third-party return ImportType.THIRD_PARTY @classmethod def classify_import_node(cls, node): return set(cls.classify_import(node, module_name) for module_name in cls.extract_import_modules(node)) def import_errors(self, node): errors = [] if isinstance(node, ast.ImportFrom): if len(node.names) == 1 and node.names[0].name == '*': errors.append(self.error('T400', 'Wildcard imports are not allowed.', node)) names = [alias.name.lower() for alias in node.names] if names != sorted(names): errors.append(self.error('T401', 'From import must import names in lexical order.', node)) if isinstance(node, ast.Import): if len(node.names) > 1: errors.append(self.error('T402', 'Absolute import statements should only import one module at a time.', node)) return errors def classify_imports(self, chunk): """ Possible import statements: import name from name import subname from name import subname1 as subname2 from name import * from name import tuple AST representations: ImportFrom: module=name names=[alias(name, asname), ...] name can be '*' Import: names=[alias(name, asname), ...] Imports are classified into 5 classes: stdlib => Python standard library twitter.* => Twitter internal / standard library gen.* => Thrift gen namespaces .* => Package-local imports 3rdparty => site-packages or third party classify_imports classifies the import into one of these forms. """ errors = [] all_module_types = set() for node in chunk: errors.extend(self.import_errors(node)) module_types = self.classify_import_node(node) if len(module_types) > 1: errors.append(self.error( 'T403', 'Import statement imports from multiple module types: {types}.'.format( types=ImportType.order_names(module_types)), node)) if ImportType.UNKNOWN in module_types: errors.append(self.warning('T404', 'Unclassifiable import.', node)) all_module_types.update(module_types) if len(chunk) > 0 and len(all_module_types) > 1: errors.append( self.error( 'T405', 'Import block starting here contains imports ' 'from multiple module types: {types}.'.format( types=ImportType.order_names(all_module_types)), chunk[0].lineno)) return all_module_types, errors # TODO(wickman) Classify imports within top-level try/except ImportError blocks. def iter_import_chunks(self): """Iterate over space-separated import chunks in a file.""" chunk = [] last_line = None for leaf in self.python_file.tree.body: if isinstance(leaf, (ast.Import, ast.ImportFrom)): # we've seen previous imports but this import is not in the same chunk if last_line and leaf.lineno != last_line[1]: yield chunk chunk = [leaf] # we've either not seen previous imports or this is part of the same chunk elif not last_line or last_line and leaf.lineno == last_line[1]: chunk.append(leaf) last_line = self.python_file.logical_lines[leaf.lineno] if chunk: yield chunk def nits(self): errors = [] module_order = [] for chunk in self.iter_import_chunks(): module_types, chunk_errors = self.classify_imports(chunk) errors.extend(chunk_errors) module_order.append(list(module_types)) numbered_module_order = [] for modules in module_order: if len(modules) > 0: if modules[0] is not ImportType.UNKNOWN: numbered_module_order.append(modules[0]) if numbered_module_order != sorted(numbered_module_order): errors.append(self.error('T406', 'Out of order import chunks: Got {} and expect {}.'.format( ImportType.order_names(numbered_module_order), ImportType.order_names(sorted(numbered_module_order))), self.python_file.tree)) return errors
32.739796
98
0.661212
bad30b629f3d91fa5a6817139503733829f1d0f5
41,037
py
Python
src/transformers/models/vision_encoder_decoder/modeling_flax_vision_encoder_decoder.py
changwangss/transformers
321eb56222b1655a06a993a473becf467d6e2034
[ "Apache-2.0" ]
1
2021-12-12T12:55:50.000Z
2021-12-12T12:55:50.000Z
src/transformers/models/vision_encoder_decoder/modeling_flax_vision_encoder_decoder.py
changwangss/transformers
321eb56222b1655a06a993a473becf467d6e2034
[ "Apache-2.0" ]
null
null
null
src/transformers/models/vision_encoder_decoder/modeling_flax_vision_encoder_decoder.py
changwangss/transformers
321eb56222b1655a06a993a473becf467d6e2034
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Classes to support Vision-Encoder-Text-Decoder architectures """ import os from typing import Optional, Tuple, Union import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, unfreeze from jax import lax from jax.random import PRNGKey from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput from ...modeling_flax_utils import FlaxPreTrainedModel from ...utils import logging from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "VisionEncoderDecoderConfig" VISION_ENCODER_DECODER_START_DOCSTRING = r""" This class can be used to initialize an image-to-text-sequence model with any pretrained vision autoencoding model as the encoder and any pretrained text autoregressive model as the decoder. The encoder is loaded via :meth:`~transformers.AutoModel.from_pretrained` function and the decoder is loaded via :meth:`~transformers.AutoModelForCausalLM.from_pretrained` function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like image captioning. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in `Leveraging Pre-trained Checkpoints for Sequence Generation Tasks <https://arxiv.org/abs/1907.12461>`__ by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. Additionally, in `TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models <https://arxiv.org/abs/2109.10282>`__ it is shown how leveraging large pretrained vision models for optical character recognition (OCR) yields a significant performance improvement. After such a Vision-Encoder-Text-Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). This model inherits from :class:`~transformers.FlaxPreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen `flax.nn.Module <https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html>`__ subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.VisionEncoderDecoderConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.FlaxPreTrainedModel.from_pretrained` method to load the model weights. """ VISION_ENCODER_DECODER_INPUTS_DOCSTRING = r""" Args: pixel_values (:obj:`jnp.ndarray` of shape :obj:`(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using the vision model's feature extractor. For example, using :class:`~transformers.ViTFeatureExtractor`. See :meth:`transformers.ViTFeatureExtractor.__call__` for details. decoder_input_ids (:obj:`jnp.ndarray` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.PreTrainedTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are decoder input IDs? <../glossary.html#decoder-input-ids>`__ decoder_attention_mask (:obj:`jnp.ndarray` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will also be used by default. decoder_position_ids (:obj:`jnp.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range ``[0, config.decoder.max_position_embeddings - 1]``. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): If set to ``True``, the model will return a :class:`~transformers.file_utils.FlaxSeq2SeqLMOutput` instead of a plain tuple. """ VISION_ENCODER_DECODER_ENCODE_INPUTS_DOCSTRING = r""" Args: pixel_values (:obj:`jnp.ndarray` of shape :obj:`(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using the vision model's feature extractor. For example, using :class:`~transformers.ViTFeatureExtractor`. See :meth:`transformers.ViTFeatureExtractor.__call__` for details. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): If set to ``True``, the model will return a :class:`~transformers.file_utils.FlaxBaseModelOutput` instead of a plain tuple. """ VISION_ENCODER_DECODER_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (:obj:`jnp.ndarray` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.PreTrainedTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are decoder input IDs? <../glossary.html#decoder-input-ids>`__ If :obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see :obj:`past_key_values`). For sequence to sequence training, :obj:`decoder_input_ids` should be provided. If no :obj:`decoder_input_ids` is provided, the model will create this tensor by shifting the :obj:`input_ids` to the right for denoising pre-training. encoder_outputs (:obj:`tuple(tuple(jnp.ndarray)`): Tuple consists of (:obj:`last_hidden_state`, `optional`: :obj:`hidden_states`, `optional`: :obj:`attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. decoder_attention_mask (:obj:`jnp.ndarray` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will also be used by default. decoder_position_ids (:obj:`jnp.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range ``[0, config.decoder.max_position_embeddings - 1]``. past_key_values (:obj:`Dict[str, jnp.ndarray]`, `optional`, returned by ``init_cache`` or when passing previous ``past_key_values``): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape `[batch_size, max_length]`. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): If set to ``True``, the model will return a :class:`~transformers.file_utils.FlaxCausalLMOutputWithCrossAttentions` instead of a plain tuple. """ class FlaxVisionEncoderDecoderModule(nn.Module): config: VisionEncoderDecoderConfig dtype: jnp.dtype = jnp.float32 def setup(self): encoder_config = self.config.encoder decoder_config = self.config.decoder # Copied from `modeling_hybrid_clip.py` with modifications. from ...models.auto.modeling_flax_auto import FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, FLAX_MODEL_MAPPING encoder_module = FLAX_MODEL_MAPPING[encoder_config.__class__].module_class decoder_module = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING[decoder_config.__class__].module_class self.encoder = encoder_module(encoder_config, dtype=self.dtype) self.decoder = decoder_module(decoder_config, dtype=self.dtype) # encoder outputs might need to be projected to different dimension for decoder if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = nn.Dense( self.decoder.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.decoder.config.initializer_range, self.dtype), dtype=self.dtype, ) else: self.enc_to_dec_proj = None def _get_encoder_module(self): return self.encoder def _get_projection_module(self): return self.enc_to_dec_proj def _get_decoder_module(self): return self.decoder def __call__( self, pixel_values, decoder_input_ids, decoder_attention_mask, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if self.enc_to_dec_proj is not None: encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) # The advantage of explicitly setting this is TPU XLA compiler knows as soon as possible what shape this # variable has and can better optimize. Also passing `None` can lead to some problems when jitting the model. # In Flax/JAX, we only want to pass `None` for non-tensor function inputs. For all tensor function inputs, we # should always pass a tensor and not `None`. batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqLMOutput( logits=decoder_outputs.logits, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings(VISION_ENCODER_DECODER_START_DOCSTRING) class FlaxVisionEncoderDecoderModel(FlaxPreTrainedModel): r""" :class:`~transformers.FlaxVisionEncoderDecoderModel` is a generic model class that will be instantiated as a transformer architecture with the module (flax.nn.Module) of one of the base vision model classes of the library as encoder module and another one as decoder module when created with the :meth`~transformers.FlaxAutoModel.from_pretrained` class method for the encoder and :meth`~transformers.FlaxAutoModelForCausalLM.from_pretrained` class method for the decoder. """ config_class = VisionEncoderDecoderConfig base_model_prefix = "vision_encoder_decoder" module_class = FlaxVisionEncoderDecoderModule def __init__( self, config: VisionEncoderDecoderConfig, input_shape: Optional[Tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, **kwargs ): if input_shape is None: num_channels = getattr(config.encoder, "num_channels", 3) input_shape = ( (1, config.encoder.image_size, config.encoder.image_size, num_channels), (1, 1), ) if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( f"If `cross_attention_hidden_size` is specified in the decoder's configuration, " f"it has to be equal to the encoder's `hidden_size`." f"Got {config.decoder.cross_attention_hidden_size} for `config.decoder.cross_attention_hidden_size` " f"and {config.encoder.hidden_size} for `config.encoder.hidden_size`." ) module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict: encoder_input_shape, decoder_input_shape = input_shape # init input tensors pixel_values = jnp.zeros(encoder_input_shape, dtype=self.dtype) decoder_input_ids = jnp.zeros(decoder_input_shape, dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) batch_size, _, _, _ = pixel_values.shape decoder_batch_size, decoder_sequence_length = decoder_input_ids.shape if not decoder_batch_size == batch_size: raise ValueError( f"The inputs of encoder and decoder should have the same batch size, but got {batch_size} for encoder " f"and {decoder_batch_size} for decoder." ) decoder_position_ids = jnp.broadcast_to( jnp.arange(decoder_sequence_length)[None, :], (decoder_batch_size, decoder_sequence_length) ) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} return self.module.init( rngs, pixel_values, decoder_input_ids, decoder_attention_mask, decoder_position_ids, )["params"] def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (:obj:`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (:obj:`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (:obj:`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): ``encoder_outputs`` consists of (:obj:`last_hidden_state`, `optional`: :obj:`hidden_states`, `optional`: :obj:`attentions`). :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(VISION_ENCODER_DECODER_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=_CONFIG_FOR_DOC) def encode( self, pixel_values: jnp.ndarray, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example:: >>> from transformers import FlaxVisionEncoderDecoderModel >>> from PIL import Image >>> import requests >>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> image = Image.open(requests.get(url, stream=True).raw) >>> feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') >>> # initialize a vit-gpt2 from pretrained ViT and GPT2 models. Note that the cross-attention layers will be randomly initialized >>> model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained('vit', 'gpt2') >>> pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values >>> encoder_outputs = model.encode(pixel_values) """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # `FlaxViTModel` expects channel first format, but `FlaxViTModule` expects channel last format. # Currently, we assume this holds for all Flax vision models, and perform a transpose here. pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, pixel_values, **kwargs): encode_module = module._get_encoder_module() return encode_module(pixel_values, **kwargs) outputs = self.module.apply( {"params": params or self.params}, pixel_values=jnp.array(pixel_values, dtype=self.dtype), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) if return_dict: outputs = FlaxBaseModelOutput( last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) return outputs @add_start_docstrings(VISION_ENCODER_DECODER_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def decode( self, decoder_input_ids, encoder_outputs, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example:: >>> from transformers import FlaxVisionEncoderDecoderModel >>> import jax.numpy as jnp >>> from PIL import Image >>> import requests >>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> image = Image.open(requests.get(url, stream=True).raw) >>> feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') >>> # initialize a vit-gpt2 from pretrained ViT and GPT2 models. Note that the cross-attention layers will be randomly initialized >>> model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained('vit', 'gpt2') >>> pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values >>> encoder_outputs = model.encode(pixel_values) >>> decoder_start_token_id = model.config.decoder.bos_token_id >>> decoder_input_ids = jnp.ones((pixel_values.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxBartAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward( module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, encoder_hidden_states, **kwargs ): projection_module = module._get_projection_module() decoder_module = module._get_decoder_module() # optionally project encoder_hidden_states if projection_module is not None: encoder_hidden_states = projection_module(encoder_hidden_states) return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, encoder_hidden_states, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(VISION_ENCODER_DECODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def __call__( self, pixel_values: jnp.ndarray, decoder_input_ids: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Examples:: >>> from transformers import FlaxVisionEncoderDecoderModel, ViTFeatureExtractor, GPT2Tokenizer >>> from PIL import Image >>> import requests >>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> image = Image.open(requests.get(url, stream=True).raw) >>> feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') >>> # load output tokenizer >>> tokenizer_output = GPT2Tokenizer.from_pretrained('gpt2') >>> # initialize a vit-gpt2 from pretrained ViT and GPT2 models. Note that the cross-attention layers will be randomly initialized >>> model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained('vit', 'gpt2') >>> pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values >>> # use GPT2's eos_token as the pad as well as eos token >>> model.config.eos_token_id = model.config.decoder.eos_token_id >>> model.config.pad_token_id = model.config.eos_token_id >>> # generation >>> sequences = model.generate(pixel_values, num_beams=4, max_length=12).sequences >>> captions = tokenizer_output.batch_decode(sequences, skip_special_tokens=True) """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs # `FlaxViTModel` expects channel first format, but `FlaxViTModule` expects channel last format. # Currently, we assume this holds for all Flax vision models, and perform a transpose here. pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) # prepare decoder inputs if decoder_input_ids is None: raise ValueError("`decoder_input_ids` can't be `None`.") if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) if decoder_position_ids is None: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, pixel_values=jnp.array(pixel_values, dtype=self.dtype), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) def prepare_inputs_for_generation( self, decoder_input_ids, max_length, decoder_attention_mask: Optional[jnp.DeviceArray] = None, encoder_outputs=None, **kwargs ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: decoder_position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: decoder_position_ids = jnp.broadcast_to( jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length) ) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": decoder_position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None, decoder_pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None, *model_args, **kwargs ) -> FlaxPreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. Params: encoder_pretrained_model_name_or_path (:obj: `Union[str, os.PathLike]`, `optional`): Information necessary to initiate the encoder. Can be either: - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. An example is ``google/vit-base-patch16-224-in21k``. - A path to a `directory` containing model weights saved using :func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. decoder_pretrained_model_name_or_path (:obj: `Union[str, os.PathLike]`, `optional`, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``. - A path to a `directory` containing model weights saved using :func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. model_args (remaining positional arguments, `optional`): All remaning positional arguments will be passed to the underlying model's ``__init__`` method. kwargs (remaining dictionary of keyword arguments, `optional`): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., :obj:`output_attentions=True`). - To update the encoder configuration, use the prefix `encoder_` for each configuration parameter. - To update the decoder configuration, use the prefix `decoder_` for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a :obj:`config` is provided or automatically loaded. Example:: >>> from transformers import FlaxVisionEncoderDecoderModel >>> # initialize a vit-gpt2 from a pretrained ViT and a pretrained GPT2 model. Note that the cross-attention layers will be randomly initialized >>> model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained('google/vit-base-patch16-224-in21k', 'gpt2') >>> # saving model after fine-tuning >>> model.save_pretrained("./vit-gpt2") >>> # load fine-tuned model >>> model = FlaxVisionEncoderDecoderModel.from_pretrained("./vit-gpt2") """ kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined" ) from ..auto.modeling_flax_auto import FlaxAutoModel if "config" not in kwargs_encoder: from ..auto.configuration_auto import AutoConfig encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model from a decoder " "model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config encoder = FlaxAutoModel.from_pretrained( encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder ) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) from ..auto.modeling_flax_auto import FlaxAutoModelForCausalLM if "config" not in kwargs_decoder: from ..auto.configuration_auto import AutoConfig decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention " f"layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if " f"{decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. In order " f"to initialize {decoder_pretrained_model_name_or_path} as a decoder, make sure that the " "attributes `is_decoder` and `add_cross_attention` of `decoder_config` passed to " "`.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a `decoder_config` to " "`.from_encoder_decoder_pretrained(...)`" ) decoder = FlaxAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # instantiate config with corresponding kwargs dtype = kwargs.pop("dtype", jnp.float32) config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) # init model model = cls(config, dtype=dtype) model.params["encoder"] = encoder.params model.params["decoder"] = decoder.params return model
48.853571
156
0.669932
3cb94c973371cf72eec089d03c0077caa8625f24
127,950
py
Python
nova/tests/unit/virt/vmwareapi/test_vmops.py
hyphon81/nova-for-gpu-passthrough
7c164980d7355d8fc40a6b155e31e325191b6a5e
[ "Apache-2.0" ]
null
null
null
nova/tests/unit/virt/vmwareapi/test_vmops.py
hyphon81/nova-for-gpu-passthrough
7c164980d7355d8fc40a6b155e31e325191b6a5e
[ "Apache-2.0" ]
null
null
null
nova/tests/unit/virt/vmwareapi/test_vmops.py
hyphon81/nova-for-gpu-passthrough
7c164980d7355d8fc40a6b155e31e325191b6a5e
[ "Apache-2.0" ]
1
2020-07-24T00:41:18.000Z
2020-07-24T00:41:18.000Z
# Copyright 2013 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from oslo_serialization import jsonutils from oslo_utils import units from oslo_utils import uuidutils from oslo_vmware import exceptions as vexc from oslo_vmware.objects import datastore as ds_obj from oslo_vmware import vim_util as vutil import six from nova.compute import power_state from nova import context from nova import exception from nova.network import model as network_model from nova import objects from nova import test from nova.tests.unit import fake_flavor from nova.tests.unit import fake_instance import nova.tests.unit.image.fake from nova.tests.unit.virt.vmwareapi import fake as vmwareapi_fake from nova.tests.unit.virt.vmwareapi import stubs from nova.tests import uuidsentinel from nova import utils from nova import version from nova.virt import hardware from nova.virt.vmwareapi import constants from nova.virt.vmwareapi import driver from nova.virt.vmwareapi import ds_util from nova.virt.vmwareapi import images from nova.virt.vmwareapi import vif from nova.virt.vmwareapi import vim_util from nova.virt.vmwareapi import vm_util from nova.virt.vmwareapi import vmops class DsPathMatcher(object): def __init__(self, expected_ds_path_str): self.expected_ds_path_str = expected_ds_path_str def __eq__(self, ds_path_param): return str(ds_path_param) == self.expected_ds_path_str class VMwareVMOpsTestCase(test.NoDBTestCase): def setUp(self): super(VMwareVMOpsTestCase, self).setUp() ds_util.dc_cache_reset() vmwareapi_fake.reset() stubs.set_stubs(self) self.flags(enabled=True, group='vnc') self.flags(image_cache_subdirectory_name='vmware_base', my_ip='', flat_injected=True) self._context = context.RequestContext('fake_user', 'fake_project') self._session = driver.VMwareAPISession() self._virtapi = mock.Mock() self._image_id = nova.tests.unit.image.fake.get_valid_image_id() fake_ds_ref = vmwareapi_fake.ManagedObjectReference('fake-ds') self._ds = ds_obj.Datastore( ref=fake_ds_ref, name='fake_ds', capacity=10 * units.Gi, freespace=10 * units.Gi) self._dc_info = ds_util.DcInfo( ref='fake_dc_ref', name='fake_dc', vmFolder='fake_vm_folder') cluster = vmwareapi_fake.create_cluster('fake_cluster', fake_ds_ref) self._uuid = uuidsentinel.foo self._instance_values = { 'name': 'fake_name', 'display_name': 'fake_display_name', 'uuid': self._uuid, 'vcpus': 1, 'memory_mb': 512, 'image_ref': self._image_id, 'root_gb': 10, 'node': '%s(%s)' % (cluster.mo_id, cluster.name), 'expected_attrs': ['system_metadata'], } self._instance = fake_instance.fake_instance_obj( self._context, **self._instance_values) self._flavor = objects.Flavor(name='m1.small', memory_mb=512, vcpus=1, root_gb=10, ephemeral_gb=0, swap=0, extra_specs={}) self._instance.flavor = self._flavor self._vmops = vmops.VMwareVMOps(self._session, self._virtapi, None, cluster=cluster.obj) self._cluster = cluster self._image_meta = objects.ImageMeta.from_dict({'id': self._image_id}) subnet_4 = network_model.Subnet(cidr='192.168.0.1/24', dns=[network_model.IP('192.168.0.1')], gateway= network_model.IP('192.168.0.1'), ips=[ network_model.IP('192.168.0.100')], routes=None) subnet_6 = network_model.Subnet(cidr='dead:beef::1/64', dns=None, gateway= network_model.IP('dead:beef::1'), ips=[network_model.IP( 'dead:beef::dcad:beff:feef:0')], routes=None) network = network_model.Network(id=0, bridge='fa0', label='fake', subnets=[subnet_4, subnet_6], vlan=None, bridge_interface=None, injected=True) self._network_values = { 'id': None, 'address': 'DE:AD:BE:EF:00:00', 'network': network, 'type': None, 'devname': None, 'ovs_interfaceid': None, 'rxtx_cap': 3 } self.network_info = network_model.NetworkInfo([ network_model.VIF(**self._network_values) ]) pure_IPv6_network = network_model.Network(id=0, bridge='fa0', label='fake', subnets=[subnet_6], vlan=None, bridge_interface=None, injected=True) self.pure_IPv6_network_info = network_model.NetworkInfo([ network_model.VIF(id=None, address='DE:AD:BE:EF:00:00', network=pure_IPv6_network, type=None, devname=None, ovs_interfaceid=None, rxtx_cap=3) ]) self._metadata = ( "name:fake_display_name\n" "userid:fake_user\n" "username:None\n" "projectid:fake_project\n" "projectname:None\n" "flavor:name:m1.micro\n" "flavor:memory_mb:6\n" "flavor:vcpus:28\n" "flavor:ephemeral_gb:8128\n" "flavor:root_gb:496\n" "flavor:swap:33550336\n" "imageid:70a599e0-31e7-49b7-b260-868f441e862b\n" "package:%s\n" % version.version_string_with_package()) def test_get_machine_id_str(self): result = vmops.VMwareVMOps._get_machine_id_str(self.network_info) self.assertEqual('DE:AD:BE:EF:00:00;192.168.0.100;255.255.255.0;' '192.168.0.1;192.168.0.255;192.168.0.1#', result) result = vmops.VMwareVMOps._get_machine_id_str( self.pure_IPv6_network_info) self.assertEqual('DE:AD:BE:EF:00:00;;;;;#', result) def _setup_create_folder_mocks(self): ops = vmops.VMwareVMOps(mock.Mock(), mock.Mock(), mock.Mock()) base_name = 'folder' ds_name = "datastore" ds_ref = mock.Mock() ds_ref.value = 1 dc_ref = mock.Mock() ds_util._DS_DC_MAPPING[ds_ref.value] = ds_util.DcInfo( ref=dc_ref, name='fake-name', vmFolder='fake-folder') path = ds_obj.DatastorePath(ds_name, base_name) return ds_name, ds_ref, ops, path, dc_ref @mock.patch.object(ds_util, 'mkdir') def test_create_folder_if_missing(self, mock_mkdir): ds_name, ds_ref, ops, path, dc = self._setup_create_folder_mocks() ops._create_folder_if_missing(ds_name, ds_ref, 'folder') mock_mkdir.assert_called_with(ops._session, path, dc) @mock.patch.object(ds_util, 'mkdir') def test_create_folder_if_missing_exception(self, mock_mkdir): ds_name, ds_ref, ops, path, dc = self._setup_create_folder_mocks() ds_util.mkdir.side_effect = vexc.FileAlreadyExistsException() ops._create_folder_if_missing(ds_name, ds_ref, 'folder') mock_mkdir.assert_called_with(ops._session, path, dc) @mock.patch.object(vutil, 'continue_retrieval', return_value=None) def test_get_valid_vms_from_retrieve_result(self, _mock_cont): ops = vmops.VMwareVMOps(self._session, mock.Mock(), mock.Mock()) fake_objects = vmwareapi_fake.FakeRetrieveResult() for x in range(0, 3): vm = vmwareapi_fake.VirtualMachine() vm.set('config.extraConfig["nvp.vm-uuid"]', vmwareapi_fake.OptionValue( value=uuidutils.generate_uuid())) fake_objects.add_object(vm) vms = ops._get_valid_vms_from_retrieve_result(fake_objects) self.assertEqual(3, len(vms)) @mock.patch.object(vutil, 'continue_retrieval', return_value=None) def test_get_valid_vms_from_retrieve_result_with_invalid(self, _mock_cont): ops = vmops.VMwareVMOps(self._session, mock.Mock(), mock.Mock()) fake_objects = vmwareapi_fake.FakeRetrieveResult() valid_vm = vmwareapi_fake.VirtualMachine() valid_vm.set('config.extraConfig["nvp.vm-uuid"]', vmwareapi_fake.OptionValue( value=uuidutils.generate_uuid())) fake_objects.add_object(valid_vm) invalid_vm1 = vmwareapi_fake.VirtualMachine() invalid_vm1.set('runtime.connectionState', 'orphaned') invalid_vm1.set('config.extraConfig["nvp.vm-uuid"]', vmwareapi_fake.OptionValue( value=uuidutils.generate_uuid())) invalid_vm2 = vmwareapi_fake.VirtualMachine() invalid_vm2.set('runtime.connectionState', 'inaccessible') invalid_vm2.set('config.extraConfig["nvp.vm-uuid"]', vmwareapi_fake.OptionValue( value=uuidutils.generate_uuid())) fake_objects.add_object(invalid_vm1) fake_objects.add_object(invalid_vm2) vms = ops._get_valid_vms_from_retrieve_result(fake_objects) self.assertEqual(1, len(vms)) def test_delete_vm_snapshot(self): def fake_call_method(module, method, *args, **kwargs): self.assertEqual('RemoveSnapshot_Task', method) self.assertEqual('fake_vm_snapshot', args[0]) self.assertFalse(kwargs['removeChildren']) self.assertTrue(kwargs['consolidate']) return 'fake_remove_snapshot_task' with test.nested( mock.patch.object(self._session, '_wait_for_task'), mock.patch.object(self._session, '_call_method', fake_call_method) ) as (_wait_for_task, _call_method): self._vmops._delete_vm_snapshot(self._instance, "fake_vm_ref", "fake_vm_snapshot") _wait_for_task.assert_has_calls([ mock.call('fake_remove_snapshot_task')]) def test_create_vm_snapshot(self): method_list = ['CreateSnapshot_Task', 'get_object_property'] def fake_call_method(module, method, *args, **kwargs): expected_method = method_list.pop(0) self.assertEqual(expected_method, method) if (expected_method == 'CreateSnapshot_Task'): self.assertEqual('fake_vm_ref', args[0]) self.assertFalse(kwargs['memory']) self.assertTrue(kwargs['quiesce']) return 'fake_snapshot_task' elif (expected_method == 'get_object_property'): task_info = mock.Mock() task_info.result = "fake_snapshot_ref" self.assertEqual(('fake_snapshot_task', 'info'), args) return task_info with test.nested( mock.patch.object(self._session, '_wait_for_task'), mock.patch.object(self._session, '_call_method', fake_call_method) ) as (_wait_for_task, _call_method): snap = self._vmops._create_vm_snapshot(self._instance, "fake_vm_ref") self.assertEqual("fake_snapshot_ref", snap) _wait_for_task.assert_has_calls([ mock.call('fake_snapshot_task')]) def test_update_instance_progress(self): with mock.patch.object(self._instance, 'save') as mock_save: self._vmops._update_instance_progress(self._instance._context, self._instance, 5, 10) mock_save.assert_called_once_with() self.assertEqual(50, self._instance.progress) @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake_ref') def test_get_info(self, mock_get_vm_ref): result = { 'summary.config.numCpu': 4, 'summary.config.memorySizeMB': 128, 'runtime.powerState': 'poweredOn' } def mock_call_method(module, method, *args, **kwargs): if method == 'continue_retrieval': return return result with mock.patch.object(self._session, '_call_method', mock_call_method): info = self._vmops.get_info(self._instance) mock_get_vm_ref.assert_called_once_with(self._session, self._instance) expected = hardware.InstanceInfo(state=power_state.RUNNING, max_mem_kb=128 * 1024, mem_kb=128 * 1024, num_cpu=4) self.assertEqual(expected, info) @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake_ref') def test_get_info_when_ds_unavailable(self, mock_get_vm_ref): result = { 'runtime.powerState': 'poweredOff' } def mock_call_method(module, method, *args, **kwargs): if method == 'continue_retrieval': return return result with mock.patch.object(self._session, '_call_method', mock_call_method): info = self._vmops.get_info(self._instance) mock_get_vm_ref.assert_called_once_with(self._session, self._instance) self.assertEqual(hardware.InstanceInfo(state=power_state.SHUTDOWN), info) @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake_ref') def test_get_info_instance_deleted(self, mock_get_vm_ref): props = ['summary.config.numCpu', 'summary.config.memorySizeMB', 'runtime.powerState'] prop_cpu = vmwareapi_fake.Prop(props[0], 4) prop_mem = vmwareapi_fake.Prop(props[1], 128) prop_state = vmwareapi_fake.Prop(props[2], 'poweredOn') prop_list = [prop_state, prop_mem, prop_cpu] obj_content = vmwareapi_fake.ObjectContent(None, prop_list=prop_list) result = vmwareapi_fake.FakeRetrieveResult() result.add_object(obj_content) def mock_call_method(module, method, *args, **kwargs): raise vexc.ManagedObjectNotFoundException() with mock.patch.object(self._session, '_call_method', mock_call_method): self.assertRaises(exception.InstanceNotFound, self._vmops.get_info, self._instance) mock_get_vm_ref.assert_called_once_with(self._session, self._instance) def _test_get_datacenter_ref_and_name(self, ds_ref_exists=False): instance_ds_ref = mock.Mock() instance_ds_ref.value = "ds-1" _vcvmops = vmops.VMwareVMOps(self._session, None, None) if ds_ref_exists: ds_ref = mock.Mock() ds_ref.value = "ds-1" else: ds_ref = None self._continue_retrieval = True self._fake_object1 = vmwareapi_fake.FakeRetrieveResult() self._fake_object2 = vmwareapi_fake.FakeRetrieveResult() def fake_call_method(module, method, *args, **kwargs): self._fake_object1.add_object(vmwareapi_fake.Datacenter( ds_ref=ds_ref)) if not ds_ref: # Token is set for the fake_object1, so it will continue to # fetch the next object. setattr(self._fake_object1, 'token', 'token-0') if self._continue_retrieval: if self._continue_retrieval: self._continue_retrieval = False self._fake_object2.add_object( vmwareapi_fake.Datacenter()) return self._fake_object2 return if method == "continue_retrieval": return return self._fake_object1 with mock.patch.object(self._session, '_call_method', side_effect=fake_call_method) as fake_call: dc_info = _vcvmops.get_datacenter_ref_and_name(instance_ds_ref) if ds_ref: self.assertEqual(1, len(ds_util._DS_DC_MAPPING)) calls = [mock.call(vim_util, "get_objects", "Datacenter", ["name", "datastore", "vmFolder"]), mock.call(vutil, 'continue_retrieval', self._fake_object1)] fake_call.assert_has_calls(calls) self.assertEqual("ha-datacenter", dc_info.name) else: calls = [mock.call(vim_util, "get_objects", "Datacenter", ["name", "datastore", "vmFolder"]), mock.call(vutil, 'continue_retrieval', self._fake_object2)] fake_call.assert_has_calls(calls) self.assertIsNone(dc_info) def test_get_datacenter_ref_and_name(self): self._test_get_datacenter_ref_and_name(ds_ref_exists=True) def test_get_datacenter_ref_and_name_with_no_datastore(self): self._test_get_datacenter_ref_and_name() @mock.patch('nova.image.api.API.get') @mock.patch.object(vm_util, 'power_off_instance') @mock.patch.object(ds_util, 'disk_copy') @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake-ref') @mock.patch.object(vm_util, 'find_rescue_device') @mock.patch.object(vm_util, 'get_vm_boot_spec') @mock.patch.object(vm_util, 'reconfigure_vm') @mock.patch.object(vm_util, 'power_on_instance') @mock.patch.object(ds_obj, 'get_datastore_by_ref') def test_rescue(self, mock_get_ds_by_ref, mock_power_on, mock_reconfigure, mock_get_boot_spec, mock_find_rescue, mock_get_vm_ref, mock_disk_copy, mock_power_off, mock_glance): _volumeops = mock.Mock() self._vmops._volumeops = _volumeops ds_ref = vmwareapi_fake.ManagedObjectReference(value='fake-ref') ds = ds_obj.Datastore(ds_ref, 'ds1') mock_get_ds_by_ref.return_value = ds mock_find_rescue.return_value = 'fake-rescue-device' mock_get_boot_spec.return_value = 'fake-boot-spec' vm_ref = vmwareapi_fake.ManagedObjectReference() mock_get_vm_ref.return_value = vm_ref device = vmwareapi_fake.DataObject() backing = vmwareapi_fake.DataObject() backing.datastore = ds.ref device.backing = backing vmdk = vm_util.VmdkInfo('[fake] uuid/root.vmdk', 'fake-adapter', 'fake-disk', 'fake-capacity', device) with test.nested( mock.patch.object(self._vmops, 'get_datacenter_ref_and_name'), mock.patch.object(vm_util, 'get_vmdk_info', return_value=vmdk) ) as (_get_dc_ref_and_name, fake_vmdk_info): dc_info = mock.Mock() _get_dc_ref_and_name.return_value = dc_info self._vmops.rescue( self._context, self._instance, None, self._image_meta) mock_power_off.assert_called_once_with(self._session, self._instance, vm_ref) uuid = self._instance.image_ref cache_path = ds.build_path('vmware_base', uuid, uuid + '.vmdk') rescue_path = ds.build_path(self._uuid, uuid + '-rescue.vmdk') mock_disk_copy.assert_called_once_with(self._session, dc_info.ref, cache_path, rescue_path) _volumeops.attach_disk_to_vm.assert_called_once_with(vm_ref, self._instance, mock.ANY, mock.ANY, rescue_path) mock_get_boot_spec.assert_called_once_with(mock.ANY, 'fake-rescue-device') mock_reconfigure.assert_called_once_with(self._session, vm_ref, 'fake-boot-spec') mock_power_on.assert_called_once_with(self._session, self._instance, vm_ref=vm_ref) def test_unrescue_power_on(self): self._test_unrescue(True) def test_unrescue_power_off(self): self._test_unrescue(False) def _test_unrescue(self, power_on): _volumeops = mock.Mock() self._vmops._volumeops = _volumeops vm_ref = mock.Mock() def fake_call_method(module, method, *args, **kwargs): expected_args = (vm_ref, 'config.hardware.device') self.assertEqual('get_object_property', method) self.assertEqual(expected_args, args) with test.nested( mock.patch.object(vm_util, 'power_on_instance'), mock.patch.object(vm_util, 'find_rescue_device'), mock.patch.object(vm_util, 'get_vm_ref', return_value=vm_ref), mock.patch.object(self._session, '_call_method', fake_call_method), mock.patch.object(vm_util, 'power_off_instance') ) as (_power_on_instance, _find_rescue, _get_vm_ref, _call_method, _power_off): self._vmops.unrescue(self._instance, power_on=power_on) if power_on: _power_on_instance.assert_called_once_with(self._session, self._instance, vm_ref=vm_ref) else: self.assertFalse(_power_on_instance.called) _get_vm_ref.assert_called_once_with(self._session, self._instance) _power_off.assert_called_once_with(self._session, self._instance, vm_ref) _volumeops.detach_disk_from_vm.assert_called_once_with( vm_ref, self._instance, mock.ANY, destroy_disk=True) def _test_finish_migration(self, power_on=True, resize_instance=False): with test.nested( mock.patch.object(self._vmops, '_resize_create_ephemerals_and_swap'), mock.patch.object(self._vmops, "_update_instance_progress"), mock.patch.object(vm_util, "power_on_instance"), mock.patch.object(vm_util, "get_vm_ref", return_value='fake-ref') ) as (fake_resize_create_ephemerals_and_swap, fake_update_instance_progress, fake_power_on, fake_get_vm_ref): self._vmops.finish_migration(context=self._context, migration=None, instance=self._instance, disk_info=None, network_info=None, block_device_info=None, resize_instance=resize_instance, image_meta=None, power_on=power_on) fake_resize_create_ephemerals_and_swap.assert_called_once_with( 'fake-ref', self._instance, None) if power_on: fake_power_on.assert_called_once_with(self._session, self._instance, vm_ref='fake-ref') else: self.assertFalse(fake_power_on.called) calls = [ mock.call(self._context, self._instance, step=5, total_steps=vmops.RESIZE_TOTAL_STEPS), mock.call(self._context, self._instance, step=6, total_steps=vmops.RESIZE_TOTAL_STEPS)] fake_update_instance_progress.assert_has_calls(calls) def test_finish_migration_power_on(self): self._test_finish_migration(power_on=True, resize_instance=False) def test_finish_migration_power_off(self): self._test_finish_migration(power_on=False, resize_instance=False) def test_finish_migration_power_on_resize(self): self._test_finish_migration(power_on=True, resize_instance=True) @mock.patch.object(vmops.VMwareVMOps, '_create_swap') @mock.patch.object(vmops.VMwareVMOps, '_create_ephemeral') @mock.patch.object(ds_obj, 'get_datastore_by_ref', return_value='fake-ds-ref') @mock.patch.object(vm_util, 'get_vmdk_info') def _test_resize_create_ephemerals(self, vmdk, datastore, mock_get_vmdk_info, mock_get_datastore_by_ref, mock_create_ephemeral, mock_create_swap): mock_get_vmdk_info.return_value = vmdk dc_info = ds_util.DcInfo(ref='fake_ref', name='fake', vmFolder='fake_folder') with mock.patch.object(self._vmops, 'get_datacenter_ref_and_name', return_value=dc_info) as mock_get_dc_ref_and_name: self._vmops._resize_create_ephemerals_and_swap( 'vm-ref', self._instance, 'block-devices') mock_get_vmdk_info.assert_called_once_with( self._session, 'vm-ref', uuid=self._instance.uuid) if vmdk.device: mock_get_datastore_by_ref.assert_called_once_with( self._session, datastore.ref) mock_get_dc_ref_and_name.assert_called_once_with(datastore.ref) mock_create_ephemeral.assert_called_once_with( 'block-devices', self._instance, 'vm-ref', dc_info, 'fake-ds-ref', 'uuid', 'fake-adapter') mock_create_swap.assert_called_once_with( 'block-devices', self._instance, 'vm-ref', dc_info, 'fake-ds-ref', 'uuid', 'fake-adapter') else: self.assertFalse(mock_create_ephemeral.called) self.assertFalse(mock_get_dc_ref_and_name.called) self.assertFalse(mock_get_datastore_by_ref.called) def test_resize_create_ephemerals(self): datastore = ds_obj.Datastore(ref='fake-ref', name='fake') device = vmwareapi_fake.DataObject() backing = vmwareapi_fake.DataObject() backing.datastore = datastore.ref device.backing = backing vmdk = vm_util.VmdkInfo('[fake] uuid/root.vmdk', 'fake-adapter', 'fake-disk', 'fake-capacity', device) self._test_resize_create_ephemerals(vmdk, datastore) def test_resize_create_ephemerals_no_root(self): vmdk = vm_util.VmdkInfo(None, None, None, 0, None) self._test_resize_create_ephemerals(vmdk, None) @mock.patch.object(vmops.VMwareVMOps, '_get_extra_specs') @mock.patch.object(vmops.VMwareVMOps, '_resize_create_ephemerals_and_swap') @mock.patch.object(vmops.VMwareVMOps, '_remove_ephemerals_and_swap') @mock.patch.object(ds_util, 'disk_delete') @mock.patch.object(ds_util, 'disk_move') @mock.patch.object(ds_util, 'file_exists', return_value=True) @mock.patch.object(vmops.VMwareVMOps, '_get_ds_browser', return_value='fake-browser') @mock.patch.object(vm_util, 'reconfigure_vm') @mock.patch.object(vm_util, 'get_vm_resize_spec', return_value='fake-spec') @mock.patch.object(vm_util, 'power_off_instance') @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake-ref') @mock.patch.object(vm_util, 'power_on_instance') def _test_finish_revert_migration(self, fake_power_on, fake_get_vm_ref, fake_power_off, fake_resize_spec, fake_reconfigure_vm, fake_get_browser, fake_original_exists, fake_disk_move, fake_disk_delete, fake_remove_ephemerals_and_swap, fake_resize_create_ephemerals_and_swap, fake_get_extra_specs, power_on): """Tests the finish_revert_migration method on vmops.""" datastore = ds_obj.Datastore(ref='fake-ref', name='fake') device = vmwareapi_fake.DataObject() backing = vmwareapi_fake.DataObject() backing.datastore = datastore.ref device.backing = backing vmdk = vm_util.VmdkInfo('[fake] uuid/root.vmdk', 'fake-adapter', 'fake-disk', 'fake-capacity', device) dc_info = ds_util.DcInfo(ref='fake_ref', name='fake', vmFolder='fake_folder') extra_specs = vm_util.ExtraSpecs() fake_get_extra_specs.return_value = extra_specs with test.nested( mock.patch.object(self._vmops, 'get_datacenter_ref_and_name', return_value=dc_info), mock.patch.object(vm_util, 'get_vmdk_info', return_value=vmdk) ) as (fake_get_dc_ref_and_name, fake_get_vmdk_info): self._vmops._volumeops = mock.Mock() mock_attach_disk = self._vmops._volumeops.attach_disk_to_vm mock_detach_disk = self._vmops._volumeops.detach_disk_from_vm self._vmops.finish_revert_migration(self._context, instance=self._instance, network_info=None, block_device_info=None, power_on=power_on) fake_get_vm_ref.assert_called_once_with(self._session, self._instance) fake_power_off.assert_called_once_with(self._session, self._instance, 'fake-ref') # Validate VM reconfiguration metadata = ('name:fake_display_name\n' 'userid:fake_user\n' 'username:None\n' 'projectid:fake_project\n' 'projectname:None\n' 'flavor:name:m1.small\n' 'flavor:memory_mb:512\n' 'flavor:vcpus:1\n' 'flavor:ephemeral_gb:0\n' 'flavor:root_gb:10\n' 'flavor:swap:0\n' 'imageid:70a599e0-31e7-49b7-b260-868f441e862b\n' 'package:%s\n' % version.version_string_with_package()) fake_resize_spec.assert_called_once_with( self._session.vim.client.factory, int(self._instance.vcpus), int(self._instance.memory_mb), extra_specs, metadata=metadata) fake_reconfigure_vm.assert_called_once_with(self._session, 'fake-ref', 'fake-spec') # Validate disk configuration fake_get_vmdk_info.assert_called_once_with( self._session, 'fake-ref', uuid=self._instance.uuid) fake_get_browser.assert_called_once_with('fake-ref') fake_original_exists.assert_called_once_with( self._session, 'fake-browser', ds_obj.DatastorePath(datastore.name, 'uuid'), 'original.vmdk') mock_detach_disk.assert_called_once_with('fake-ref', self._instance, device) fake_disk_delete.assert_called_once_with( self._session, dc_info.ref, '[fake] uuid/root.vmdk') fake_disk_move.assert_called_once_with( self._session, dc_info.ref, '[fake] uuid/original.vmdk', '[fake] uuid/root.vmdk') mock_attach_disk.assert_called_once_with( 'fake-ref', self._instance, 'fake-adapter', 'fake-disk', '[fake] uuid/root.vmdk') fake_remove_ephemerals_and_swap.assert_called_once_with('fake-ref') fake_resize_create_ephemerals_and_swap.assert_called_once_with( 'fake-ref', self._instance, None) if power_on: fake_power_on.assert_called_once_with(self._session, self._instance) else: self.assertFalse(fake_power_on.called) def test_finish_revert_migration_power_on(self): self._test_finish_revert_migration(power_on=True) def test_finish_revert_migration_power_off(self): self._test_finish_revert_migration(power_on=False) @mock.patch.object(vmops.VMwareVMOps, '_get_instance_metadata') @mock.patch.object(vmops.VMwareVMOps, '_get_extra_specs') @mock.patch.object(vm_util, 'reconfigure_vm') @mock.patch.object(vm_util, 'get_vm_resize_spec', return_value='fake-spec') def test_resize_vm(self, fake_resize_spec, fake_reconfigure, fake_get_extra_specs, fake_get_metadata): extra_specs = vm_util.ExtraSpecs() fake_get_extra_specs.return_value = extra_specs fake_get_metadata.return_value = self._metadata flavor = objects.Flavor(name='m1.small', memory_mb=1024, vcpus=2, extra_specs={}) self._vmops._resize_vm(self._context, self._instance, 'vm-ref', flavor, None) fake_resize_spec.assert_called_once_with( self._session.vim.client.factory, 2, 1024, extra_specs, metadata=self._metadata) fake_reconfigure.assert_called_once_with(self._session, 'vm-ref', 'fake-spec') @mock.patch.object(vmops.VMwareVMOps, '_extend_virtual_disk') @mock.patch.object(ds_util, 'disk_move') @mock.patch.object(ds_util, 'disk_copy') def test_resize_disk(self, fake_disk_copy, fake_disk_move, fake_extend): datastore = ds_obj.Datastore(ref='fake-ref', name='fake') device = vmwareapi_fake.DataObject() backing = vmwareapi_fake.DataObject() backing.datastore = datastore.ref device.backing = backing vmdk = vm_util.VmdkInfo('[fake] uuid/root.vmdk', 'fake-adapter', 'fake-disk', self._instance.flavor.root_gb * units.Gi, device) dc_info = ds_util.DcInfo(ref='fake_ref', name='fake', vmFolder='fake_folder') with mock.patch.object(self._vmops, 'get_datacenter_ref_and_name', return_value=dc_info) as fake_get_dc_ref_and_name: self._vmops._volumeops = mock.Mock() mock_attach_disk = self._vmops._volumeops.attach_disk_to_vm mock_detach_disk = self._vmops._volumeops.detach_disk_from_vm flavor = fake_flavor.fake_flavor_obj(self._context, root_gb=self._instance.flavor.root_gb + 1) self._vmops._resize_disk(self._instance, 'fake-ref', vmdk, flavor) fake_get_dc_ref_and_name.assert_called_once_with(datastore.ref) fake_disk_copy.assert_called_once_with( self._session, dc_info.ref, '[fake] uuid/root.vmdk', '[fake] uuid/resized.vmdk') mock_detach_disk.assert_called_once_with('fake-ref', self._instance, device) fake_extend.assert_called_once_with( self._instance, flavor['root_gb'] * units.Mi, '[fake] uuid/resized.vmdk', dc_info.ref) calls = [ mock.call(self._session, dc_info.ref, '[fake] uuid/root.vmdk', '[fake] uuid/original.vmdk'), mock.call(self._session, dc_info.ref, '[fake] uuid/resized.vmdk', '[fake] uuid/root.vmdk')] fake_disk_move.assert_has_calls(calls) mock_attach_disk.assert_called_once_with( 'fake-ref', self._instance, 'fake-adapter', 'fake-disk', '[fake] uuid/root.vmdk') @mock.patch.object(vm_util, 'detach_devices_from_vm') @mock.patch.object(vm_util, 'get_swap') @mock.patch.object(vm_util, 'get_ephemerals') def test_remove_ephemerals_and_swap(self, get_ephemerals, get_swap, detach_devices): get_ephemerals.return_value = [mock.sentinel.ephemeral0, mock.sentinel.ephemeral1] get_swap.return_value = mock.sentinel.swap devices = [mock.sentinel.ephemeral0, mock.sentinel.ephemeral1, mock.sentinel.swap] self._vmops._remove_ephemerals_and_swap(mock.sentinel.vm_ref) detach_devices.assert_called_once_with(self._vmops._session, mock.sentinel.vm_ref, devices) @mock.patch.object(ds_util, 'disk_delete') @mock.patch.object(ds_util, 'file_exists', return_value=True) @mock.patch.object(vmops.VMwareVMOps, '_get_ds_browser', return_value='fake-browser') @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake-ref') def test_confirm_migration(self, fake_get_vm_ref, fake_get_browser, fake_original_exists, fake_disk_delete): """Tests the confirm_migration method on vmops.""" datastore = ds_obj.Datastore(ref='fake-ref', name='fake') device = vmwareapi_fake.DataObject() backing = vmwareapi_fake.DataObject() backing.datastore = datastore.ref device.backing = backing vmdk = vm_util.VmdkInfo('[fake] uuid/root.vmdk', 'fake-adapter', 'fake-disk', 'fake-capacity', device) dc_info = ds_util.DcInfo(ref='fake_ref', name='fake', vmFolder='fake_folder') with test.nested( mock.patch.object(self._vmops, 'get_datacenter_ref_and_name', return_value=dc_info), mock.patch.object(vm_util, 'get_vmdk_info', return_value=vmdk) ) as (fake_get_dc_ref_and_name, fake_get_vmdk_info): self._vmops.confirm_migration(None, self._instance, None) fake_get_vm_ref.assert_called_once_with(self._session, self._instance) fake_get_vmdk_info.assert_called_once_with( self._session, 'fake-ref', uuid=self._instance.uuid) fake_get_browser.assert_called_once_with('fake-ref') fake_original_exists.assert_called_once_with( self._session, 'fake-browser', ds_obj.DatastorePath(datastore.name, 'uuid'), 'original.vmdk') fake_disk_delete.assert_called_once_with( self._session, dc_info.ref, '[fake] uuid/original.vmdk') def test_migrate_disk_and_power_off(self): self._test_migrate_disk_and_power_off( flavor_root_gb=self._instance.flavor.root_gb + 1) def test_migrate_disk_and_power_off_zero_disk_flavor(self): self._instance.flavor.root_gb = 0 self._test_migrate_disk_and_power_off(flavor_root_gb=0) def test_migrate_disk_and_power_off_disk_shrink(self): self.assertRaises(exception.InstanceFaultRollback, self._test_migrate_disk_and_power_off, flavor_root_gb=self._instance.flavor.root_gb - 1) @mock.patch.object(vmops.VMwareVMOps, "_remove_ephemerals_and_swap") @mock.patch.object(vm_util, 'get_vmdk_info') @mock.patch.object(vmops.VMwareVMOps, "_resize_disk") @mock.patch.object(vmops.VMwareVMOps, "_resize_vm") @mock.patch.object(vm_util, 'power_off_instance') @mock.patch.object(vmops.VMwareVMOps, "_update_instance_progress") @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake-ref') def _test_migrate_disk_and_power_off(self, fake_get_vm_ref, fake_progress, fake_power_off, fake_resize_vm, fake_resize_disk, fake_get_vmdk_info, fake_remove_ephemerals_and_swap, flavor_root_gb): vmdk = vm_util.VmdkInfo('[fake] uuid/root.vmdk', 'fake-adapter', 'fake-disk', self._instance.flavor.root_gb * units.Gi, 'fake-device') fake_get_vmdk_info.return_value = vmdk flavor = fake_flavor.fake_flavor_obj(self._context, root_gb=flavor_root_gb) self._vmops.migrate_disk_and_power_off(self._context, self._instance, None, flavor) fake_get_vm_ref.assert_called_once_with(self._session, self._instance) fake_power_off.assert_called_once_with(self._session, self._instance, 'fake-ref') fake_resize_vm.assert_called_once_with(self._context, self._instance, 'fake-ref', flavor, mock.ANY) fake_resize_disk.assert_called_once_with(self._instance, 'fake-ref', vmdk, flavor) calls = [mock.call(self._context, self._instance, step=i, total_steps=vmops.RESIZE_TOTAL_STEPS) for i in range(4)] fake_progress.assert_has_calls(calls) @mock.patch.object(vutil, 'get_inventory_path', return_value='fake_path') @mock.patch.object(vmops.VMwareVMOps, '_attach_cdrom_to_vm') @mock.patch.object(vmops.VMwareVMOps, '_create_config_drive') def test_configure_config_drive(self, mock_create_config_drive, mock_attach_cdrom_to_vm, mock_get_inventory_path): injected_files = mock.Mock() admin_password = mock.Mock() network_info = mock.Mock() vm_ref = mock.Mock() mock_create_config_drive.return_value = "fake_iso_path" self._vmops._configure_config_drive( self._context, self._instance, vm_ref, self._dc_info, self._ds, injected_files, admin_password, network_info) upload_iso_path = self._ds.build_path("fake_iso_path") mock_get_inventory_path.assert_called_once_with(self._session.vim, self._dc_info.ref) mock_create_config_drive.assert_called_once_with( self._context, self._instance, injected_files, admin_password, network_info, self._ds.name, 'fake_path', self._instance.uuid, "Fake-CookieJar") mock_attach_cdrom_to_vm.assert_called_once_with( vm_ref, self._instance, self._ds.ref, str(upload_iso_path)) @mock.patch('nova.image.api.API.get') @mock.patch.object(vmops.LOG, 'debug') @mock.patch.object(vmops.VMwareVMOps, '_fetch_image_if_missing') @mock.patch.object(vmops.VMwareVMOps, '_get_vm_config_info') @mock.patch.object(vmops.VMwareVMOps, 'build_virtual_machine') @mock.patch.object(vmops.lockutils, 'lock') def test_spawn_mask_block_device_info_password(self, mock_lock, mock_build_virtual_machine, mock_get_vm_config_info, mock_fetch_image_if_missing, mock_debug, mock_glance): # Very simple test that just ensures block_device_info auth_password # is masked when logged; the rest of the test just fails out early. data = {'auth_password': 'scrubme'} bdm = [{'boot_index': 0, 'disk_bus': constants.DEFAULT_ADAPTER_TYPE, 'connection_info': {'data': data}}] bdi = {'block_device_mapping': bdm} self.password_logged = False # Tests that the parameters to the to_xml method are sanitized for # passwords when logged. def fake_debug(*args, **kwargs): if 'auth_password' in args[0]: self.password_logged = True self.assertNotIn('scrubme', args[0]) mock_debug.side_effect = fake_debug self.flags(flat_injected=False) self.flags(enabled=False, group='vnc') # Call spawn(). We don't care what it does as long as it generates # the log message, which we check below. with mock.patch.object(self._vmops, '_volumeops') as mock_vo: mock_vo.attach_root_volume.side_effect = test.TestingException try: self._vmops.spawn( self._context, self._instance, self._image_meta, injected_files=None, admin_password=None, network_info=[], block_device_info=bdi ) except test.TestingException: pass # Check that the relevant log message was generated, and therefore # that we checked it was scrubbed self.assertTrue(self.password_logged) def _get_metadata(self, is_image_used=True): if is_image_used: image_id = '70a599e0-31e7-49b7-b260-868f441e862b' else: image_id = None return ("name:fake_display_name\n" "userid:fake_user\n" "username:None\n" "projectid:fake_project\n" "projectname:None\n" "flavor:name:m1.small\n" "flavor:memory_mb:512\n" "flavor:vcpus:1\n" "flavor:ephemeral_gb:0\n" "flavor:root_gb:10\n" "flavor:swap:0\n" "imageid:%(image_id)s\n" "package:%(version)s\n" % { 'image_id': image_id, 'version': version.version_string_with_package()}) @mock.patch.object(vm_util, 'rename_vm') @mock.patch.object(vmops.VMwareVMOps, '_create_folders', return_value='fake_vm_folder') @mock.patch('nova.virt.vmwareapi.vm_util.power_on_instance') @mock.patch.object(vmops.VMwareVMOps, '_use_disk_image_as_linked_clone') @mock.patch.object(vmops.VMwareVMOps, '_fetch_image_if_missing') @mock.patch( 'nova.virt.vmwareapi.imagecache.ImageCacheManager.enlist_image') @mock.patch.object(vmops.VMwareVMOps, 'build_virtual_machine') @mock.patch.object(vmops.VMwareVMOps, '_get_vm_config_info') @mock.patch.object(vmops.VMwareVMOps, '_get_extra_specs') @mock.patch.object(nova.virt.vmwareapi.images.VMwareImage, 'from_image') def test_spawn_non_root_block_device(self, from_image, get_extra_specs, get_vm_config_info, build_virtual_machine, enlist_image, fetch_image, use_disk_image, power_on_instance, create_folders, rename_vm): self._instance.flavor = self._flavor extra_specs = get_extra_specs.return_value connection_info1 = {'data': 'fake-data1', 'serial': 'volume-fake-id1'} connection_info2 = {'data': 'fake-data2', 'serial': 'volume-fake-id2'} bdm = [{'connection_info': connection_info1, 'disk_bus': constants.ADAPTER_TYPE_IDE, 'mount_device': '/dev/sdb'}, {'connection_info': connection_info2, 'disk_bus': constants.DEFAULT_ADAPTER_TYPE, 'mount_device': '/dev/sdc'}] bdi = {'block_device_mapping': bdm, 'root_device_name': '/dev/sda'} self.flags(flat_injected=False) self.flags(enabled=False, group='vnc') image_size = (self._instance.flavor.root_gb) * units.Gi / 2 image_info = images.VMwareImage( image_id=self._image_id, file_size=image_size) vi = get_vm_config_info.return_value from_image.return_value = image_info build_virtual_machine.return_value = 'fake-vm-ref' with mock.patch.object(self._vmops, '_volumeops') as volumeops: self._vmops.spawn(self._context, self._instance, self._image_meta, injected_files=None, admin_password=None, network_info=[], block_device_info=bdi) from_image.assert_called_once_with(self._context, self._instance.image_ref, self._image_meta) get_vm_config_info.assert_called_once_with(self._instance, image_info, extra_specs) build_virtual_machine.assert_called_once_with(self._instance, image_info, vi.dc_info, vi.datastore, [], extra_specs, self._get_metadata()) enlist_image.assert_called_once_with(image_info.image_id, vi.datastore, vi.dc_info.ref) fetch_image.assert_called_once_with(self._context, vi) use_disk_image.assert_called_once_with('fake-vm-ref', vi) volumeops.attach_volume.assert_any_call( connection_info1, self._instance, constants.ADAPTER_TYPE_IDE) volumeops.attach_volume.assert_any_call( connection_info2, self._instance, constants.DEFAULT_ADAPTER_TYPE) @mock.patch.object(vm_util, 'rename_vm') @mock.patch.object(vmops.VMwareVMOps, '_create_folders', return_value='fake_vm_folder') @mock.patch('nova.virt.vmwareapi.vm_util.power_on_instance') @mock.patch.object(vmops.VMwareVMOps, 'build_virtual_machine') @mock.patch.object(vmops.VMwareVMOps, '_get_vm_config_info') @mock.patch.object(vmops.VMwareVMOps, '_get_extra_specs') @mock.patch.object(nova.virt.vmwareapi.images.VMwareImage, 'from_image') def test_spawn_with_no_image_and_block_devices(self, from_image, get_extra_specs, get_vm_config_info, build_virtual_machine, power_on_instance, create_folders, rename_vm): self._instance.image_ref = None self._instance.flavor = self._flavor extra_specs = get_extra_specs.return_value connection_info1 = {'data': 'fake-data1', 'serial': 'volume-fake-id1'} connection_info2 = {'data': 'fake-data2', 'serial': 'volume-fake-id2'} connection_info3 = {'data': 'fake-data3', 'serial': 'volume-fake-id3'} bdm = [{'boot_index': 0, 'connection_info': connection_info1, 'disk_bus': constants.ADAPTER_TYPE_IDE}, {'boot_index': 1, 'connection_info': connection_info2, 'disk_bus': constants.DEFAULT_ADAPTER_TYPE}, {'boot_index': 2, 'connection_info': connection_info3, 'disk_bus': constants.ADAPTER_TYPE_LSILOGICSAS}] bdi = {'block_device_mapping': bdm} self.flags(flat_injected=False) self.flags(enabled=False, group='vnc') image_info = mock.sentinel.image_info vi = get_vm_config_info.return_value from_image.return_value = image_info build_virtual_machine.return_value = 'fake-vm-ref' with mock.patch.object(self._vmops, '_volumeops') as volumeops: self._vmops.spawn(self._context, self._instance, self._image_meta, injected_files=None, admin_password=None, network_info=[], block_device_info=bdi) from_image.assert_called_once_with(self._context, self._instance.image_ref, self._image_meta) get_vm_config_info.assert_called_once_with(self._instance, image_info, extra_specs) build_virtual_machine.assert_called_once_with(self._instance, image_info, vi.dc_info, vi.datastore, [], extra_specs, self._get_metadata(is_image_used=False)) volumeops.attach_root_volume.assert_called_once_with( connection_info1, self._instance, vi.datastore.ref, constants.ADAPTER_TYPE_IDE) volumeops.attach_volume.assert_any_call( connection_info2, self._instance, constants.DEFAULT_ADAPTER_TYPE) volumeops.attach_volume.assert_any_call( connection_info3, self._instance, constants.ADAPTER_TYPE_LSILOGICSAS) @mock.patch.object(vmops.VMwareVMOps, '_create_folders', return_value='fake_vm_folder') @mock.patch('nova.virt.vmwareapi.vm_util.power_on_instance') @mock.patch.object(vmops.VMwareVMOps, 'build_virtual_machine') @mock.patch.object(vmops.VMwareVMOps, '_get_vm_config_info') @mock.patch.object(vmops.VMwareVMOps, '_get_extra_specs') @mock.patch.object(nova.virt.vmwareapi.images.VMwareImage, 'from_image') def test_spawn_unsupported_hardware(self, from_image, get_extra_specs, get_vm_config_info, build_virtual_machine, power_on_instance, create_folders): self._instance.image_ref = None self._instance.flavor = self._flavor extra_specs = get_extra_specs.return_value connection_info = {'data': 'fake-data', 'serial': 'volume-fake-id'} bdm = [{'boot_index': 0, 'connection_info': connection_info, 'disk_bus': 'invalid_adapter_type'}] bdi = {'block_device_mapping': bdm} self.flags(flat_injected=False) self.flags(enabled=False, group='vnc') image_info = mock.sentinel.image_info vi = get_vm_config_info.return_value from_image.return_value = image_info build_virtual_machine.return_value = 'fake-vm-ref' self.assertRaises(exception.UnsupportedHardware, self._vmops.spawn, self._context, self._instance, self._image_meta, injected_files=None, admin_password=None, network_info=[], block_device_info=bdi) from_image.assert_called_once_with(self._context, self._instance.image_ref, self._image_meta) get_vm_config_info.assert_called_once_with( self._instance, image_info, extra_specs) build_virtual_machine.assert_called_once_with(self._instance, image_info, vi.dc_info, vi.datastore, [], extra_specs, self._get_metadata(is_image_used=False)) def test_get_ds_browser(self): cache = self._vmops._datastore_browser_mapping ds_browser = mock.Mock() moref = vmwareapi_fake.ManagedObjectReference('datastore-100') self.assertIsNone(cache.get(moref.value)) mock_call_method = mock.Mock(return_value=ds_browser) with mock.patch.object(self._session, '_call_method', mock_call_method): ret = self._vmops._get_ds_browser(moref) mock_call_method.assert_called_once_with(vutil, 'get_object_property', moref, 'browser') self.assertIs(ds_browser, ret) self.assertIs(ds_browser, cache.get(moref.value)) @mock.patch.object( vmops.VMwareVMOps, '_sized_image_exists', return_value=False) @mock.patch.object(vmops.VMwareVMOps, '_extend_virtual_disk') @mock.patch.object(vm_util, 'copy_virtual_disk') def _test_use_disk_image_as_linked_clone(self, mock_copy_virtual_disk, mock_extend_virtual_disk, mock_sized_image_exists, flavor_fits_image=False): extra_specs = vm_util.ExtraSpecs() file_size = 10 * units.Gi if flavor_fits_image else 5 * units.Gi image_info = images.VMwareImage( image_id=self._image_id, file_size=file_size, linked_clone=False) cache_root_folder = self._ds.build_path("vmware_base", self._image_id) mock_imagecache = mock.Mock() mock_imagecache.get_image_cache_folder.return_value = cache_root_folder vi = vmops.VirtualMachineInstanceConfigInfo( self._instance, image_info, self._ds, self._dc_info, mock_imagecache, extra_specs) sized_cached_image_ds_loc = cache_root_folder.join( "%s.%s.vmdk" % (self._image_id, vi.root_gb)) self._vmops._volumeops = mock.Mock() mock_attach_disk_to_vm = self._vmops._volumeops.attach_disk_to_vm self._vmops._use_disk_image_as_linked_clone("fake_vm_ref", vi) mock_copy_virtual_disk.assert_called_once_with( self._session, self._dc_info.ref, str(vi.cache_image_path), str(sized_cached_image_ds_loc)) if not flavor_fits_image: mock_extend_virtual_disk.assert_called_once_with( self._instance, vi.root_gb * units.Mi, str(sized_cached_image_ds_loc), self._dc_info.ref) mock_attach_disk_to_vm.assert_called_once_with( "fake_vm_ref", self._instance, vi.ii.adapter_type, vi.ii.disk_type, str(sized_cached_image_ds_loc), vi.root_gb * units.Mi, False, disk_io_limits=vi._extra_specs.disk_io_limits) def test_use_disk_image_as_linked_clone(self): self._test_use_disk_image_as_linked_clone() def test_use_disk_image_as_linked_clone_flavor_fits_image(self): self._test_use_disk_image_as_linked_clone(flavor_fits_image=True) @mock.patch.object(vmops.VMwareVMOps, '_extend_virtual_disk') @mock.patch.object(vm_util, 'copy_virtual_disk') def _test_use_disk_image_as_full_clone(self, mock_copy_virtual_disk, mock_extend_virtual_disk, flavor_fits_image=False): extra_specs = vm_util.ExtraSpecs() file_size = 10 * units.Gi if flavor_fits_image else 5 * units.Gi image_info = images.VMwareImage( image_id=self._image_id, file_size=file_size, linked_clone=False) cache_root_folder = self._ds.build_path("vmware_base", self._image_id) mock_imagecache = mock.Mock() mock_imagecache.get_image_cache_folder.return_value = cache_root_folder vi = vmops.VirtualMachineInstanceConfigInfo( self._instance, image_info, self._ds, self._dc_info, mock_imagecache, extra_specs) self._vmops._volumeops = mock.Mock() mock_attach_disk_to_vm = self._vmops._volumeops.attach_disk_to_vm self._vmops._use_disk_image_as_full_clone("fake_vm_ref", vi) fake_path = '[fake_ds] %(uuid)s/%(uuid)s.vmdk' % {'uuid': self._uuid} mock_copy_virtual_disk.assert_called_once_with( self._session, self._dc_info.ref, str(vi.cache_image_path), fake_path) if not flavor_fits_image: mock_extend_virtual_disk.assert_called_once_with( self._instance, vi.root_gb * units.Mi, fake_path, self._dc_info.ref) mock_attach_disk_to_vm.assert_called_once_with( "fake_vm_ref", self._instance, vi.ii.adapter_type, vi.ii.disk_type, fake_path, vi.root_gb * units.Mi, False, disk_io_limits=vi._extra_specs.disk_io_limits) def test_use_disk_image_as_full_clone(self): self._test_use_disk_image_as_full_clone() def test_use_disk_image_as_full_clone_image_too_big(self): self._test_use_disk_image_as_full_clone(flavor_fits_image=True) @mock.patch.object(vmops.VMwareVMOps, '_attach_cdrom_to_vm') @mock.patch.object(vm_util, 'create_virtual_disk') def _test_use_iso_image(self, mock_create_virtual_disk, mock_attach_cdrom, with_root_disk): extra_specs = vm_util.ExtraSpecs() image_info = images.VMwareImage( image_id=self._image_id, file_size=10 * units.Mi, linked_clone=True) cache_root_folder = self._ds.build_path("vmware_base", self._image_id) mock_imagecache = mock.Mock() mock_imagecache.get_image_cache_folder.return_value = cache_root_folder vi = vmops.VirtualMachineInstanceConfigInfo( self._instance, image_info, self._ds, self._dc_info, mock_imagecache, extra_specs) self._vmops._volumeops = mock.Mock() mock_attach_disk_to_vm = self._vmops._volumeops.attach_disk_to_vm self._vmops._use_iso_image("fake_vm_ref", vi) mock_attach_cdrom.assert_called_once_with( "fake_vm_ref", self._instance, self._ds.ref, str(vi.cache_image_path)) fake_path = '[fake_ds] %(uuid)s/%(uuid)s.vmdk' % {'uuid': self._uuid} if with_root_disk: mock_create_virtual_disk.assert_called_once_with( self._session, self._dc_info.ref, vi.ii.adapter_type, vi.ii.disk_type, fake_path, vi.root_gb * units.Mi) linked_clone = False mock_attach_disk_to_vm.assert_called_once_with( "fake_vm_ref", self._instance, vi.ii.adapter_type, vi.ii.disk_type, fake_path, vi.root_gb * units.Mi, linked_clone, disk_io_limits=vi._extra_specs.disk_io_limits) def test_use_iso_image_with_root_disk(self): self._test_use_iso_image(with_root_disk=True) def test_use_iso_image_without_root_disk(self): self._test_use_iso_image(with_root_disk=False) def _verify_spawn_method_calls(self, mock_call_method, extras=None): # TODO(vui): More explicit assertions of spawn() behavior # are waiting on additional refactoring pertaining to image # handling/manipulation. Till then, we continue to assert on the # sequence of VIM operations invoked. expected_methods = ['get_object_property', 'SearchDatastore_Task', 'CreateVirtualDisk_Task', 'DeleteDatastoreFile_Task', 'MoveDatastoreFile_Task', 'DeleteDatastoreFile_Task', 'SearchDatastore_Task', 'ExtendVirtualDisk_Task', ] if extras: expected_methods.extend(extras) # Last call should be renaming the instance expected_methods.append('Rename_Task') recorded_methods = [c[1][1] for c in mock_call_method.mock_calls] self.assertEqual(expected_methods, recorded_methods) @mock.patch.object(vmops.VMwareVMOps, '_create_folders', return_value='fake_vm_folder') @mock.patch( 'nova.virt.vmwareapi.vmops.VMwareVMOps._update_vnic_index') @mock.patch( 'nova.virt.vmwareapi.vmops.VMwareVMOps._configure_config_drive') @mock.patch('nova.virt.vmwareapi.ds_util.get_datastore') @mock.patch( 'nova.virt.vmwareapi.vmops.VMwareVMOps.get_datacenter_ref_and_name') @mock.patch('nova.virt.vmwareapi.vif.get_vif_info', return_value=[]) @mock.patch('nova.utils.is_neutron', return_value=False) @mock.patch('nova.virt.vmwareapi.vm_util.get_vm_create_spec', return_value='fake_create_spec') @mock.patch('nova.virt.vmwareapi.vm_util.create_vm', return_value='fake_vm_ref') @mock.patch('nova.virt.vmwareapi.ds_util.mkdir') @mock.patch('nova.virt.vmwareapi.vmops.VMwareVMOps._set_machine_id') @mock.patch( 'nova.virt.vmwareapi.imagecache.ImageCacheManager.enlist_image') @mock.patch.object(vmops.VMwareVMOps, '_get_and_set_vnc_config') @mock.patch('nova.virt.vmwareapi.vm_util.power_on_instance') @mock.patch('nova.virt.vmwareapi.vm_util.copy_virtual_disk') # TODO(dims): Need to add tests for create_virtual_disk after the # disk/image code in spawn gets refactored def _test_spawn(self, mock_copy_virtual_disk, mock_power_on_instance, mock_get_and_set_vnc_config, mock_enlist_image, mock_set_machine_id, mock_mkdir, mock_create_vm, mock_get_create_spec, mock_is_neutron, mock_get_vif_info, mock_get_datacenter_ref_and_name, mock_get_datastore, mock_configure_config_drive, mock_update_vnic_index, mock_create_folders, block_device_info=None, extra_specs=None, config_drive=False): if extra_specs is None: extra_specs = vm_util.ExtraSpecs() image_size = (self._instance.flavor.root_gb) * units.Gi / 2 image = { 'id': self._image_id, 'disk_format': 'vmdk', 'size': image_size, } image = objects.ImageMeta.from_dict(image) image_info = images.VMwareImage( image_id=self._image_id, file_size=image_size) vi = self._vmops._get_vm_config_info( self._instance, image_info, extra_specs) self._vmops._volumeops = mock.Mock() network_info = mock.Mock() mock_get_datastore.return_value = self._ds mock_get_datacenter_ref_and_name.return_value = self._dc_info mock_call_method = mock.Mock(return_value='fake_task') if extra_specs is None: extra_specs = vm_util.ExtraSpecs() with test.nested( mock.patch.object(self._session, '_wait_for_task'), mock.patch.object(self._session, '_call_method', mock_call_method), mock.patch.object(uuidutils, 'generate_uuid', return_value='tmp-uuid'), mock.patch.object(images, 'fetch_image'), mock.patch('nova.image.api.API.get'), mock.patch.object(vutil, 'get_inventory_path', return_value=self._dc_info.name), mock.patch.object(self._vmops, '_get_extra_specs', return_value=extra_specs), mock.patch.object(self._vmops, '_get_instance_metadata', return_value='fake-metadata') ) as (_wait_for_task, _call_method, _generate_uuid, _fetch_image, _get_img_svc, _get_inventory_path, _get_extra_specs, _get_instance_metadata): self._vmops.spawn(self._context, self._instance, image, injected_files='fake_files', admin_password='password', network_info=network_info, block_device_info=block_device_info) mock_is_neutron.assert_called_once_with() self.assertEqual(2, mock_mkdir.call_count) mock_get_vif_info.assert_called_once_with( self._session, self._cluster.obj, False, constants.DEFAULT_VIF_MODEL, network_info) mock_get_create_spec.assert_called_once_with( self._session.vim.client.factory, self._instance, 'fake_ds', [], extra_specs, constants.DEFAULT_OS_TYPE, profile_spec=None, metadata='fake-metadata') mock_create_vm.assert_called_once_with( self._session, self._instance, 'fake_vm_folder', 'fake_create_spec', self._cluster.resourcePool) mock_get_and_set_vnc_config.assert_called_once_with( self._session.vim.client.factory, self._instance, 'fake_vm_ref') mock_set_machine_id.assert_called_once_with( self._session.vim.client.factory, self._instance, network_info, vm_ref='fake_vm_ref') mock_power_on_instance.assert_called_once_with( self._session, self._instance, vm_ref='fake_vm_ref') if (block_device_info and 'block_device_mapping' in block_device_info): bdms = block_device_info['block_device_mapping'] for bdm in bdms: mock_attach_root = ( self._vmops._volumeops.attach_root_volume) mock_attach = self._vmops._volumeops.attach_volume adapter_type = bdm.get('disk_bus') or vi.ii.adapter_type if bdm.get('boot_index') == 0: mock_attach_root.assert_any_call( bdm['connection_info'], self._instance, self._ds.ref, adapter_type) else: mock_attach.assert_any_call( bdm['connection_info'], self._instance, self._ds.ref, adapter_type) mock_enlist_image.assert_called_once_with( self._image_id, self._ds, self._dc_info.ref) upload_file_name = 'vmware_temp/tmp-uuid/%s/%s-flat.vmdk' % ( self._image_id, self._image_id) _fetch_image.assert_called_once_with( self._context, self._instance, self._session._host, self._session._port, self._dc_info.name, self._ds.name, upload_file_name, cookies='Fake-CookieJar') self.assertGreater(len(_wait_for_task.mock_calls), 0) _get_inventory_path.call_count = 1 extras = None if block_device_info and ('ephemerals' in block_device_info or 'swap' in block_device_info): extras = ['CreateVirtualDisk_Task'] self._verify_spawn_method_calls(_call_method, extras) dc_ref = 'fake_dc_ref' source_file = six.text_type('[fake_ds] vmware_base/%s/%s.vmdk' % (self._image_id, self._image_id)) dest_file = six.text_type('[fake_ds] vmware_base/%s/%s.%d.vmdk' % (self._image_id, self._image_id, self._instance['root_gb'])) # TODO(dims): add more tests for copy_virtual_disk after # the disk/image code in spawn gets refactored mock_copy_virtual_disk.assert_called_with(self._session, dc_ref, source_file, dest_file) if config_drive: mock_configure_config_drive.assert_called_once_with( self._context, self._instance, 'fake_vm_ref', self._dc_info, self._ds, 'fake_files', 'password', network_info) mock_update_vnic_index.assert_called_once_with( self._context, self._instance, network_info) @mock.patch.object(ds_util, 'get_datastore') @mock.patch.object(vmops.VMwareVMOps, 'get_datacenter_ref_and_name') def _test_get_spawn_vm_config_info(self, mock_get_datacenter_ref_and_name, mock_get_datastore, image_size_bytes=0): image_info = images.VMwareImage( image_id=self._image_id, file_size=image_size_bytes, linked_clone=True) mock_get_datastore.return_value = self._ds mock_get_datacenter_ref_and_name.return_value = self._dc_info extra_specs = vm_util.ExtraSpecs() vi = self._vmops._get_vm_config_info(self._instance, image_info, extra_specs) self.assertEqual(image_info, vi.ii) self.assertEqual(self._ds, vi.datastore) self.assertEqual(self._instance.flavor.root_gb, vi.root_gb) self.assertEqual(self._instance, vi.instance) self.assertEqual(self._instance.uuid, vi.instance.uuid) self.assertEqual(extra_specs, vi._extra_specs) cache_image_path = '[%s] vmware_base/%s/%s.vmdk' % ( self._ds.name, self._image_id, self._image_id) self.assertEqual(cache_image_path, str(vi.cache_image_path)) cache_image_folder = '[%s] vmware_base/%s' % ( self._ds.name, self._image_id) self.assertEqual(cache_image_folder, str(vi.cache_image_folder)) def test_get_spawn_vm_config_info(self): image_size = (self._instance.flavor.root_gb) * units.Gi / 2 self._test_get_spawn_vm_config_info(image_size_bytes=image_size) def test_get_spawn_vm_config_info_image_too_big(self): image_size = (self._instance.flavor.root_gb + 1) * units.Gi self.assertRaises(exception.InstanceUnacceptable, self._test_get_spawn_vm_config_info, image_size_bytes=image_size) def test_spawn(self): self._test_spawn() def test_spawn_config_drive_enabled(self): self.flags(force_config_drive=True) self._test_spawn(config_drive=True) def test_spawn_with_block_device_info(self): block_device_info = { 'block_device_mapping': [{'boot_index': 0, 'connection_info': 'fake', 'mount_device': '/dev/vda'}] } self._test_spawn(block_device_info=block_device_info) def test_spawn_with_block_device_info_with_config_drive(self): self.flags(force_config_drive=True) block_device_info = { 'block_device_mapping': [{'boot_index': 0, 'connection_info': 'fake', 'mount_device': '/dev/vda'}] } self._test_spawn(block_device_info=block_device_info, config_drive=True) def _spawn_with_block_device_info_ephemerals(self, ephemerals): block_device_info = {'ephemerals': ephemerals} self._test_spawn(block_device_info=block_device_info) def test_spawn_with_block_device_info_ephemerals(self): ephemerals = [{'device_type': 'disk', 'disk_bus': 'virtio', 'device_name': '/dev/vdb', 'size': 1}] self._spawn_with_block_device_info_ephemerals(ephemerals) def test_spawn_with_block_device_info_ephemerals_no_disk_bus(self): ephemerals = [{'device_type': 'disk', 'disk_bus': None, 'device_name': '/dev/vdb', 'size': 1}] self._spawn_with_block_device_info_ephemerals(ephemerals) def test_spawn_with_block_device_info_swap(self): block_device_info = {'swap': {'disk_bus': None, 'swap_size': 512, 'device_name': '/dev/sdb'}} self._test_spawn(block_device_info=block_device_info) @mock.patch.object(vm_util, 'rename_vm') @mock.patch('nova.virt.vmwareapi.vm_util.power_on_instance') @mock.patch.object(vmops.VMwareVMOps, '_create_and_attach_thin_disk') @mock.patch.object(vmops.VMwareVMOps, '_use_disk_image_as_linked_clone') @mock.patch.object(vmops.VMwareVMOps, '_fetch_image_if_missing') @mock.patch( 'nova.virt.vmwareapi.imagecache.ImageCacheManager.enlist_image') @mock.patch.object(vmops.VMwareVMOps, 'build_virtual_machine') @mock.patch.object(vmops.VMwareVMOps, '_get_vm_config_info') @mock.patch.object(vmops.VMwareVMOps, '_get_extra_specs') @mock.patch.object(nova.virt.vmwareapi.images.VMwareImage, 'from_image') def test_spawn_with_ephemerals_and_swap(self, from_image, get_extra_specs, get_vm_config_info, build_virtual_machine, enlist_image, fetch_image, use_disk_image, create_and_attach_thin_disk, power_on_instance, rename_vm): self._instance.flavor = objects.Flavor(vcpus=1, memory_mb=512, name="m1.tiny", root_gb=1, ephemeral_gb=1, swap=512, extra_specs={}) extra_specs = self._vmops._get_extra_specs(self._instance.flavor) ephemerals = [{'device_type': 'disk', 'disk_bus': None, 'device_name': '/dev/vdb', 'size': 1}, {'device_type': 'disk', 'disk_bus': None, 'device_name': '/dev/vdc', 'size': 1}] swap = {'disk_bus': None, 'swap_size': 512, 'device_name': '/dev/vdd'} bdi = {'block_device_mapping': [], 'root_device_name': '/dev/sda', 'ephemerals': ephemerals, 'swap': swap} metadata = self._vmops._get_instance_metadata(self._context, self._instance) self.flags(enabled=False, group='vnc') self.flags(flat_injected=False) image_size = (self._instance.flavor.root_gb) * units.Gi / 2 image_info = images.VMwareImage( image_id=self._image_id, file_size=image_size) vi = get_vm_config_info.return_value from_image.return_value = image_info build_virtual_machine.return_value = 'fake-vm-ref' self._vmops.spawn(self._context, self._instance, {}, injected_files=None, admin_password=None, network_info=[], block_device_info=bdi) from_image.assert_called_once_with( self._context, self._instance.image_ref, {}) get_vm_config_info.assert_called_once_with(self._instance, image_info, extra_specs) build_virtual_machine.assert_called_once_with(self._instance, image_info, vi.dc_info, vi.datastore, [], extra_specs, metadata) enlist_image.assert_called_once_with(image_info.image_id, vi.datastore, vi.dc_info.ref) fetch_image.assert_called_once_with(self._context, vi) use_disk_image.assert_called_once_with('fake-vm-ref', vi) # _create_and_attach_thin_disk should be called for each ephemeral # and swap disk eph0_path = str(ds_obj.DatastorePath(vi.datastore.name, self._uuid, 'ephemeral_0.vmdk')) eph1_path = str(ds_obj.DatastorePath(vi.datastore.name, self._uuid, 'ephemeral_1.vmdk')) swap_path = str(ds_obj.DatastorePath(vi.datastore.name, self._uuid, 'swap.vmdk')) create_and_attach_thin_disk.assert_has_calls([ mock.call(self._instance, 'fake-vm-ref', vi.dc_info, ephemerals[0]['size'] * units.Mi, vi.ii.adapter_type, eph0_path), mock.call(self._instance, 'fake-vm-ref', vi.dc_info, ephemerals[1]['size'] * units.Mi, vi.ii.adapter_type, eph1_path), mock.call(self._instance, 'fake-vm-ref', vi.dc_info, swap['swap_size'] * units.Ki, vi.ii.adapter_type, swap_path) ]) power_on_instance.assert_called_once_with(self._session, self._instance, vm_ref='fake-vm-ref') def _get_fake_vi(self): image_info = images.VMwareImage( image_id=self._image_id, file_size=7, linked_clone=False) vi = vmops.VirtualMachineInstanceConfigInfo( self._instance, image_info, self._ds, self._dc_info, mock.Mock()) return vi @mock.patch.object(vm_util, 'create_virtual_disk') def test_create_and_attach_thin_disk(self, mock_create): vi = self._get_fake_vi() self._vmops._volumeops = mock.Mock() mock_attach_disk_to_vm = self._vmops._volumeops.attach_disk_to_vm path = str(ds_obj.DatastorePath(vi.datastore.name, self._uuid, 'fake-filename')) self._vmops._create_and_attach_thin_disk(self._instance, 'fake-vm-ref', vi.dc_info, 1, 'fake-adapter-type', path) mock_create.assert_called_once_with( self._session, self._dc_info.ref, 'fake-adapter-type', 'thin', path, 1) mock_attach_disk_to_vm.assert_called_once_with( 'fake-vm-ref', self._instance, 'fake-adapter-type', 'thin', path, 1, False) def test_create_ephemeral_with_bdi(self): ephemerals = [{'device_type': 'disk', 'disk_bus': 'virtio', 'device_name': '/dev/vdb', 'size': 1}] block_device_info = {'ephemerals': ephemerals} vi = self._get_fake_vi() with mock.patch.object( self._vmops, '_create_and_attach_thin_disk') as mock_caa: self._vmops._create_ephemeral(block_device_info, self._instance, 'fake-vm-ref', vi.dc_info, vi.datastore, self._uuid, vi.ii.adapter_type) mock_caa.assert_called_once_with( self._instance, 'fake-vm-ref', vi.dc_info, 1 * units.Mi, 'virtio', '[fake_ds] %s/ephemeral_0.vmdk' % self._uuid) def _test_create_ephemeral_from_instance(self, bdi): vi = self._get_fake_vi() with mock.patch.object( self._vmops, '_create_and_attach_thin_disk') as mock_caa: self._vmops._create_ephemeral(bdi, self._instance, 'fake-vm-ref', vi.dc_info, vi.datastore, self._uuid, vi.ii.adapter_type) mock_caa.assert_called_once_with( self._instance, 'fake-vm-ref', vi.dc_info, 1 * units.Mi, constants.DEFAULT_ADAPTER_TYPE, '[fake_ds] %s/ephemeral_0.vmdk' % self._uuid) def test_create_ephemeral_with_bdi_but_no_ephemerals(self): block_device_info = {'ephemerals': []} self._instance.flavor.ephemeral_gb = 1 self._test_create_ephemeral_from_instance(block_device_info) def test_create_ephemeral_with_no_bdi(self): self._instance.flavor.ephemeral_gb = 1 self._test_create_ephemeral_from_instance(None) def _test_create_swap_from_instance(self, bdi): vi = self._get_fake_vi() flavor = objects.Flavor(vcpus=1, memory_mb=1024, ephemeral_gb=1, swap=1024, extra_specs={}) self._instance.flavor = flavor with mock.patch.object( self._vmops, '_create_and_attach_thin_disk' ) as create_and_attach: self._vmops._create_swap(bdi, self._instance, 'fake-vm-ref', vi.dc_info, vi.datastore, self._uuid, 'lsiLogic') size = flavor.swap * units.Ki if bdi is not None: swap = bdi.get('swap', {}) size = swap.get('swap_size', 0) * units.Ki path = str(ds_obj.DatastorePath(vi.datastore.name, self._uuid, 'swap.vmdk')) create_and_attach.assert_called_once_with(self._instance, 'fake-vm-ref', vi.dc_info, size, 'lsiLogic', path) def test_create_swap_with_bdi(self): block_device_info = {'swap': {'disk_bus': None, 'swap_size': 512, 'device_name': '/dev/sdb'}} self._test_create_swap_from_instance(block_device_info) def test_create_swap_with_no_bdi(self): self._test_create_swap_from_instance(None) @mock.patch.object(vmops.VMwareVMOps, '_create_folders', return_value='fake_vm_folder') def test_build_virtual_machine(self, mock_create_folder): image_id = nova.tests.unit.image.fake.get_valid_image_id() image = images.VMwareImage(image_id=image_id) extra_specs = vm_util.ExtraSpecs() vm_ref = self._vmops.build_virtual_machine(self._instance, image, self._dc_info, self._ds, self.network_info, extra_specs, self._metadata) vm = vmwareapi_fake._get_object(vm_ref) # Test basic VM parameters self.assertEqual(self._instance.uuid, vm.name) self.assertEqual(self._instance.uuid, vm.get('summary.config.instanceUuid')) self.assertEqual(self._instance_values['vcpus'], vm.get('summary.config.numCpu')) self.assertEqual(self._instance_values['memory_mb'], vm.get('summary.config.memorySizeMB')) # Test NSX config for optval in vm.get('config.extraConfig').OptionValue: if optval.key == 'nvp.vm-uuid': self.assertEqual(self._instance_values['uuid'], optval.value) break else: self.fail('nvp.vm-uuid not found in extraConfig') # Test that the VM is associated with the specified datastore datastores = vm.datastore.ManagedObjectReference self.assertEqual(1, len(datastores)) datastore = vmwareapi_fake._get_object(datastores[0]) self.assertEqual(self._ds.name, datastore.get('summary.name')) # Test that the VM's network is configured as specified devices = vm.get('config.hardware.device').VirtualDevice for device in devices: if device.obj_name != 'ns0:VirtualE1000': continue self.assertEqual(self._network_values['address'], device.macAddress) break else: self.fail('NIC not configured') def test_spawn_cpu_limit(self): cpu_limits = vm_util.Limits(limit=7) extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_cpu_reservation(self): cpu_limits = vm_util.Limits(reservation=7) extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_cpu_allocations(self): cpu_limits = vm_util.Limits(limit=7, reservation=6) extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_cpu_shares_level(self): cpu_limits = vm_util.Limits(shares_level='high') extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_cpu_shares_custom(self): cpu_limits = vm_util.Limits(shares_level='custom', shares_share=1948) extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_memory_limit(self): memory_limits = vm_util.Limits(limit=7) extra_specs = vm_util.ExtraSpecs(memory_limits=memory_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_memory_reservation(self): memory_limits = vm_util.Limits(reservation=7) extra_specs = vm_util.ExtraSpecs(memory_limits=memory_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_memory_allocations(self): memory_limits = vm_util.Limits(limit=7, reservation=6) extra_specs = vm_util.ExtraSpecs(memory_limits=memory_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_memory_shares_level(self): memory_limits = vm_util.Limits(shares_level='high') extra_specs = vm_util.ExtraSpecs(memory_limits=memory_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_memory_shares_custom(self): memory_limits = vm_util.Limits(shares_level='custom', shares_share=1948) extra_specs = vm_util.ExtraSpecs(memory_limits=memory_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_vif_limit(self): vif_limits = vm_util.Limits(limit=7) extra_specs = vm_util.ExtraSpecs(vif_limits=vif_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_vif_reservation(self): vif_limits = vm_util.Limits(reservation=7) extra_specs = vm_util.ExtraSpecs(vif_limits=vif_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_vif_shares_level(self): vif_limits = vm_util.Limits(shares_level='high') extra_specs = vm_util.ExtraSpecs(vif_limits=vif_limits) self._test_spawn(extra_specs=extra_specs) def test_spawn_vif_shares_custom(self): vif_limits = vm_util.Limits(shares_level='custom', shares_share=1948) extra_specs = vm_util.ExtraSpecs(vif_limits=vif_limits) self._test_spawn(extra_specs=extra_specs) def _validate_extra_specs(self, expected, actual): self.assertEqual(expected.cpu_limits.limit, actual.cpu_limits.limit) self.assertEqual(expected.cpu_limits.reservation, actual.cpu_limits.reservation) self.assertEqual(expected.cpu_limits.shares_level, actual.cpu_limits.shares_level) self.assertEqual(expected.cpu_limits.shares_share, actual.cpu_limits.shares_share) def _validate_flavor_extra_specs(self, flavor_extra_specs, expected): # Validate that the extra specs are parsed correctly flavor = objects.Flavor(name='my-flavor', memory_mb=6, vcpus=28, root_gb=496, ephemeral_gb=8128, swap=33550336, extra_specs=flavor_extra_specs) flavor_extra_specs = self._vmops._get_extra_specs(flavor, None) self._validate_extra_specs(expected, flavor_extra_specs) def test_extra_specs_cpu_limit(self): flavor_extra_specs = {'quota:cpu_limit': 7} cpu_limits = vm_util.Limits(limit=7) extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._validate_flavor_extra_specs(flavor_extra_specs, extra_specs) def test_extra_specs_cpu_reservations(self): flavor_extra_specs = {'quota:cpu_reservation': 7} cpu_limits = vm_util.Limits(reservation=7) extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._validate_flavor_extra_specs(flavor_extra_specs, extra_specs) def test_extra_specs_cpu_allocations(self): flavor_extra_specs = {'quota:cpu_limit': 7, 'quota:cpu_reservation': 6} cpu_limits = vm_util.Limits(limit=7, reservation=6) extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._validate_flavor_extra_specs(flavor_extra_specs, extra_specs) def test_extra_specs_cpu_shares_level(self): flavor_extra_specs = {'quota:cpu_shares_level': 'high'} cpu_limits = vm_util.Limits(shares_level='high') extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._validate_flavor_extra_specs(flavor_extra_specs, extra_specs) def test_extra_specs_cpu_shares_custom(self): flavor_extra_specs = {'quota:cpu_shares_level': 'custom', 'quota:cpu_shares_share': 1948} cpu_limits = vm_util.Limits(shares_level='custom', shares_share=1948) extra_specs = vm_util.ExtraSpecs(cpu_limits=cpu_limits) self._validate_flavor_extra_specs(flavor_extra_specs, extra_specs) def test_extra_specs_vif_shares_custom_pos01(self): flavor_extra_specs = {'quota:vif_shares_level': 'custom', 'quota:vif_shares_share': 40} vif_limits = vm_util.Limits(shares_level='custom', shares_share=40) extra_specs = vm_util.ExtraSpecs(vif_limits=vif_limits) self._validate_flavor_extra_specs(flavor_extra_specs, extra_specs) def test_extra_specs_vif_shares_with_invalid_level(self): flavor_extra_specs = {'quota:vif_shares_level': 'high', 'quota:vif_shares_share': 40} vif_limits = vm_util.Limits(shares_level='custom', shares_share=40) extra_specs = vm_util.ExtraSpecs(vif_limits=vif_limits) self.assertRaises(exception.InvalidInput, self._validate_flavor_extra_specs, flavor_extra_specs, extra_specs) def _make_vm_config_info(self, is_iso=False, is_sparse_disk=False, vsphere_location=None): disk_type = (constants.DISK_TYPE_SPARSE if is_sparse_disk else constants.DEFAULT_DISK_TYPE) file_type = (constants.DISK_FORMAT_ISO if is_iso else constants.DEFAULT_DISK_FORMAT) image_info = images.VMwareImage( image_id=self._image_id, file_size=10 * units.Mi, file_type=file_type, disk_type=disk_type, linked_clone=True, vsphere_location=vsphere_location) cache_root_folder = self._ds.build_path("vmware_base", self._image_id) mock_imagecache = mock.Mock() mock_imagecache.get_image_cache_folder.return_value = cache_root_folder vi = vmops.VirtualMachineInstanceConfigInfo( self._instance, image_info, self._ds, self._dc_info, mock_imagecache) return vi @mock.patch.object(vmops.VMwareVMOps, 'check_cache_folder') @mock.patch.object(vmops.VMwareVMOps, '_fetch_image_as_file') @mock.patch.object(vmops.VMwareVMOps, '_prepare_iso_image') @mock.patch.object(vmops.VMwareVMOps, '_prepare_sparse_image') @mock.patch.object(vmops.VMwareVMOps, '_prepare_flat_image') @mock.patch.object(vmops.VMwareVMOps, '_cache_iso_image') @mock.patch.object(vmops.VMwareVMOps, '_cache_sparse_image') @mock.patch.object(vmops.VMwareVMOps, '_cache_flat_image') @mock.patch.object(vmops.VMwareVMOps, '_delete_datastore_file') @mock.patch.object(vmops.VMwareVMOps, '_update_image_size') def _test_fetch_image_if_missing(self, mock_update_image_size, mock_delete_datastore_file, mock_cache_flat_image, mock_cache_sparse_image, mock_cache_iso_image, mock_prepare_flat_image, mock_prepare_sparse_image, mock_prepare_iso_image, mock_fetch_image_as_file, mock_check_cache_folder, is_iso=False, is_sparse_disk=False): tmp_dir_path = mock.Mock() tmp_image_path = mock.Mock() if is_iso: mock_prepare = mock_prepare_iso_image mock_cache = mock_cache_iso_image elif is_sparse_disk: mock_prepare = mock_prepare_sparse_image mock_cache = mock_cache_sparse_image else: mock_prepare = mock_prepare_flat_image mock_cache = mock_cache_flat_image mock_prepare.return_value = tmp_dir_path, tmp_image_path vi = self._make_vm_config_info(is_iso, is_sparse_disk) self._vmops._fetch_image_if_missing(self._context, vi) mock_check_cache_folder.assert_called_once_with( self._ds.name, self._ds.ref) mock_prepare.assert_called_once_with(vi) mock_fetch_image_as_file.assert_called_once_with( self._context, vi, tmp_image_path) mock_cache.assert_called_once_with(vi, tmp_image_path) mock_delete_datastore_file.assert_called_once_with( str(tmp_dir_path), self._dc_info.ref) if is_sparse_disk: mock_update_image_size.assert_called_once_with(vi) def test_fetch_image_if_missing(self): self._test_fetch_image_if_missing() def test_fetch_image_if_missing_with_sparse(self): self._test_fetch_image_if_missing( is_sparse_disk=True) def test_fetch_image_if_missing_with_iso(self): self._test_fetch_image_if_missing( is_iso=True) def test_get_esx_host_and_cookies(self): datastore = mock.Mock() datastore.get_connected_hosts.return_value = ['fira-host'] file_path = mock.Mock() def fake_invoke(module, method, *args, **kwargs): if method == 'AcquireGenericServiceTicket': ticket = mock.Mock() ticket.id = 'fira-ticket' return ticket elif method == 'get_object_property': return 'fira-host' with mock.patch.object(self._session, 'invoke_api', fake_invoke): result = self._vmops._get_esx_host_and_cookies(datastore, 'ha-datacenter', file_path) self.assertEqual('fira-host', result[0]) cookies = result[1] self.assertEqual(1, len(cookies)) self.assertEqual('vmware_cgi_ticket', cookies[0].name) self.assertEqual('"fira-ticket"', cookies[0].value) def test_fetch_vsphere_image(self): vsphere_location = 'vsphere://my?dcPath=mycenter&dsName=mystore' vi = self._make_vm_config_info(vsphere_location=vsphere_location) image_ds_loc = mock.Mock() datacenter_moref = mock.Mock() fake_copy_task = mock.Mock() with test.nested( mock.patch.object( self._session, 'invoke_api', side_effect=[datacenter_moref, fake_copy_task]), mock.patch.object(self._session, '_wait_for_task')) as ( invoke_api, wait_for_task): self._vmops._fetch_vsphere_image(self._context, vi, image_ds_loc) expected_calls = [ mock.call( self._session.vim, 'FindByInventoryPath', self._session.vim.service_content.searchIndex, inventoryPath='mycenter'), mock.call(self._session.vim, 'CopyDatastoreFile_Task', self._session.vim.service_content.fileManager, destinationDatacenter=self._dc_info.ref, destinationName=str(image_ds_loc), sourceDatacenter=datacenter_moref, sourceName='[mystore]')] invoke_api.assert_has_calls(expected_calls) wait_for_task.assert_called_once_with(fake_copy_task) @mock.patch.object(images, 'fetch_image') @mock.patch.object(vmops.VMwareVMOps, '_get_esx_host_and_cookies') def test_fetch_image_as_file(self, mock_get_esx_host_and_cookies, mock_fetch_image): vi = self._make_vm_config_info() image_ds_loc = mock.Mock() host = mock.Mock() dc_name = 'ha-datacenter' cookies = mock.Mock() mock_get_esx_host_and_cookies.return_value = host, cookies self._vmops._fetch_image_as_file(self._context, vi, image_ds_loc) mock_get_esx_host_and_cookies.assert_called_once_with( vi.datastore, dc_name, image_ds_loc.rel_path) mock_fetch_image.assert_called_once_with( self._context, vi.instance, host, self._session._port, dc_name, self._ds.name, image_ds_loc.rel_path, cookies=cookies) @mock.patch.object(vutil, 'get_inventory_path') @mock.patch.object(images, 'fetch_image') @mock.patch.object(vmops.VMwareVMOps, '_get_esx_host_and_cookies') def test_fetch_image_as_file_exception(self, mock_get_esx_host_and_cookies, mock_fetch_image, mock_get_inventory_path): vi = self._make_vm_config_info() image_ds_loc = mock.Mock() dc_name = 'ha-datacenter' mock_get_esx_host_and_cookies.side_effect = \ exception.HostNotFound(host='') mock_get_inventory_path.return_value = self._dc_info.name self._vmops._fetch_image_as_file(self._context, vi, image_ds_loc) mock_get_esx_host_and_cookies.assert_called_once_with( vi.datastore, dc_name, image_ds_loc.rel_path) mock_fetch_image.assert_called_once_with( self._context, vi.instance, self._session._host, self._session._port, self._dc_info.name, self._ds.name, image_ds_loc.rel_path, cookies='Fake-CookieJar') @mock.patch.object(images, 'fetch_image_stream_optimized', return_value=123) def test_fetch_image_as_vapp(self, mock_fetch_image): vi = self._make_vm_config_info() image_ds_loc = mock.Mock() image_ds_loc.parent.basename = 'fake-name' self._vmops._fetch_image_as_vapp(self._context, vi, image_ds_loc) mock_fetch_image.assert_called_once_with( self._context, vi.instance, self._session, 'fake-name', self._ds.name, vi.dc_info.vmFolder, self._vmops._root_resource_pool) self.assertEqual(vi.ii.file_size, 123) @mock.patch.object(images, 'fetch_image_ova', return_value=123) def test_fetch_image_as_ova(self, mock_fetch_image): vi = self._make_vm_config_info() image_ds_loc = mock.Mock() image_ds_loc.parent.basename = 'fake-name' self._vmops._fetch_image_as_ova(self._context, vi, image_ds_loc) mock_fetch_image.assert_called_once_with( self._context, vi.instance, self._session, 'fake-name', self._ds.name, vi.dc_info.vmFolder, self._vmops._root_resource_pool) self.assertEqual(vi.ii.file_size, 123) @mock.patch.object(uuidutils, 'generate_uuid', return_value='tmp-uuid') def test_prepare_iso_image(self, mock_generate_uuid): vi = self._make_vm_config_info(is_iso=True) tmp_dir_loc, tmp_image_ds_loc = self._vmops._prepare_iso_image(vi) expected_tmp_dir_path = '[%s] vmware_temp/tmp-uuid' % (self._ds.name) expected_image_path = '[%s] vmware_temp/tmp-uuid/%s/%s.iso' % ( self._ds.name, self._image_id, self._image_id) self.assertEqual(str(tmp_dir_loc), expected_tmp_dir_path) self.assertEqual(str(tmp_image_ds_loc), expected_image_path) @mock.patch.object(uuidutils, 'generate_uuid', return_value='tmp-uuid') @mock.patch.object(ds_util, 'mkdir') def test_prepare_sparse_image(self, mock_mkdir, mock_generate_uuid): vi = self._make_vm_config_info(is_sparse_disk=True) tmp_dir_loc, tmp_image_ds_loc = self._vmops._prepare_sparse_image(vi) expected_tmp_dir_path = '[%s] vmware_temp/tmp-uuid' % (self._ds.name) expected_image_path = '[%s] vmware_temp/tmp-uuid/%s/%s' % ( self._ds.name, self._image_id, "tmp-sparse.vmdk") self.assertEqual(str(tmp_dir_loc), expected_tmp_dir_path) self.assertEqual(str(tmp_image_ds_loc), expected_image_path) mock_mkdir.assert_called_once_with(self._session, tmp_image_ds_loc.parent, vi.dc_info.ref) @mock.patch.object(ds_util, 'mkdir') @mock.patch.object(vm_util, 'create_virtual_disk') @mock.patch.object(vmops.VMwareVMOps, '_delete_datastore_file') @mock.patch.object(uuidutils, 'generate_uuid', return_value='tmp-uuid') def test_prepare_flat_image(self, mock_generate_uuid, mock_delete_datastore_file, mock_create_virtual_disk, mock_mkdir): vi = self._make_vm_config_info() tmp_dir_loc, tmp_image_ds_loc = self._vmops._prepare_flat_image(vi) expected_tmp_dir_path = '[%s] vmware_temp/tmp-uuid' % (self._ds.name) expected_image_path = '[%s] vmware_temp/tmp-uuid/%s/%s-flat.vmdk' % ( self._ds.name, self._image_id, self._image_id) expected_image_path_parent = '[%s] vmware_temp/tmp-uuid/%s' % ( self._ds.name, self._image_id) expected_path_to_create = '[%s] vmware_temp/tmp-uuid/%s/%s.vmdk' % ( self._ds.name, self._image_id, self._image_id) mock_mkdir.assert_called_once_with( self._session, DsPathMatcher(expected_image_path_parent), self._dc_info.ref) self.assertEqual(str(tmp_dir_loc), expected_tmp_dir_path) self.assertEqual(str(tmp_image_ds_loc), expected_image_path) image_info = vi.ii mock_create_virtual_disk.assert_called_once_with( self._session, self._dc_info.ref, image_info.adapter_type, image_info.disk_type, DsPathMatcher(expected_path_to_create), image_info.file_size_in_kb) mock_delete_datastore_file.assert_called_once_with( DsPathMatcher(expected_image_path), self._dc_info.ref) @mock.patch.object(ds_util, 'file_move') def test_cache_iso_image(self, mock_file_move): vi = self._make_vm_config_info(is_iso=True) tmp_image_ds_loc = mock.Mock() self._vmops._cache_iso_image(vi, tmp_image_ds_loc) mock_file_move.assert_called_once_with( self._session, self._dc_info.ref, tmp_image_ds_loc.parent, DsPathMatcher('[fake_ds] vmware_base/%s' % self._image_id)) @mock.patch.object(ds_util, 'file_move') def test_cache_flat_image(self, mock_file_move): vi = self._make_vm_config_info() tmp_image_ds_loc = mock.Mock() self._vmops._cache_flat_image(vi, tmp_image_ds_loc) mock_file_move.assert_called_once_with( self._session, self._dc_info.ref, tmp_image_ds_loc.parent, DsPathMatcher('[fake_ds] vmware_base/%s' % self._image_id)) @mock.patch.object(ds_util, 'disk_move') @mock.patch.object(ds_util, 'mkdir') def test_cache_stream_optimized_image(self, mock_mkdir, mock_disk_move): vi = self._make_vm_config_info() self._vmops._cache_stream_optimized_image(vi, mock.sentinel.tmp_image) mock_mkdir.assert_called_once_with( self._session, DsPathMatcher('[fake_ds] vmware_base/%s' % self._image_id), self._dc_info.ref) mock_disk_move.assert_called_once_with( self._session, self._dc_info.ref, mock.sentinel.tmp_image, DsPathMatcher('[fake_ds] vmware_base/%s/%s.vmdk' % (self._image_id, self._image_id))) @mock.patch.object(ds_util, 'file_move') @mock.patch.object(vm_util, 'copy_virtual_disk') @mock.patch.object(vmops.VMwareVMOps, '_delete_datastore_file') def test_cache_sparse_image(self, mock_delete_datastore_file, mock_copy_virtual_disk, mock_file_move): vi = self._make_vm_config_info(is_sparse_disk=True) sparse_disk_path = "[%s] vmware_temp/tmp-uuid/%s/tmp-sparse.vmdk" % ( self._ds.name, self._image_id) tmp_image_ds_loc = ds_obj.DatastorePath.parse(sparse_disk_path) self._vmops._cache_sparse_image(vi, tmp_image_ds_loc) target_disk_path = "[%s] vmware_temp/tmp-uuid/%s/%s.vmdk" % ( self._ds.name, self._image_id, self._image_id) mock_copy_virtual_disk.assert_called_once_with( self._session, self._dc_info.ref, sparse_disk_path, DsPathMatcher(target_disk_path)) def test_get_storage_policy_none(self): flavor = objects.Flavor(name='m1.small', memory_mb=6, vcpus=28, root_gb=496, ephemeral_gb=8128, swap=33550336, extra_specs={}) self.flags(pbm_enabled=True, pbm_default_policy='fake-policy', group='vmware') extra_specs = self._vmops._get_extra_specs(flavor, None) self.assertEqual('fake-policy', extra_specs.storage_policy) def test_get_storage_policy_extra_specs(self): extra_specs = {'vmware:storage_policy': 'flavor-policy'} flavor = objects.Flavor(name='m1.small', memory_mb=6, vcpus=28, root_gb=496, ephemeral_gb=8128, swap=33550336, extra_specs=extra_specs) self.flags(pbm_enabled=True, pbm_default_policy='default-policy', group='vmware') extra_specs = self._vmops._get_extra_specs(flavor, None) self.assertEqual('flavor-policy', extra_specs.storage_policy) def test_get_base_folder_not_set(self): self.flags(image_cache_subdirectory_name='vmware_base') base_folder = self._vmops._get_base_folder() self.assertEqual('vmware_base', base_folder) def test_get_base_folder_host_ip(self): self.flags(my_ip='7.7.7.7', image_cache_subdirectory_name='_base') base_folder = self._vmops._get_base_folder() self.assertEqual('7.7.7.7_base', base_folder) def test_get_base_folder_cache_prefix(self): self.flags(cache_prefix='my_prefix', group='vmware') self.flags(image_cache_subdirectory_name='_base') base_folder = self._vmops._get_base_folder() self.assertEqual('my_prefix_base', base_folder) def _test_reboot_vm(self, reboot_type="SOFT", tool_status=True): expected_methods = ['get_object_properties_dict'] if reboot_type == "SOFT": expected_methods.append('RebootGuest') else: expected_methods.append('ResetVM_Task') def fake_call_method(module, method, *args, **kwargs): expected_method = expected_methods.pop(0) self.assertEqual(expected_method, method) if expected_method == 'get_object_properties_dict' and tool_status: return { "runtime.powerState": "poweredOn", "summary.guest.toolsStatus": "toolsOk", "summary.guest.toolsRunningStatus": "guestToolsRunning"} elif expected_method == 'get_object_properties_dict': return {"runtime.powerState": "poweredOn"} elif expected_method == 'ResetVM_Task': return 'fake-task' with test.nested( mock.patch.object(vm_util, "get_vm_ref", return_value='fake-vm-ref'), mock.patch.object(self._session, "_call_method", fake_call_method), mock.patch.object(self._session, "_wait_for_task") ) as (_get_vm_ref, fake_call_method, _wait_for_task): self._vmops.reboot(self._instance, self.network_info, reboot_type) _get_vm_ref.assert_called_once_with(self._session, self._instance) if reboot_type == "HARD": _wait_for_task.assert_has_calls([ mock.call('fake-task')]) def test_reboot_vm_soft(self): self._test_reboot_vm() def test_reboot_vm_hard_toolstatus(self): self._test_reboot_vm(reboot_type="HARD", tool_status=False) def test_reboot_vm_hard(self): self._test_reboot_vm(reboot_type="HARD") def test_get_instance_metadata(self): flavor = objects.Flavor(id=7, name='m1.small', memory_mb=6, vcpus=28, root_gb=496, ephemeral_gb=8128, swap=33550336, extra_specs={}) self._instance.flavor = flavor metadata = self._vmops._get_instance_metadata( self._context, self._instance) expected = ("name:fake_display_name\n" "userid:fake_user\n" "username:None\n" "projectid:fake_project\n" "projectname:None\n" "flavor:name:m1.small\n" "flavor:memory_mb:6\n" "flavor:vcpus:28\n" "flavor:ephemeral_gb:8128\n" "flavor:root_gb:496\n" "flavor:swap:33550336\n" "imageid:70a599e0-31e7-49b7-b260-868f441e862b\n" "package:%s\n" % version.version_string_with_package()) self.assertEqual(expected, metadata) @mock.patch.object(vmops.VMwareVMOps, '_get_extra_specs') @mock.patch.object(vm_util, 'reconfigure_vm') @mock.patch.object(vm_util, 'get_network_attach_config_spec', return_value='fake-attach-spec') @mock.patch.object(vm_util, 'get_attach_port_index', return_value=1) @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake-ref') def test_attach_interface(self, mock_get_vm_ref, mock_get_attach_port_index, mock_get_network_attach_config_spec, mock_reconfigure_vm, mock_extra_specs): _network_api = mock.Mock() self._vmops._network_api = _network_api vif_info = vif.get_vif_dict(self._session, self._cluster, 'VirtualE1000', utils.is_neutron(), self._network_values) extra_specs = vm_util.ExtraSpecs() mock_extra_specs.return_value = extra_specs self._vmops.attach_interface(self._instance, self._image_meta, self._network_values) mock_get_vm_ref.assert_called_once_with(self._session, self._instance) mock_get_attach_port_index(self._session, 'fake-ref') mock_get_network_attach_config_spec.assert_called_once_with( self._session.vim.client.factory, vif_info, 1, extra_specs.vif_limits) mock_reconfigure_vm.assert_called_once_with(self._session, 'fake-ref', 'fake-attach-spec') _network_api.update_instance_vnic_index(mock.ANY, self._instance, self._network_values, 1) @mock.patch.object(vif, 'get_network_device', return_value='device') @mock.patch.object(vm_util, 'reconfigure_vm') @mock.patch.object(vm_util, 'get_network_detach_config_spec', return_value='fake-detach-spec') @mock.patch.object(vm_util, 'get_vm_detach_port_index', return_value=1) @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake-ref') def test_detach_interface(self, mock_get_vm_ref, mock_get_detach_port_index, mock_get_network_detach_config_spec, mock_reconfigure_vm, mock_get_network_device): _network_api = mock.Mock() self._vmops._network_api = _network_api with mock.patch.object(self._session, '_call_method', return_value='hardware-devices'): self._vmops.detach_interface(self._instance, self._network_values) mock_get_vm_ref.assert_called_once_with(self._session, self._instance) mock_get_detach_port_index(self._session, 'fake-ref') mock_get_network_detach_config_spec.assert_called_once_with( self._session.vim.client.factory, 'device', 1) mock_reconfigure_vm.assert_called_once_with(self._session, 'fake-ref', 'fake-detach-spec') _network_api.update_instance_vnic_index(mock.ANY, self._instance, self._network_values, None) @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake-ref') def test_get_mks_console(self, mock_get_vm_ref): ticket = mock.MagicMock() ticket.host = 'esx1' ticket.port = 902 ticket.ticket = 'fira' ticket.sslThumbprint = 'aa:bb:cc:dd:ee:ff' ticket.cfgFile = '[ds1] fira/foo.vmx' with mock.patch.object(self._session, '_call_method', return_value=ticket): console = self._vmops.get_mks_console(self._instance) self.assertEqual('esx1', console.host) self.assertEqual(902, console.port) path = jsonutils.loads(console.internal_access_path) self.assertEqual('fira', path['ticket']) self.assertEqual('aabbccddeeff', path['thumbprint']) self.assertEqual('[ds1] fira/foo.vmx', path['cfgFile']) def test_get_cores_per_socket(self): extra_specs = {'hw:cpu_sockets': 7} flavor = objects.Flavor(name='m1.small', memory_mb=6, vcpus=28, root_gb=496, ephemeral_gb=8128, swap=33550336, extra_specs=extra_specs) extra_specs = self._vmops._get_extra_specs(flavor, None) self.assertEqual(4, int(extra_specs.cores_per_socket)) def test_get_folder_name(self): uuid = uuidutils.generate_uuid() name = 'fira' expected = 'fira (%s)' % uuid folder_name = self._vmops._get_folder_name(name, uuid) self.assertEqual(expected, folder_name) name = 'X' * 255 expected = '%s (%s)' % ('X' * 40, uuid) folder_name = self._vmops._get_folder_name(name, uuid) self.assertEqual(expected, folder_name) self.assertEqual(79, len(folder_name)) @mock.patch.object(vmops.VMwareVMOps, '_get_extra_specs') @mock.patch.object(vm_util, 'reconfigure_vm') @mock.patch.object(vm_util, 'get_network_attach_config_spec', return_value='fake-attach-spec') @mock.patch.object(vm_util, 'get_attach_port_index', return_value=1) @mock.patch.object(vm_util, 'get_vm_ref', return_value='fake-ref') def test_attach_interface_with_limits(self, mock_get_vm_ref, mock_get_attach_port_index, mock_get_network_attach_config_spec, mock_reconfigure_vm, mock_extra_specs): _network_api = mock.Mock() self._vmops._network_api = _network_api vif_info = vif.get_vif_dict(self._session, self._cluster, 'VirtualE1000', utils.is_neutron(), self._network_values) vif_limits = vm_util.Limits(shares_level='custom', shares_share=40) extra_specs = vm_util.ExtraSpecs(vif_limits=vif_limits) mock_extra_specs.return_value = extra_specs self._vmops.attach_interface(self._instance, self._image_meta, self._network_values) mock_get_vm_ref.assert_called_once_with(self._session, self._instance) mock_get_attach_port_index(self._session, 'fake-ref') mock_get_network_attach_config_spec.assert_called_once_with( self._session.vim.client.factory, vif_info, 1, extra_specs.vif_limits) mock_reconfigure_vm.assert_called_once_with(self._session, 'fake-ref', 'fake-attach-spec') _network_api.update_instance_vnic_index(mock.ANY, self._instance, self._network_values, 1)
48.283019
79
0.581016